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STATISTICAL MODELLING OF

DEFORMATION MEASUREMENTS

L. KUBÁČEK

1. Introduction

Many engineer’s construction works (e.g., bridges, dams, gas holders, crane

runways) before putting into operation and during operation must be tested as far

as the deformations caused by their loading are concerned.

In order to verify that the actual deformations lie within safety limits deter-

mined in advance (e.g., by static experts) replicated measurements have to be

carried out in a network of suitably chosen points whose positions are studied.

The statistical problems of processing this kind of measurements (problems of

determining the first order and second order parameters and testing hypotheses

on existence or non-existence of deformations) are solved in the paper.

2. Notations and Auxiliary Statements

Let βi, i = 1, . . . , k, denote parameters whose values must be determined by

deformation measurements. The results of measurements are given by a realiza-

tion y of an n-dimensional random vector Y . The class of distribution functions

connected with Y is F = {F (·, β, ϑ) : β ∈ Rk, ϑ ∈ ϑ}, where β = (β1, . . . , βk)′

(′ denotes the transposition of a matrix) ∈ Rk (k-dimensional Euclidean space),

ϑ = (ϑ1, . . . , ϑp)
′ ∈ ϑ (an open set in Rp); the parameter ϑ, which characterizes

the accuracy of measurement techniques, is also a priori unknown and must be

determined on the basis of the vector Y . The class F is supposed to have the

following two properties

∫
Rn

udF (u, β, ϑ) = Xβ, β ∈ Rk,
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where X is an n × k matrix which is known (so called design matrix, cf. [Ká1,

chpt. 5]) and∫
Rn

(u−Xβ)(u−Xβ)′dF (u, β, ϑ) =

p∑
i=1

ϑiVi, β ∈ R
k, ϑ ∈ ϑ,

where V1, . . . , Vp are known symmetric matrices.

In the following, for the sake of simplicity, the rank of the matrix X is supposed

to be r(X) = k < n and the set ϑ to have the property

ϑ ∈ ϑ ⇒ Σ(ϑ) =

p∑
i=1

ϑiVi is p.d. (positive definite).

These assumptions are realistic and have the following meaning. The measure-

ments are not affected by a systematic influence (cf. [K1]) and thus the mean

value of Y is a known vector function of β only and this fuction can be linearized;

further this function does not depend on ϑ which characterizes the accuracy of

the measurement devices used. The assumption that the covariance matrix Σ(ϑ)

does not depend on the measured parameter β is sometimes not satisfied (cf. [W]).

Nevertheless, this assumption is accepted because of the following two reasons: In

many cases a deviation of the reality from this assumption has no essential influ-

ence on the estimate of β and further the problems connected with respecting the

fact that the covariance matrix depends also on β are difficult and overcome the

framework of this paper.

The just described statistical model is denoted as

(Y,Xβ,

p∑
i=1

ϑiVi), β ∈ R
k, ϑ ∈ ϑ

and, in view of the assumptions r(X) = k < n, and Σ(ϑ) is p.d. for ϑ ∈ ϑ, it

is called regular. In this model two kinds of estimators are considered: linear

estimators L′Y of a given linear function f(β) = f ′β, β ∈ Rk, and quadratic

estimators Y ′AY (A a symmetric matrix) of a given linear function g(ϑ) = g′ϑ,

ϑ ∈ ϑ.

Definition 2.1. The ϑ0-LBLUE (locally best linear unbiased estimator) of a

function

f(β) = f ′β, β ∈ Rk,

in the model (Y,Xβ,
∑p
i=1 ϑiVi), β ∈ R

k, ϑ ∈ ϑ, is a statistic L′Y such that

(i) ∀{β ∈ Rk, ϑ ∈ ϑ} E(L′Y |β) =
∫
Rn

L′udF (u, β, ϑ) = f ′β

and

(ii) ∀{L1 ∈ Rn, L1 satisfying (i)}

Var(L′Y |ϑ0) =

∫
Rn

(L′u− f ′β)2dF (u, β, ϑ0) ≤ Var(L′1Y |ϑ0).
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Definition 2.2. The ϑ0-MINQUE (minimum norm quadratic unbiased estima-

tor; cf. [R1, p. 304]) of a function g(ϑ) = g′ϑ, ϑ ∈ ϑ, in the model

(Y,Xβ,
∑p
i=1 ϑiVi), β ∈ R

k, ϑ ∈ ϑ, is a statistic Y ′AY possesing the properties

(i) ∀{β ∈ Rk, ϑ ∈ ϑ}E(Y ′AY |β, ϑ) = g′ϑ,

(ii) ∀{δ ∈ Rk}(Y +Xδ)′A(Y +Xδ) = Y ′AY

and

(iii) ∀{A : A satysfying (i) and (ii), A = A
′
}

tr(AΣ0AΣ0) ≤ tr(AΣ0AΣ0).

Here Σ0 = Σ(ϑ0).

The motivation of Definition 2.2 lies in two facts: the defined estimator is closely

connected with natural estimators (cf. [R1, p. 303] or [R3]) and in the case of nor-

mality of the vector Y (Y ∼ Nn(Xβ,Σ(ϑ))) it represents the ϑ0-LMVIQUE (lo-

cally minimum variance invariant quadratic unbiased estimator). The invariance

is characterized by (ii) in Definition 2.2.

Lemma 2.3. In the model

(Y(n,1),X(n,k)β(k,1),Σ(ϑ)), β ∈ Rk, ϑ ∈ ϑ,

(i) an unbiased linear estimator of a function f(β) = f ′β, β ∈ Rk, exists iff

f ∈M(X ′) = {X ′u : u ∈ Rn};
(ii) the ϑ0-LBLUE of the function f(·) in the regular model is

f̂ ′β = f ′(X ′Σ−1
0 X)−1X ′Σ−1

0 Y,

and its dispersion at ϑ0 is

Var(f̂ ′β|ϑ0) = f ′(X ′Σ−1
0 X)−1f.

Proof. Cf. [R1]. �

Lemma 2.4. The ϑ0-MINQUE of a function g(ϑ) = g′ϑ, ϑ ∈ ϑ,

(i) exists iff g ∈M(C(I)), where

{C(I)}i,j = tr(MXViMXVj), i, j = 1, . . . , p,

MX = I −X(X ′X)−1X ′, I is the identity matrix, and

(ii) if g ∈M(C(I)), the ϑ0-MINQUE is

ĝ′ϑ = Y ′AY =

p∑
i=1

λiY
′(MXΣ0MX)+Vi(MXΣ0MX)+Y,
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with (MXΣ0MX)+ = Σ−1
0 − Σ−1

0 X(X ′Σ−1
0 X)−1X ′Σ−1

0 , where λ = (λ1, . . . , λp)
′

is a solution of the equation

S(MXΣ0MX)+λ = g;

here

{S(MXΣ0MX)+}i,j = tr[(MXΣ0MX)+Vi(MXΣ0MX)+Vj ], i, j = 1, . . . , p,

and (·)+ denotes the Moore-Penrose inverse (cf. [R2]) of the matrix in the brackets;

(iii) if Y ∼ Nn(Xβ,Σ0), the dispersion of the estimator ĝ′ϑ at ϑ0 is

Var(ĝ′ϑ|ϑ0) = 2g′S−(MXΣ0MX)+g;

the expression for the variance does not depend on the choice of the generalized

inverse S−(MXΣ0MX)+ of the matrix S(MXΣ0MX)+ .

Proof. Cf. [R3] or [Se2]. �

Lemma 2.5. Let Y ∼ Nn(X(n,k)β,Σ), β ∈ Rk. Let Σ be known; r(X) = k

and r(Σ) = n. A null-hypothesis Aβ = a on β, where A is a q× k matrix with the

rank r(A) = q < k, and a is a given vector, can be tested against Aβ 6= a using

the statistic

(Aβ̂ − a)′[A(X ′Σ−1X)−1A′]−1(Aβ̂ − a),

which has, if the null hypothesis is true, the central chi-square distribution with q

degrees of freedom; β̂ is the Σ-LBLUE of β.

Proof. Cf. [R1]. �

3. Models with Stable and Variable Parameters

One possibility how to design an experiment of deformation measurements is

to decompose the vector β into two parts β1 ∈ Rk1 and β2 ∈ Rk2 , k1 + k2 = k,

in such a way that β1 is connected with stable points and β2 with variable ones.

The following example can serve as explanation of the situation.

Example. Let (0, 0, 0), (γ1, 0, γ2), (γ3, γ4, γ5) be cartesian coordinates of three

points P1, P2, and P3 in R3, respectively, which are located on the river-side in

the neighbourhood of a bridge the deformation of which is investigated; they can

be considered to be stable because a loading of the bridge cannot influence the

coordinates γ1, . . . , γ5. Let

(γ6, γ7, γ8), (γ9, γ10, γ11), (γ12, γ13, γ14)

be coordinates of pointsA, B, C which are located on the construction of the bridge

at positions determined by a static expert. The problem is to determine the values
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of parameters γ6, . . . , γ14, influenced by the given loading. If the measurements

are performed in such a way that the horizontal distances among the points P1,

P2, P3, A, B, C and horizontal and vertical angles in different triangles given by

these points are measured, the parameters γ6, . . . , γ14 can be estimated only on

the basis of γ1, . . . , γ5.

If β1 = (γ1, . . . , γ5)′ and β2 = (γ6, . . . , γ14)′, then in the most simple case the

model of these measurements is(
Y, (X1,X2)

(
β1

β2

)
, ϑ1V1 + ϑ2V2

)
,

where ϑ1 is the dispersion of the angle measurements and ϑ2 is the dispersion of the

distance measurements. Of course this experiment must be replicated for different

ways of the loading of the bridge; it is performed in several epochs. During these

epochs the parameters ϑ1 and ϑ2 can be sometimes considered as stable. Therefore

in the following this simple case is considered only.

Definition 3.1. An m-epoch model with stable and variable parameters with

the same design in each epoch is
 Y1

...

Ym

 , (1⊗X1, I ⊗X2)

(
β1

β
(·)
2

)
,

p∑
i=1

ϑi(I ⊗ Vi)

 ,

β1 ∈ R
k1 , β

(·)
2 ∈ R

mk2 , ϑ ∈ ϑ.

Here Y1, . . . , Ym are stochastically independent n-dimensional random vectors,

1 = (1, . . . , 1)′ ∈ Rm, I is the m×m identity matrix,

β
(·)
2 = (β

(1)′

2 , . . . , β
(m)′

2 )′,

β
(j)
2 is the value of the parameter β2 in the jth epoch, j = 1, . . . ,m and ⊗ denotes

the Kronecker product of matrices.

For the following let us remind the assumption on the regularity of the model

(before Definition 2.1), i.e., in the model from Definition 3.1 it holds r(X1,X2) =

k = k1 + k2 and r(
∑p

i=1 ϑiVi) = n.

Theorem 3.2. In the model from Definition 3.1

(i) the ϑ0-LBLUE of the vector (β′1, β
(·)′

2 )′ is(
β̂1(Y )

β̂
(·)
2 (Y )

)
=

(
[X ′1(MX2Σ0MX2)+X1]−1X ′1(MX2Σ0MX2)+Y

(I ⊗B)v1 + 1⊗ v2

)
,

where Y = (Y ′1 , . . . , Y
′
m)′, Y = 1

m

∑m
i=1 Yj, B = (X ′2Σ−1

0 X2)−1X ′2Σ−1
0 ,

v1 = [(Y1 − Y )′, . . . , (Ym − Y )′]′,

v2 = [X ′2(MX1Σ0MX1)+X2]−1X ′2(MX1Σ0MX1)+Y ,
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MX1 = I −X1(X ′1X1)−1X ′1, MX2 = I −X2(X ′2X2)−1X ′2;

(ii)

Var

[(
β̂1(Y )

β̂
(·)
2 (Y )

) ∣∣∣∣∣Σ0

]
=

(
11 , 12

21 , 22

)
,

11 =
1

m
[X ′1(MX2Σ0MX2)+X1]−1,

12 = −
1′

m
⊗ (X ′1Σ−1

0 X1)−1X ′1Σ−1
0 X2[X ′2(MX1Σ0MX1)+X2]−1

= −
1′

m
⊗ [X ′1(MX2Σ0MX2)+X1]−1X ′1Σ−1

0 X2(X ′2Σ−1
0 X2)−1

= 21 ′,

22 = Mm ⊗ (X ′2Σ−1
0 X2)−1 + Pm ⊗ [X ′2(MX1Σ0MX1)+X2]−1,

where Pm = 11′/m = P 2
m, Mm = I − Pm = M2

m with PmMm = 0 = MmPm.

Proof. With respect to Lemma 2.3 and Definition 3.1 the ϑ0-LBLUE of the

vector (β′1, β
(·)′

2 )′ is

[(
1′ ⊗X ′1
I ⊗X ′2

)
(I ⊗ Σ−1

0 )(1⊗X1, I ⊗X2)

]−1(
1′ ⊗X ′1
I ⊗X ′2

)
(I ⊗ Σ−1

0 )Y .

Regarding the assumptions that r(X) = k = k1 + k2 = r(X1,X2) and Σ0 =

Σ(ϑ0) is p.d., the matrix(
1′ ⊗X ′1
I ⊗X ′2

)
(I ⊗ Σ−1

0 )(1⊗X1, I ⊗X2) =

(
m⊗X ′1Σ−1

0 X1, 1′ ⊗X ′1Σ−1
0 X2

1⊗X ′2Σ−1
0 X1, I ⊗X ′2Σ−1

0 X2

)
is regular, thus its inverse exists. It can be verified that this inverse is(

11 , 12

21 , 22

)
.

Here the equalities

(
A, B

B′, C

)−1

=

=

(
A−1 +A−1B(C −B′A−1B)−1B′A−1, −A−1B(C −B′A−1B)−1

−(C −B′A−1B)−1B′A−1, (C −B′A−1B)−1

)
=

(
(A−BC−1B′)−1, −(A−BC−1B′)−1BC−1

−C−1B′(A−BC−1B′)−1, C−1 + C−1B′(A−BC−1B′)−1BC−1

)
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valid for a p.d. matrix
(
A, B

B′, C

)
are utilized. In our case it is also necessary to use

the equalities

(MXiΣ0MXi)
+ = Σ−1

0 − Σ−1
0 Xi(X

′
iΣ
−1
0 Xi)

−1X ′iΣ
−1
0 , i = 1, 2,

and

[Mm ⊗X
′
2Σ−1

0 X2 + Pm ⊗X
′
2(MX1Σ0MX1)+X2]−1 =

= Mm ⊗ (X ′2Σ0X2)−1 + Pm ⊗ [X ′2(MX1Σ0MX1)+X2]−1

which can be directly verified.

The assertion (ii) is a direct consequence of Lemma 2.3 and the assertion (i).�

Theorem 3.3. The ϑ0-LBLUE of (β′1, β
(j)′

2 )′, based on the vector Yj only, is

(
β̂1(Yj)

β̂
(j)
2 (Yj)

)
=

(
[X ′1(MX2Σ0MX2)+X1]−1X ′1(MX2Σ0MX2)+Yj
[X ′2(MX1Σ0MX1)+X2]

−1
X ′2(MX1Σ0MX1)+Yj

)

and its covariance matrix is

Var

[(
β̂1(Yj)

β̂
(j)
2 (Yj)

)∣∣∣∣∣Σ0

]
=

(
A, B

C, D

)
,

where

A = [X ′1(MX2Σ0MX2)+X1]
−1
,

B = −[X ′1(MX2Σ0MX2)+X1]
−1
X ′1Σ−1

0 X2(X ′2Σ−1
0 X2)−1 = C′,

C = −[X ′2(MX1Σ0MX1)+X2]
−1
X ′2Σ−1

0 X1(X ′1Σ−1
0 X1)−1 = B′,

D = [X ′2(MX1Σ0MX1)+X2]
−1
.

Proof. As E(Y (j)|β1, β
(j)
2 ) = (X1,X2)

(
β1

β
(j)
2

)
, the ϑ0-LBLUE of the vector

(β′1, β
(j)′

2 )′ is [(
X ′1
X ′2

)
Σ−1

0 (X1,X2)

]−1(
X ′1
X ′2

)
Σ−1

0 Y (j) .

The proof can be easily finished using the analogous equalities as in proof of

Theorem 3.2. �
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Corollary 3.4. Theorems 3.2 and 3.3 form a good basis for comparing results

from separate epochs with results from the experiment in the whole. If the normality

of the vector Y is presupposed and points connected with β1 can be considered to

be stable, then

β̂1(Yj)− β̂1(Y1, . . . , Yj−1) ∼ Nk1{0, [(j)/(j − 1)][X ′1(MX2Σ0MX2)+X1]−1}.

Thus the statistic

[β̂1(Yj)− β̂1(Y1, . . . , Yj−1)]′
j − 1

j
[X ′1(MX2Σ0MX2)+X1]

· [β̂1(Yj)− β̂1(Y1, . . . , Yj−1)] ∼ χ2
k1

(distributed as central chi-square with k1 degrees of freedom) can be used for testing

the stability after each epoch. Another possibility is given by the following theorem

and corollary.

Theorem 3.5. Under the normality of the vector (Y ′1 , . . . , Y
′
j )′, j ≤ m, in the

model from Definition 3.1 the joint distribution of the ϑ0-LBLUE of β
(j)
2 based on

Yj and (Y ′1 , . . . , Y
′
j )′, respectively, is(
β̂

(j)
2 (Yj)

β̂
(j)
2 (Y1, . . . , Yj)

)
∼ N2k2

[(
β̂

(j)
2

β̂
(j)
2

)
,

(
W1,1, W1,2

W2,1, W2,2

)]
,

where

W1,1 = [X ′2(MX1Σ0MX1)+X2]
−1
,

W1,2 =
1

j
[X ′2(MX1Σ0MX1)+X2]−1 + (1−

1

j
)(X ′2Σ−1

0 X2)−1 = W ′2,1,

W2,2 =
1

j
[X ′2(MX1Σ0MX1)+X2]

−1
+ (1−

1

j
)(X ′2Σ−1

0 X2)−1 = W1,2 = W2,1.

Proof. Let

A = [X ′2(MX1Σ0MX1)+X2]
−1
X ′2(MX1Σ0MX1)+,

B = (X ′2Σ−1
0 X2)−1X ′2Σ−1

0 .

Then, with respect to Theorems 3.3 and 3.2,

β̂
(j)
2 (Yj) = A(e′j ⊗ I)(Y ′1 , . . . Y

′
j )′,

β̂
(j)
2 (Y1, . . . , Yj) =

[
A

(
1′ ⊗ I)

j

)
+B

(
e′j ⊗ I −

1′ ⊗ I

j

)]
(Y1,

′ , . . . , Y ′j )′.
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Now, if the equalities

(MX1Σ0MX1)+Σ0(MX1Σ0MX1)+ = (MX1Σ0MX1)+,

AΣ0A
′ = [X ′2(MX1Σ0MX1)+X2]

−1

and

AΣ0B
′ = (X ′2Σ−1

0 X2)−1 = BΣ0B
′

are taken into account, we obtain

W1,1 = AΣ0A
′, W1,2 = (1−

1

j
)AΣ0B

′ +
1

j
AΣ0A

′,

W2,1 = W ′1,2, W2,2 = (1−
1

j
)BΣ0B

′ +
1

j
AΣ0A

′.

Now it is elementary to finish the proof. �
Corollary 3.6. If the vector (Y ′1 , . . . , Y

′
m)′ is normally distributed, then

β̂
(j)
2 (Yj)− β̂

(j)
2 (Y1, . . . , Yj) ∼ Nk2(0,K),

where

K = (1−
1

j
)(X ′2Σ−1

0 X2)−1X ′2Σ−1
0 X1[X ′1(MX2Σ0MX2)+X1]

−1

·X ′1Σ−1
0 X2(X ′2Σ−1

0 X2)−1.

Proof. With respect to Theorem 3.5

Var
{[
β̂

(j)
2 (Yj)− β̂

(j)
2 (Y1, . . . , Yj)

]
|Σ0

}
= W1,1 +W2,2 − 2W1,2

= (1−
1

j
)
{

[X ′2(MX1Σ0MX1)+X2]
−1 − (X ′2Σ−1

0 X2)−1
}
.

With respect to the equality

(MX1Σ0MX1)+ = Σ−1
0 − Σ−1

0 X1(X ′1Σ−1
0 X1)+X ′1Σ−1

0 ,

we can write

[X ′2(MX1Σ0MX1)+X2]
−1

= [X ′2Σ−1
0 X2 −X

′
2Σ−1

0 X1(X ′1Σ−1
0 X1)−1X ′1Σ−1

0 X2]−1.

Now, using the equality

(S1 −AS2A
′)−1 = S−1

1 + S−1
1 A(S−1

2 −A′S−1
1 A)−1A′S−1

1 ,

where S1 = X ′2Σ−1
0 X2, A = X ′2Σ−1

0 X1, S2 = (X ′1Σ−1
0 X1)−1, we obtain

[X ′2(MX1Σ0MX1)+X2]
−1

= (X ′2Σ−1
0 X2)−1 + (X ′2Σ−1

0 X2)−1X ′2Σ−1
0 X1

· [X ′1Σ−1
0 X1 −X

′
1Σ−1

0 X2(X ′2Σ−1
0 X2)−1X ′2Σ−1

0 X1]−1X ′1Σ−1
0 X2(X ′2Σ−1

0 X2)−1.

As

[X ′1Σ−1
0 X1 −X

′
1Σ−1

0 X2(X ′2Σ−1
0 X2)−1X ′2Σ−1

0 X1]−1 = [X ′1(MX2Σ0MX2)+X1]
−1

the proof is finished. �
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Corollary 3.7. With respect to Theorem 3.3

Var
[
β̂

(j)
2 (Yj)|Σ0

]
= [X ′2(MX1Σ0MX1)+X2]−1

and with respect to Theorem 3.5,

Var
[
β̂

(j)
2 (Y1, . . . , Yj)|Σ0

]
= (1−

1

j
)(X ′2Σ−1

0 X2)−1 +
1

j
[X ′2(MX1Σ0MX1)+X2]

−1
.

Thus

Var
[
β̂

(j)
2 (Yj)|Σ0

]
= Var

[
β̂

(j)
2 (Y1, . . . , Yj)|Σ0

]
+ (1−

1

j
)
{

[X ′2(MX1Σ0MX1)+X2]
−1 − (X ′2Σ−1

0 X2)−1
}
.

The expression [X ′2(MX1Σ0MX1)+X2]
−1−(X ′2Σ−1

0 X2)−1 is given in Corollary 3.6;

it shows the effect of the measurements of the preceding epochs on the estimator of

β
(j)
2 . From this point of view the relationship

Var
[
β̂

(j)
2 (Y1, . . . , Yj)|Σ0

]
= (X ′2Σ−1

0 X2)−1

+
1

j
(X ′2Σ−1

0 X2)−1X ′2Σ−1
0 X1[X ′1(MX2Σ0MX2)+X1]

−1
X ′1Σ−1

0 X2(X ′2Σ−1
0 X2)−1

is instructive.

Theorem 3.8. In the model from Definition 3.1

(i) the ϑ0-MINQUE of a function g(ϑ) = g′ϑ, ϑ ∈ ϑ, exists iff

g ∈M
[
(m− 1)SMX2

+ SM(X1,X2)

]
,

where

{SMX2
}i,j = tr(MX2ViMX2Vj), i, j = 1, . . . , p,

{SM(X1,X2)
}i,j = tr(M(X1,X2)ViM(X1,X2)Vj), i, j = 1, . . . , p

and

MX2 = I −X2(X ′2X2)−1X2,

M(X1,X2) = I − (X1,X2)[(X1,X2)′(X1,X2)]−1(X1,X2)′,

(ii) if g ∈ M
[
(m− 1)SMX2

+ SM(X1,X2)

]
, then ϑ0-MINQUE of the function

g(ϑ) = g′ϑ, ϑ ∈ ϑ, is

τg(Y ) =

p∑
i=1

λi{tr[Ai

m∑
j=1

(Yj − Y )(Yj − Y )′] +mY
′
BiY },
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where

Y = (Y ′1 , . . . , Y
′
m)′,

Ai = (MX2Σ0MX2)+Vi(MX2Σ0MX2)+,

Bi = (M(X1,X2)Σ0M(X1,X2))
+Vi(M(X1,X2)Σ0M(X1,X2))

+

and λ = (λ1, . . . , λp)
′ is a solution of the equation(

(m− 1)S(MX2Σ0MX2 )+ + S(M(X1,X2)Σ0M(X1,X2))+

)
λ = g,

(iii) if the observation vector Y is normally distributed, then the variance of

τg(Y ) at ϑ0 is

Var[τg(Y )|ϑ0] = 2g′
(

(m− 1)S(MX2Σ0MX2 )+ + S(M(X1,X2)Σ0M(X1,X2))+

)−
g

(it does not depend on the choice of the generalized inverse of the matrix in the

last expression).

Proof. Applying in Lemma 2.4 the design matrix and the covariance matrix of

the model from Definition 3.1 we obtain

(i)

{C(I)}i,j = tr
[
M(1⊗X1,I⊗X2)(I ⊗ Vi)M(1⊗X1,I⊗X2)(I ⊗ Vj)

]
,

i, j = 1, . . . p,

M(1⊗X1,I⊗X2) = (Mm⊗ I+Pm⊗ I)− (1⊗X1, I⊗X2)

(
11 , 12

21 , 22

)(
1′ ⊗X ′1
I ⊗X ′2

)
,

where (cf. Theorem 3.2)

11 =
1

m
(X ′1MX2X1)−1,

12 = −
1′

m
⊗ (X ′1X1)−1X ′1X2(X ′2MX1X2)−1

= −
1′

m
⊗ (X ′1MX2X1)−1X ′1X2(X ′2X2)−1

= 21 ′,

22 = Mm ⊗ (X ′2X2)−1 + Pm ⊗ (X ′2MX1X2)−1.

Thus

(1⊗X1, I ⊗X2)

(
11 , 12

21 , 22

)(
1′ ⊗X ′1
I ⊗X ′2

)
= Mm ⊗ PX2 + Pm ⊗ P(X1,X2).
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Here the equality P(X1,X2) = P
MX2

X1
+ P

MX1

X2
, which can be easily verified, is used.

We obtain

M(1⊗X1,I⊗X2) = Mm ⊗MX2 + Pm ⊗M(X1,X2),

what implies

{C(I)}i,j = (m− 1) tr(MX2ViMX2Vj) + tr(M(X1,X2)ViM(X1,X2)Vj).

(ii) Taking into account the equality(
M(1⊗X1,I⊗X2)(I ⊗ Σ0)M(1⊗X1,I⊗X2)

)+
=

= Mm ⊗ Σ−1
0 + Pm ⊗ Σ−1

0 − (Mm ⊗ Σ−1
0 + Pm ⊗ Σ−1

0 )(1⊗X1, I ⊗X2)

·

(
m⊗X ′1Σ−1

0 X1, 1′ ⊗X ′1Σ−1
0 X2

1⊗X ′2Σ−1
0 X1, I ⊗X ′2Σ−1

0 X2

)−1(
1′ ⊗X ′1
I ⊗X ′2

)
(Mm ⊗ Σ−1

0 + Pm ⊗ Σ−1
0 )

and expressions 11 , 12 , 21 , 22 from Theorem 3.2 we obtain(
M(1⊗X1,I⊗X2) (I ⊗ Σ0)M(1⊗X1,I⊗X2)

)+
=

= Mm ⊗ (MX2Σ0MX2)+ + Pm ⊗ (M(X1,X2)Σ0M(X1,X2))
+

in an analogous way as in (i). Considering the last expression and the equality

(Y ′1 , . . . , Y
′
m)(Mm ⊗A+ Pm ⊗B)

 Y1
...

Ym

 =

= tr

[
A

m∑
i=1

(Yi − Y )(Yi − Y )′

]
+mY

′
BY

we obtain easily the assertion from (ii).

(iii) is a direct consequence of (ii), the assumption of normality and (iii) of

Lemma 2.4. �
Remark 3.9. In the following the matrix S(M(X1,X2)Σ0M(X1,X2))+ will be as-

sumed to be p.d.

This matrix is always at least p.s.d. since it is the Gram matrix of the p-tuple

{[(M(X1,X2)Σ0M(X1,X2))
+]1/2Vi[(M(X1,X2)Σ0M(X1,X2))

+]1/2}pi=1,

in the Hilbert space Mn,n of n× n matrices with the inner product

〈A,B〉 = tr(AB′), A,B ∈Mn,n.

An important consequence of this assumption consists in the fact that the whole

vector ϑ can be estimated by the ϑ0-MINQUE in each separate epoch; for this

reason it must be fulfilled always in practice. For our purposes this assumption

enables us to compare easily MINQUEs from a separate epoch and MINQUEs

from several epochs.
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Corollary 3.10. The ϑ0-MINQUE of the function g(·) from Theorem 3.8,

based on the observation vector Yj from the j-th epoch only, is

ϑ̂(Yj) = S−1
(M(X1,X2)Σ0M(X1,X2))+ γ̂,

where γ̂ = (γ̂1, . . . , γ̂p)
′,

γ̂i = Y ′j (M(X1,X2)Σ0M(X1,X2))
+Vi(M(X1,X2)Σ0M(X1,X2))

+Yj ,

i = 1, . . . , p, and if the vector Y is normal,

Var(ϑ̂(Yj)|Σ0) = 2S−1
(M(X1,X2)Σ0M(X1,X2))+ .

Corollary 3.10 and Theorem 3.8 give us a tool for investigating a behaviour of

the estimators

ϑ̂(Y1), ϑ̂(Y2), . . . ,

the estimators

ϑ̂(Y1, Y2), ϑ̂(Y1, Y2, Y3), . . .

and the relations among them.

Remark 3.11. With respect to Corollary 3.10, Theorem 3.8 and Lemma 3.12,

three types of estimators of the parameter ϑ can be calculated after m epochs of

measurements:

(i)

ϑ̂1(Y1, . . . , Ym) =
[
(m− 1)S(MX2Σ0MX2 )+ + S(M(X1,X2)Σ0M(X1,X2))+

]−1

γ̂,

where γ̂ = (γ̂1, . . . , γ̂p)
′,

γ̂i = tr

(MX2Σ0MX2)+Vi(MX2Σ0MX2)+
m∑
j=1

(Yj − Y )(Yj − Y )′


+mY

′
(M(X1,X2)Σ0M(X1,X2))

+Vi(M(X1,X2)Σ0M(X1,X2))
+Y ,

(ii)

ϑ̂2(Y1, . . . , Ym) =
1

m− 1
S−1

(MX2Σ0MX2 )+ κ̂,

where κ̂ = (κ̂1, . . . , κ̂p)
′,

κ̂i = tr

(MX2Σ0MX2)+Vi(MX2Σ0MX2)+
m∑
j=1

(Yj − Y )(Yj − Y )′


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and

(iii)

ϑ̂3(Y1, . . . , Ym) =
1

m

m∑
j=1

ϑ̂(Yj),

where

ϑ̂(Yj) = S−1
(M(X1,X2)Σ0M(X1,X2))+ω̂, ω̂ = (ω̂1, . . . , ω̂p)

′,

ω̂i = Y ′j (M(X1,X2)Σ0M(X1,X2))
+Vi(M(X1,X2)Σ0M(X1,X2))

+Yj ,

i = 1, . . . , p; j = 1, . . . ,m.

The estimator ϑ̂2(Y1, . . . , Ym) is based on the following lemma.

Lemma 3.12. In the model from Definition 3.1 for any n× n symmetric ma-

trix A

E

tr

A m∑
j=1

(Yj − Y )(Yj − Y )′

 ∣∣∣∣∣Σ
 =

= (m− 1) tr(AΣ) +
m∑
j=1

(β
(j)
2 − β(·)

2 )′X ′2AX2(β
(j)
2 − β(·)

2 ),

where β
(·)
2 = 1

m

∑m
j=1 β

(j)
2 .

Proof. The proof can be made in a straightforward way and therefore it is

omitted. �
In our case

A = (MX2Σ0MX2)+Vi(MX2Σ0MX2)+, i = 1, . . . , p;

because of (MX2Σ0MX2)+X2 = 0,

E(κ̂i|Σ) = (m− 1) tr

(MX2Σ0MX2)+Vi(MX2Σ0MX2)+
m∑
j=1

ϑjVj


= (m− 1)

{
S(MX2Σ0MX2 )+

}
i.
ϑ

and the last relationship enables us to establish easily the estimator ϑ̂2.

Remark 3.13. In general it is relatively difficult to compare the variances of

the estimators ϑ̂1, ϑ̂2 and ϑ̂3; nevertheless in the case of normality obviously

Var[ϑ̂1(Y1, . . . , Ym)|Σ0] =

= 2
{

(m− 1)S(MX2Σ0MX2 )+ + S(M(X1,X2)Σ0M(X1,X2))+

}−1

≤ Var[ϑ̂2(Y1, . . . , Ym)|Σ0] =
2

m− 1
S−1

(MX2Σ0MX2 )+
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and

Var[ϑ̂1(Y1, . . . , Ym)|Σ0] ≤ Var[ϑ̂3(Y1, . . . , Ym)|Σ0]

= (2/m)S−1
(M(X1,X2)Σ0M(X1,X2))+

(≤ means the Loewner ordering of p.s.d. matrices).

Further

lim
m→∞

Var[ϑ̂1(Y1, . . . , Ym)|Σ0]
{

Var[ϑ̂2(Y1, . . . , Ym)|Σ0]
}−1

= I(p,p);

thus the estimator ϑ̂2 is to be preferred to ϑ̂3 if the number of epochs is sufficiently

large. It is rather surprising; ϑ̂1 has been suggested already by B. Schaffrin ([Sch2],

Chapter 2.1), and similarly by J. Kleffe ([Kl]) and others, though in more general

form. It seems that even in the case of a relatively small number of epochs the

estimator ϑ̂3 is significantly worse than ϑ̂1 and ϑ̂2, respectively, c.f. Example in

[Ká4].

It is rather unpleasant when the vector ϑ is unknown and must be estimated.

Therefore it may be of some interest to know a class of such linear functions of

parameteres β1 and β
(·)
2 which can be estimated by UBLUEs (uniformly best linear

unbiased estimators). In solving this problem we can start from Theorem 5.7.2 in

[K2]. In our case the following theorem can be stated.

Theorem 3.14. The class of linear functions of β1 and β
(·)
2

f(β1, β
(·)
2 ) = f ′1β1 + f

(1)′

2 β
(1)
2 + . . .+ f

(m)′

2 β
(m)
2 , β1 ∈ R

k1 , β
(·)
2 ∈ R

mk2 ,

estimable by UBLUEs is

F =

{
f1

f
(1)
2
...

f
(m)
2

 : f1 = mX ′1[I − (

p∑
i=1

ViM(X1,X2)Vi)
−(

p∑
i=1

ViM(X1,X2)Vi)]L.,

f
(j)
2 = [I − (

p∑
i=1

ViMX2Vi)
−(

p∑
i=1

ViMX2Vi)](Lj − L.),

j = 1, . . . ,m, L. =
1

m

m∑
j=1

Lj, L = (L′1, . . . , L
′
m)′ ∈ Rmn

}
.

Proof. Regarding Theorem 5.7.2 from [K2],

F =M

{(
1′ ⊗X ′1
I ⊗X ′2

)
Ker

[
p∑
i=1

(I ⊗ Vi)M(1⊗X1,I⊗X2)(I ⊗ Vi)

]}
.
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As M(1⊗X1,I⊗X2) = Mm ⊗MX2 + Pm ⊗M(X1,X2) (cf. proof of Theorem 3.8) and

p∑
i=1

(I ⊗ Vi)M(1⊗X1,I⊗X2)(I ⊗ Vi) = Mm ⊗
p∑
i=1

ViMX2Vi + Pm ⊗
p∑
i=1

ViM(X1,X2)Vi,

we obtain

Ker

[
p∑
i=1

(I ⊗ Vi)M(1⊗X1,I⊗X2)(I ⊗ Vi)

]
=

=M

{
Mm ⊗

[
I − (

p∑
i=1

ViMX2Vi)
−(

p∑
i=1

ViMX2Vi)

]

+Pm ⊗

[
I − (

p∑
i=1

ViM(X1,X2)Vi)
−(

p∑
i=1

ViM(X1,X2)Vi)

]}
.

Now we can easily finish the proof. �

Another important representant of the class of m-epoch models with stable and

variable parameters is

(3.1)

(
Y , (1⊗X1, I ⊗X2)

(
β1

β
(·)
2

)
, D ⊗ V

)
,

where D = Diag(σ2
1 , . . . , σ

2
m) is an unknown diagonal matrix, V is a given n× n

p.d. matrix and the other notations have the same meaning as in Definition 3.1.

In the following the ratio σ2
1 : σ2

2 : . . . : σ2
m is supposed to be unknown.

Theorem 3.15. In the model (3.1)

(i) the ϑ0-LBLUE of β1 based on the observation vector Y = (Y ′1 , . . . , Y
′
m)′ is

β̂1(Y1, . . . , Ym) =

(
m∑
s=1

1

σ2
s0

)−1 m∑
s=1

1

σ2
s0

β̂1(Yj),

where ϑ0 = (σ2
10, . . . , σ

2
m0)′ and

β̂1(Yj) = [X ′1(MX2VMX2)+X1]−1X ′1(MX2VMX2)+Yj , j = 1, . . . ,m,

(ii) the ϑ0-LBLUE of β
(j)
2 based on Y is

β̂
(j)
2 (Y1, . . . , Ym) = (X ′2V

−1X2)−1X ′2V
−1
{
Yj −X1β̂1(Y1, . . . , Ym)

}
and
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(iii) the ϑ0-MINQUE of the function g(ϑ) = g′ϑ, ϑ ∈ ϑ, is

ĝ′ϑ =
m∑
i=1

λi
1

σ4
i0

[Yi −Xiβ̂1(Y1, . . . , Ym)]′(MX2VMX2)+[Yi −Xiβ̂1(Y1, . . . , Ym)]

if the system

S(∗)λ = g

is consistent. Here λ = (λ1, . . . , λm)′ and

S(∗) = (n− k2)D−2
0 + k1

(
m∑
s=1

1

σ2
s0

)−2
 1/σ4

10
...

1/σ4
m0

 (1/σ4
10, . . . , 1/σ

4
m0)

− 2k1

(
m∑
s=1

1

σ2
s0

)−1

D−3
0 ;

D0 = Diag(σ2
10, . . . , σ

2
m0).

Proof. Let the notation

V i = e
(m)
i e

(m)′

i ⊗ Vi, i = 1, . . . ,m,

be used. Then

D ⊗ V =
m∑
i=1

σ2
i V i =

m∑
i=1

σ2
i (e

(m)
i e

(m)′

i ⊗ Vi).

Now, regarding Lemma 2.3, it is sufficient to reestablish the expression

(X ′Σ−1
0 X)−1X ′Σ−1

0 Y ,

where

X = (1⊗X1, I ⊗X2) and Σ0 = D0 ⊗ V =
m∑
i=1

σ2
i0(e

(m)
i e

(m)′

i ⊗ V ).

The formulae given in the proof of Theorem 3.2 must be used in order to obtain

the expressions from (i) and (ii).

Regarding Lemma 2.4 and the relationships

(MXΣ0MX)+ = D−1
0 ⊗ (MX2VMX2)+ −

D−1
0 11′D−1

0

1′D−1
0 1

⊗ (MX2VMX2)+X1

· [X ′1(MX2VMX2)+X1]−1X ′1(MX2VMX2)+,
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and

(MXΣ0MX)+Y = (v′1, . . . , v
′
m)′,

where

vi =
1

σ2
i0

(MX2VMX2)+Yi −
1/σ2

i0∑m
j=1 1/σ2

j0

(MX2VMX2)+X1

·
m∑
j=1

(1/σ2
j0)[X ′1(MX2VMX2)+]−1X ′1(MX2VMX2)+Yj

which is applied in its rewritten form

vi =
1

σ2
i0

(MX2VMX2)+[Yi −X1β̂1(Y1, . . . , Ym)], i = 1, . . . ,m,

(the way of rewriting is easy however tedious, therefore is omitted), we obtain

ĝ′ϑ =
m∑
i=1

λi
1

σ4
i0

[Yi −X1β̂1(Y1, . . . , Ym)]′(MX2VMX2)+[Yi −X1β̂1(Y1, . . . , Ym)].

For determining the matrix S(MXΣ0MX)+ the relationships

tr
[
(MX2VMX2)+P

(MX2VMX2 )+

X1
V (MX2VMX2)+V

]
= tr

(
P

(MX2VMX2 )+

X1

)
= k1

and

tr[(MX2VMX2)+V (MX2VMX2)+V ] = tr
(
I − PV

−1

X2

)
= n− k2,

where

P
(MX2VMX2 )+

X1
= X1[X ′1(MX2VMX2)+X1]−1X ′1(MX2VMX2)+,

and

PV
−1

X2
= X2(X ′2V

−1X2)−1X ′2V
−1,

must be taken into account. After applying them we obtain

{
S(MXΣ0MX)+

}
i,j

=


n−k2

σ4
i0

+ k1
1/σ8

i0

(
∑m
s=1 1/σ2

s0)
2 − 2k1

1/σ6
i0∑

m
s=1 1/σ2

s0
, i = j

k1
[1/(σ2

i0σ
2
j0)]2

(
∑
m
s=1 1/σ2

s0)
2 , i 6= j,

thus S(MXΣ0MX)+ has the form given in (iii). �
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Example 3.16. Let in Theorem 3.15 m = 1, i.e., the first epoch is considered

only. Then MINQUE of σ2
1 becomes the uniformly minimum variance quadratic

unbiased invariant estimator of the well known form

σ̂2
1 = [1/(n− k1 − k2)][Y1 −X1β̂1(Y1)]′(MX2VMX2)+[Y1 −X1β̂1(Y1)],

where

β̂1(Y1) = [X ′1(MX2VMX2)+X1]−1X ′1(MX2VMX2)+Y1.

It is to be remarked that after m (> 1) epochs the estimator of σ2
1 given in

Theorem 3.15 is better at least at ϑ0, cf. A motivating example in [Ká4].

Remark 3.17. Up to now the investigated models are the simplest represen-

tants of the class of m-epoch models with stable and variable parameters. More

complicated models arise when the design matrix (X1,X2) is not the same in each

epoch, when nuisance parameters occur in separate epochs, when restrictions on

parameters β1 and β
(j)
2 , respectively, must be respected, etc. Some investigation

of other models from the mentioned class are in [Ká2] and [K3]; see also [Sch1].

4. Models with Variable Parameters

Sometimes it is possible to create such a design of experiment that it is not

necessary to measure indirectly the stable parameter β1 from the preceding section.

Then the model(
(Y1, . . . , Ym),X(β(1), β(2), . . . , β(m)), I ⊗

p∑
i=1

ϑiVi

)
,

can be considered; here X is an analogue of the matrix X2 from Definition 3.1,

β(j) is considered instead of β
(j)
2 and I⊗ϑiVi is the covariance matrix of the vector

(Y1,
′ . . . , Y ′m)′.

Let Y = (Y1, . . . , Ym), B = (β(1), . . . , β(m)) and Σ(ϑ) =
∑p
i=1 ϑiVi — we have

the well known model from multivariate statistics (cf. [S])

(4.1) (Y,XB, I ⊗ Σ(ϑ));

in contrast of the standard model here I ⊗ Σ(ϑ) occurs instead of Σ(ϑ) ⊗ I; see

also [Ko1, p. 301–313]. It is to be remarked that in the model (Y,XB,Σ(ϑ)⊗ I)

there exists the uniformly (with respect to ϑ ∈ ϑ) best linear unbiased estimator

B̂ of B in the form B̂ = (X ′X)−1X ′Y . In our case only the ϑ0-LBLUE of the

form B̂ = [X ′Σ−1(ϑ0)X]−1X ′Σ−1(ϑ0)Y exists.

The ϑ0-MINQUE of ϑ exists iff the matrix C(I),

{C(I)}i,j = tr(MXViMXVj), i, j = 1, . . . , p,
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is regular. After m epochs the ϑ0-MINQUE of ϑ is

ϑ̂ =
1

m

m∑
j=1

S−1
(MXΣ0MX)+ γ̂j ,

γ̂j = (γ̂j,1, . . . , γ̂j,p)
′, γ̂j,i = Y ′j (MXΣ0MX)+Vi(MXΣ0MX)+Yj .

If the matrix Y is normally distributed, then

Var[ϑ̂(Y )|Σ0] = (2/m)S−1
(MXΣ0MX)+ .

Thus it can be seen that from the viewpoint of estimation no new problems

arise in this case. Some testing problems are investigated in [K4], which can be

compared with the procedures in [Ko1]. However in deformation measurements

with variable parameters the growth-curve model of R. F. Potthoff/S. N. Roy

(1964) [P], cf. [Ká3], may be better suited than the model just mentioned.

The value of the parameter β in the j-th epoch, i.e., in the time tj is supposed

in the form (the i-th component)

βi(tj) = bi,1 + bi,2φ1(tj) + . . .+ bi,s−1φs−1(tj).

Here φ1(·), . . . , φs−1(·) are known linearly independent functions defined on R1

having the property

φr(t1) = 0, r = 1, . . . , s− 1,

e.g., φr(t) = (t − t1)r, t ∈ R1, r = 1, . . . , s − 1. Thus the mean value of the

observation matrix Y can be written in the form

E(Y |B) = X(n,k)B(k,s)Z(s,m),

where

B =

 b1.1, b1,2, . . . , b1,s
. . . . . . . . . . . . . . . . . . . . .

bk,1, bk,2, . . . , bk,s


and

Z =


1, 1, . . . , 1

φ1(t1), φ1(t2), . . . , φ1(tm)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φs−1(t1), φs−1(t2), , . . . , φs−1(tm)

 .

Thus the deformation measurements with variable parameters result in the follow-

ing growth-curve model with variance components

(4.2) (Y, XBZ,

p∑
i=1

ϑi(I ⊗ Vi)).
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Lemma 4.1. Let P(s,k) be a given s× k matrix. The function f(B) = tr(PB),

B ∈ Mk,s, is unbiasedly estimable iff there exists an m × n matrix L such that

P = ZLX.

Proof. The proof is obvious: f(B) = tr(PB) = (vec(P ′))′ vec(B) estimable in

the model E(vec(Y )) = (Z ′ ⊗ X) vec(B) ⇔ (vec(P ′))′ = (vec(L′))′(Z ′ ⊗ X) =

(vec(X ′L′Z ′))′ ⇔ P = (X ′L′Z ′)′ = ZLX . �

Corollary 4.2. The necessary and sufficient condition for the unbiased estima-

bility of each linear function f(B), B ∈Mk,s, in (4.1) is

r(X) = k and r(Z) = s,

which means that the number of the epochs must be equal or greater than s.

Lemma 4.3. Let in (4.1) r(Xn,k)) = k < n and r(Z(s,m)) = s < m. Then the

ϑ0-LBLUE of the matrix B is

B̂(Y ) = (X ′Σ−1
0 X)−1X ′Σ−1

0 Y Z ′(ZZ ′)−1

and

Var
{

vec
[
B̂(Y )

]
|Σ0

}
= (ZZ ′)−1 ⊗ (X ′Σ−1

0 X)−1.

Proof. The model (4.1) can be rewritten, according to [Se1], as(
(Y ′1 , . . . , Y

′
m)′, (Z ′ ⊗X) vec(B), I ⊗

p∑
i=1

ϑiVi

)
.

Now it is sufficient to use Lemma 2.3. �

Theorem 4.5. Let in (4.1) r(Xn,k)) = k < n and r(Z(s,m)) = s < m. Then

(i) the ϑ0-LBLUE of Bφ(tj) based on Yj is

B̂φ(tj)(Yj) = (X ′Σ−1
0 X)−1X ′Σ−1

0 Yj

and

Var
[
B̂φ(tj)(Yj)|Σ0

]
= (X ′Σ−1

0 X)−1;

(ii) the ϑ0-LBLUE of Bφ(tj) based on the whole observation matrix Y is

B̂φ(tj)(Y ) =
(
B̂φ(t1)(Y1), . . . , B̂φ(tm)(Ym)

)
{PZ′}.j ,

where PZ′ = Z ′(ZZ ′)−1Z and {PZ′}.j is the j-th column of the matrix PZ′ ;

Var
[
B̂φ(tj)(Y )|Σ0

]
= {PZ′}j,j (X ′Σ−1

0 X)−1.
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Proof. (i) is a direct consequence of Lemma 2.3 if the relationships

E(Yj |B) = XBφ(tj) and Var(Yj |Σ0) = Σ0

are taken into account.

(ii) Regarding Lemma 4.3. and (i)

B̂(Y )Z = (B̂φ(t1)(Y1), . . . , B̂φ(tm)(Ym))PZ′

which implies

B̂φ(tj)(Y ) = (B̂φ(t1)(Y1), . . . , B̂φ(tm)(Ym)) {PZ′}.j .

Further, in consequence

Var
[
B̂φ(tj)(Yj)|Σ0

]
= (X ′Σ0X)−1, j = 1, . . .m,

(see (i)) and the fact that the estimators B̂φ(t1)(Y1), . . . , B̂φ(tm)(Ym) are stochas-

tically independent

Var
[
B̂φ(tj)(Y )|Σ0

]
=
(
{PZ′}.j

)′
{PZ′}.j (X ′Σ−1

0 X)−1 = {PZ′}j,j (X ′Σ−1
0 X)−1,

since the matrix PZ′ is symmetric and idempotent. �
Corollary 4.6. The estimator of B from Lemma 4.3 is identical with the ϑ0-

LBLUE of B based on β̂(t1, Y1), . . . , β̂(tm, Ym) in the model
 β̂(t1, Y1)

...

β̂(tm, Ym)

 ,

 Bφ(t1)
...

Bφ(tm)

 , I ⊗ (X ′Σ−1
0 X)−1

 ,
where β̂(tj , Yj) = (X ′Σ−1

0 X)−1X ′Σ−1
0 Yj and B is the k × n matrix of unknown

parameters.

Proof. As  Bφ(t1)
...

Bφ(tm)

 = (Z ′ ⊗ I(k,k)) vec(B),

Lemma 2.3 implies

v̂ec(B) =

=
{

(Z ⊗ I)[I ⊗ (X ′Σ−1
0 X](Z ′ ⊗ I)

}−1
(Z ⊗ I)[I ⊗ (X ′Σ−1

0 X)]

 β̂(t1, Y1)
...

β̂(tm, Ym)


= [(ZZ ′)−1Z ⊗ I]

 β̂(t1, Y1)
...

β̂(tm, Ym)

 = vec
{

[β̂(t1, Y1), . . . , β̂(tm, Ym)]Z ′(ZZ ′)−1
}

= vec
[
(X ′Σ−1

0 X)−1X ′Σ−1
0 Y Z ′(ZZ ′)−1

]
.
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�

Remark 4.7. Corollary 4.6 is of great practical importance. During the de-

formation measurements we sequentially obtain the estimates

β̂(t1, y1), β̂(t2, y2), . . . .

After several epochs we are able to recognize the law of the deformations, over

time, i.e., the proper combinations of functions φ0(·), φ1(·), . . . . In accordance

with Corollary 4.6, the matrix B of the coefficients can be obtained directly from

β̂(t1, y1), . . . , β̂(tm, ym).

Remark 4.8. The matrix Z can be expressed as follows

Z =

 φ0(t1), . . . , φ0(tm)

. . . . . . . . . . . . . . . . . . . . . . . . .

φs−1(t1), . . . , φs−1(tm)

 = (Φ(t1), . . . ,Φ(tm)) =


Φ′0
Φ′1
...

Φ′s−1

 .

Thus

ZZ ′ =

(
Φ′0Φ0, Φ′0G

G′Φ0, G′G

)
, where G = (Φ1, . . . ,Φs−1)

and{
(ZZ ′)−1

}
1,1

=
[
Φ′0Φ0 − Φ′0G(G′G)−1G′Φ0

]−1

=
1

Φ′0Φ0
+

1

Φ′0Φ0
Φ′0G(G′G−G′Φ0

1

Φ′0Φ0
Φ′0G)−1G′Φ0

1

Φ′0Φ0
.

Regarding (ii) from Theorem 4.5, we have

Var
[
B̂Φ(t1)(Y )|Σ0

]
= Φ′(t1)

(
Φ′0Φ0, Φ′0G

G′Φ0, G′G

)−1

Φ(t1) Var
[
B̂Φ(t1)(Y1)|Σ0

]
.

As

Φ′(t1)

(
Φ′0Φ0, Φ′0G

G′Φ0, G′G

)−1

Φ(t1) = {PZ′}1,1

and PZ′ is the projection matrix, it is clear that {PZ′}1,1 ≤ 1.

Special cases: If Φ0,Φ1, . . . ,Φs−1 is derived for the system of orthogonal

Chebyshev polynomials on the set {t1, . . . , tm}, i.e.,

ZZ ′ =


Φ′0Φ0, 0, . . . , 0

0, Φ′1Φ1, , . . . , 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0, 0, , . . . , Φ′s−1Φs−1

 ,
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then

{PZ′}1,1 =
s−1∑
i=1

φ2
i (t1)

Φ′iΦi
.

If φ0(ti) = 1, i = 1, . . . , n, Φ(t1) = e
(s)
1 = (1, 0, . . . , 0)′ ∈ Rs (in this case the

functions φ0(·), . . . , φs−1(·) are not necesarily orthogonal on the set {t1, . . . , tm}),{
Z ′(ZZ ′)−1Z

}
1,1

=
1

m− 1′PH1
,

where (
(0s−1,1)′

H

)
= (Φ1, . . . ,Φs−1), PH = H(H ′H)−1H ′.

The last statement is a consequence of the fact that

Z(s,m) =

(
1, 1′

0(s−1,1), H ′(s−1,m−1)

)
,

which implies

{
Z ′(ZZ ′)−1Z

}
1,1

=

{(
1, 0′

1, H

)(
m, 1′H

H ′1, H ′H

)−1(
1, 1′

0, H ′

)}
1,1

=
[
m− 1′H(H ′H)−1H ′1

]−1
.

The number
{
Z ′(ZZ ′)−1Z

}
1,1

is important, since we want to know how the

accuracy in the estimation of the starting value β(t1) increases after m epochs.

If φ0(·) ≡ 1, φ1(t) = (t − t1), φ2(t) = (t − t1)2, ti = t1 + i, i = 0, . . . , 4, then{
Z ′(ZZ ′)−1Z

}
1,1

= 0.813, what means a not negligible decrease of variances of

the estimator.

Remark 4.9. The consideration in Remark 4.8 on the value {Z ′(ZZ ′)−1Z}1,1
is justified and has a reasonable meaning if the functions φ0(·), . . . , φs−1(·), are

chosen adequately. To verify the proper choice of these functions the following

procedure can be used.

Let {Tβ(t1), . . . , Tβ(tm)} be any trajectory important from the viewpoint of

a static expert. Here T is a q × k matrix with rank r(T ) = q ≤ k. This tra-

jectory expresses a law of the deformation over time for which the functions

φ0(·), . . . , φs−1(·) must be chosen properly. If the choice is correct, then the tra-

jectory is {TBΦ(t1), . . . , TBΦ(tm)}.
If vec(Y ) is normally distributed and its actual covariance matrix is I ⊗ Σ0,

then

v =

 β̂(t1, Y1)
...

β̂(tm, Ym)

−
 B̂(Y )Φ(t1)

...

B̂(Y )Φ(tm)

 ∼ Nmk(0,MZ′ ⊗ (X ′Σ−1
0 X)−1)
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and (I ⊗ T )v ∼ Nmq(0,MZ′ ⊗ T (X ′Σ−1
0 X)−1T ′) where MZ′ = I(m,m) − PZ′ has

rank r(MZ′) = m− s.
Therefore the random variable

m∑
i=1

m∑
j=1

{MZ′}i,j
[
β̂(ti, Yi)− B̂Φ(ti)

]′
T ′

·
[
T (X ′Σ−1

0 X)−1T ′
]−1

T
[
β̂(tj , Yj)− B̂Φ(tj)

]
has the central chi-square distribution with (m−s)q degrees of freedom and it can

be used as a test statistic for the null hypothesis that the trajectory is properly

characterized by {TBΦ(t1), . . . , TBΦ(tm)}. This procedure is to be used for each

trajectory important for the statics expert; simultaneously the Bonferroni correc-

tion (cf. e.g. [Hu, p. 492]) for the significance level must be taken into account (if

f trajectories are taken into account simultaneously, then instead the value α of

the significance level the value α/f must be used).

Theorem 4.10. Let Y in the model (4.1) be normally distributed and the actual

covariance matrix be Σ0; let L(q,k) be any q× k matrix with the rank r(L) = q ≤ k
and R(s,r) be any s× r matrix with the rank r(R) = r ≤ s. If LBR+H = 0, then

(LB̂R+H)[R′(ZZ ′)−1R]−1(LB̂R+H)′ ∼Wq

[
r, L(X ′Σ−1

0 X)−1L′
]

(the central Wishart distribution with r degrees of freedom and with the covariance

matrix L(X ′Σ−1
0 X)−1L′).

Proof. It is necessary and sufficient to show that

∀{u ∈ Rq}u′(LB̂R+H)[R′(ZZ ′)−1R]−1(LB̂R+H)′u ∼ u′L(X ′Σ−1
0 X)−1L′uχ2

r,

where χ2
r is the central chi-square distributed random variable with r degrees of

freedom.

As

R′B̂′L′u ∼ Nr[−H
′u, (u′L(X ′Σ−1

0 X)−1L′u)R′(ZZ ′)−1R]

and, with respect to our assumptions, R′(ZZ ′)−1R is regular and

u 6= 0⇒ u′L(X ′Σ−1
0 X)−1L′u > 0,

the statement follows from [R1, p. 535]; see also [Ko2]. �

Remark 4.11. The Wishart matrix from Theorem 4.10 can be used for testing

a null-hypothesis in several ways; cf. [R1, p. 547]. One of them is given in the

following corollary.
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Corollary 4.12. If U ∼Wq(r,Ψ), where Ψ is p.d., then tr(Ψ−1U) ∼ χ2
qr; the

random variable

tr
{

(LB̂R+H)′[L(X ′Σ−1
0 X)−1L′]−1(LB̂R+H)[R′(ZZ ′)−1R]−1

}
is distributed as χ2

qr, which can be used for testing the above null-hypothesis.

This test is also a direct consequence of Lemmas 2.5 and 4.3.

If the matrix Σ(ϑ) =
∑p
i=1 ϑiVi in the model (4.1) is not known, the following

theorem can be used (cf. also [Z]).

Theorem 4.13. Let in (4.1) r(X) = k and r(Z) = s. Then

(i) a function g(ϑ) = g′ϑ, ϑ ∈ ϑ, can be estimated by the ϑ0-MINQUE iff

g ∈ M(C(I)),

where

{C(I)}i,j = (m− s) tr(ViVj) + s tr(MXViMXVj), i, j = 1, . . . , p;

(ii) if g ∈M(C(I)), then the ϑ0-MINQUE of the function g(·) is

ĝ′ϑ =

p∑
i=1

λi
{

tr(Y ′Σ−1
0 ViΣ

−1
0 YMZ′)

+ tr
[
Y ′(MXΣ0MX)+Vi(MXΣ0MX)+Y PZ′

]}
,

where λ = (λ′1, . . . , λp)
′ is a solution of the equation[
(m− s)SΣ−1

0
+ sS(MXΣ0MX)+

]
λ = g.

Proof. With respect to Lemma 2.4,

{C(I)}i,j = tr(MXV iMXV j), i, j = 1, . . . , p,

where

X = Z ′ ⊗X and V i = I ⊗ Vi.

Thus

MX = I(m,m) ⊗ I(n,n) − (Z ′ ⊗X)[(Z ⊗X ′)(Z ′ ⊗X)]−1(Z ⊗X ′)

= MZ′ ⊗ I + PZ′ ⊗MX

and

tr(MXV iMXV j) = tr[MZ′ ⊗ (ViVj)] + tr[PZ′ ⊗ (MXViMXVj)]

= (m− s) tr(ViVj) + s tr(MXViMXVj).
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Further

(MXΣ0MX)+ = I ⊗ Σ−1
0 − (I ⊗ Σ−1

0 )(Z ′ ⊗X)

· [(Z ⊗X ′)(I ⊗ Σ−1
0 )Z ′ ⊗X)]−1(Z ⊗X ′)(I ⊗ Σ−1

0 )

= MZ′ ⊗ Σ−1
0 + PZ′ ⊗ (MXΣ0MX)+

and

tr[(MXΣ0MX)+V i(MXΣ0MX)+V j ] =

= tr
{
MZ′ ⊗ (Σ−1

0 ViΣ
−1
0 Vj) + PZ′ ⊗ [(MXΣ0MX)+Vi(MXΣ0MX)+Vj ]

}
= (m− s) tr(Σ−1

0 ViΣ
−1
0 Vj) + s tr[(MXΣ0MX)+Vi(MXΣ0MX)+Vj ].

Using the fact that

[vec(Y )]′(MXΣ0MX)+V i(MXΣ0MX)+ vec(Y ) =

= [vec(Y )]′
{
MZ′ ⊗ Σ−1

0 ViΣ
−1
0 + PZ′ ⊗ [(MXΣ0MX)+

·Vi(MXΣ0MX)+]
}

vec(Y )

= tr(Y ′Σ−1
0 ViΣ

−1
0 YMZ′) + tr[Y ′(MXΣ0MX)+Vi(MXΣ0MX)+Y PZ′ ],

the proof can easily be finished. �

Remark 4.14. Let s = m and Z = I, i.e., the model (Y ,XB, I ⊗ Σ0) from

the beginning of this section. In this case C(I) = sSMX . If V1, . . . , Vp are linearly

independent (i.e., the matrix Σ is properly parametrized) the matrix SMX need not

be regular. However the matrix (m− s)SI + sSMX is regular, since SI is p.d. This

fact must be respected in preparing the design of the deformation measurements.

Remark 4.15. Analogously as in Section 3 the estimator of ϑ can be based

also either on the terms

tr(Y ′Σ−1
0 ViΣ

−1
0 YMZ′), i = 1, . . . , p,

or on the terms

tr(Y ′(MXΣ0MX)+Vi(MXΣ0MX)+Y PZ′), i = 1, . . . , p.

Let us compare the efficiency of such estimators for m increasing at least in the

case of normality. For the sake of simplicity let S(MxΣ0Mx)+ be p.d. The estimator

of ϑ based on tr(Y ′Σ−1
0 ViΣ

−1
0 YMZ′) is denoted as ϑ̂1, the other as ϑ̂2.

Since

E

[
tr(Y ′Σ−1

0 ViΣ
−1
0 YMZ′)|Σ =

p∑
i=1

ϑiVi

]
= (m− s){SΣ−1

0
}i.ϑ, ϑ ∈ ϑ,
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the former is

ϑ̂1 =
1

m− s
S−1

Σ−1
0

 tr[Y ′Σ−1
0 V1Σ−1

0 YMZ′)
...

tr[Y ′Σ−1
0 VpΣ

−1
0 YMZ′)


and in the case of normality of the observation matrix Y

cov
[
tr(Y ′Σ−1

0 ViΣ
−1
0 YMZ′), tr[Y

′Σ−1
0 VjΣ

−1
0 YMZ′)|Σ0

]
=

= 2 tr
{

(I ⊗ Σ0)[MZ′ ⊗ (Σ−1
0 ViΣ

−1
0 )](I ⊗ Σ0)[MZ′ ⊗ (Σ−1

0 VjΣ
−1
0 )]

}
= 2(m− s)

{
SΣ−1

0

}
i,j
.

Thus

Var(ϑ̂1|Σ0) =
2

m− s
S−1

Σ−1
0

.

Analogously we obtain

ϑ̂2 =
1

s
S−1

(MXΣ0MX)+

 tr[Y ′(MXΣ0MX)+V1(MXΣ0MX)+Y PZ′ ]
...

tr[Y ′(MXΣ0MX)+Vp(MXΣ0MX)+Y PZ′ ]

 ,

Var(ϑ̂2|Σ0) =
2

s
S−1

(MXΣ0MX)+

(realize that it is independent of m ).

The estimator ϑ̂ from Theorem 4.13 is

ϑ̂ = [(m− s)SΣ−1
0

+ sS(MXΣ0MX)+ ]−1γ̂,

where γ̂ = (γ̂1, . . . , γ̂p)
′,

γ̂i = tr(Y ′Σ−1
0 ViΣ

−1
0 YMZ′) + tr[Y ′(MXΣ0MX)+Vi(MXΣ0MX)+Y PZ′ ],

i = 1, . . . , p, and

Var(ϑ̂|Σ0) = 2[(m− s)SΣ−1
0

+ sS(MXΣ0MX)+ ]−1.

Therefore

lim
m→∞

Var(ϑ̂1|Σ0)[Var(ϑ̂|Σ0)]−1 = I(p,p)

and

lim
m→∞

Var(ϑ̂1|Σ0)[Var(ϑ̂2|Σ0)]−1 = 0.

Obviously

Var(ϑ̂|Σ0) ≤ Var(ϑ̂1|Σ0)
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and

Var(ϑ̂|Σ0) ≤ Var(ϑ̂2|Σ0).

Concluding remark. It is to be said that there are numerous models of de-

formation measurements which are either not yet investigated or investigations

of them are in “statu nascendi” only. Because of their practical importance it is

desirable to attract the interest of mathematicians to this class of problems.
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[Ká1] Kubáčková L., Kubáček L. and Kukuča J., Probability and Statistics in Geodesy and
Geophysics, Elsevier, Amsterdam-Oxford-New York-Tokyo, 1987.
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[Sch1] Schaffrin B., Best invariant covariance component estimation and its application to
the generalized multivariate adjustment of heterogeneous deformation observations, Bull.
Geodés. 55 (1981), 73–85.

[Sch2] , Variance covariance component estimation for the adjustment of heterogeneous
replicated measurements, Publ of the German Geodetic Comm., Serie C 282, Munich
(1983). (in German)

[Se1] Searle S. R., A univariate formulation of the multivariate model., Contribution to Survey
Sampling and Applied Statistics (N. A. David, ed.), New York-San Francisco-London,
1978, pp. 181–189.

[Se2] , Variance Components, J. Wiley, New York, 1992.
[S] Srivastava M. S. and Khatri C. G., An Introduction to Multivariate Statistics, North

Holland, Amsterdam-New York, 1979.
[W] Wimmer G., Linear model with variance depending on the mean value, Math. Slovaca 42

(1992), 223–238.
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