STATISTICAL MODELLING OF
 DEFORMATION MEASUREMENTS

L. KUBÁČEK

1. InTRODUCTION

Many engineer's construction works (e.g., bridges, dams, gas holders, crane runways) before putting into operation and during operation must be tested as far as the deformations caused by their loading are concerned.

In order to verify that the actual deformations lie within safety limits determined in advance (e.g., by static experts) replicated measurements have to be carried out in a network of suitably chosen points whose positions are studied.

The statistical problems of processing this kind of measurements (problems of determining the first order and second order parameters and testing hypotheses on existence or non-existence of deformations) are solved in the paper.

2. Notations and Auxiliary Statements

Let $\beta_{i}, i=1, \ldots, k$, denote parameters whose values must be determined by deformation measurements. The results of measurements are given by a realization y of an n-dimensional random vector Y. The class of distribution functions connected with Y is $\mathcal{F}=\left\{F(\cdot, \beta, \vartheta): \beta \in R^{k}, \vartheta \in \underline{\vartheta}\right\}$, where $\beta=\left(\beta_{1}, \ldots, \beta_{k}\right)^{\prime}$ (${ }^{\prime}$ denotes the transposition of a matrix) $\in R^{k}$ (k-dimensional Euclidean space), $\vartheta=\left(\vartheta_{1}, \ldots, \vartheta_{p}\right)^{\prime} \in \underline{\vartheta}$ (an open set in R^{p}); the parameter ϑ, which characterizes the accuracy of measurement techniques, is also a priori unknown and must be determined on the basis of the vector Y. The class \mathcal{F} is supposed to have the following two properties

$$
\int_{R^{n}} u d F(u, \beta, \vartheta)=X \beta, \beta \in R^{k}
$$

[^0]where X is an $n \times k$ matrix which is known (so called design matrix, cf. [Ká1, chpt. 5]) and
$$
\int_{R^{n}}(u-X \beta)(u-X \beta)^{\prime} d F(u, \beta, \vartheta)=\sum_{i=1}^{p} \vartheta_{i} V_{i}, \beta \in R^{k}, \vartheta \in \underline{\vartheta}
$$
where V_{1}, \ldots, V_{p} are known symmetric matrices.
In the following, for the sake of simplicity, the rank of the matrix X is supposed to be $r(X)=k<n$ and the set $\underline{\vartheta}$ to have the property
$$
\vartheta \in \underline{\vartheta} \Rightarrow \Sigma(\vartheta)=\sum_{i=1}^{p} \vartheta_{i} V_{i} \quad \text { is p.d. (positive definite). }
$$

These assumptions are realistic and have the following meaning. The measurements are not affected by a systematic influence (cf. [K1]) and thus the mean value of Y is a known vector function of β only and this fuction can be linearized; further this function does not depend on ϑ which characterizes the accuracy of the measurement devices used. The assumption that the covariance matrix $\Sigma(\vartheta)$ does not depend on the measured parameter β is sometimes not satisfied (cf. [W]). Nevertheless, this assumption is accepted because of the following two reasons: In many cases a deviation of the reality from this assumption has no essential influence on the estimate of β and further the problems connected with respecting the fact that the covariance matrix depends also on β are difficult and overcome the framework of this paper.

The just described statistical model is denoted as

$$
\left(Y, X \beta, \sum_{i=1}^{p} \vartheta_{i} V_{i}\right), \beta \in R^{k}, \vartheta \in \underline{\vartheta}
$$

and, in view of the assumptions $r(X)=k<n$, and $\Sigma(\vartheta)$ is p.d. for $\vartheta \in \underline{\vartheta}$, it is called regular. In this model two kinds of estimators are considered: linear estimators $L^{\prime} Y$ of a given linear function $f(\beta)=f^{\prime} \beta, \beta \in R^{k}$, and quadratic estimators $Y^{\prime} A Y$ (A a symmetric matrix) of a given linear function $g(\vartheta)=g^{\prime} \vartheta$, $\vartheta \in \underline{\vartheta}$.

Definition 2.1. The ϑ_{0}-LBLUE (locally best linear unbiased estimator) of a function

$$
f(\beta)=f^{\prime} \beta, \quad \beta \in R^{k}
$$

in the model $\left(Y, X \beta, \sum_{i=1}^{p} \vartheta_{i} V_{i}\right), \beta \in R^{k}, \vartheta \in \underline{\vartheta}$, is a statistic $L^{\prime} Y$ such that
(i) $\forall\left\{\beta \in R^{k}, \vartheta \in \underline{\vartheta}\right\} E\left(L^{\prime} Y \mid \beta\right)=\int_{R^{n}} L^{\prime} u d F(u, \beta, \vartheta)=f^{\prime} \beta$
and
(ii) $\forall\left\{L_{1} \in R^{n}, L_{1}\right.$ satisfying (i) $\}$

$$
\operatorname{Var}\left(L^{\prime} Y \mid \vartheta_{0}\right)=\int_{R^{n}}\left(L^{\prime} u-f^{\prime} \beta\right)^{2} d F\left(u, \beta, \vartheta_{0}\right) \leq \operatorname{Var}\left(L_{1}^{\prime} Y \mid \vartheta_{0}\right)
$$

Definition 2.2. The ϑ_{0}-MINQUE (minimum norm quadratic unbiased estimator; cf. [R1, p. 304]) of a function $g(\vartheta)=g^{\prime} \vartheta, \vartheta \in \underline{\vartheta}$, in the model $\left(Y, X \beta, \sum_{i=1}^{p} \vartheta_{i} V_{i}\right), \beta \in R^{k}, \vartheta \in \underline{\vartheta}$, is a statistic $Y^{\prime} A Y$ possesing the properties
(i) $\forall\left\{\beta \in R^{k}, \vartheta \in \underline{\vartheta}\right\} E\left(Y^{\prime} A Y \mid \beta, \vartheta\right)=g^{\prime} \vartheta$,
(ii) $\forall\left\{\delta \in R^{k}\right\}(Y+X \delta)^{\prime} A(Y+X \delta)=Y^{\prime} A Y$
and
(iii) $\forall\left\{\bar{A}: \bar{A}\right.$ satysfying (i) and (ii), $\left.\bar{A}=\bar{A}^{\prime}\right\}$

$$
\operatorname{tr}\left(A \Sigma_{0} A \Sigma_{0}\right) \leq \operatorname{tr}\left(\bar{A} \Sigma_{0} \bar{A} \Sigma_{0}\right)
$$

Here $\Sigma_{0}=\Sigma\left(\vartheta_{0}\right)$.
The motivation of Definition 2.2 lies in two facts: the defined estimator is closely connected with natural estimators (cf. [R1, p. 303] or $[\mathbf{R 3}])$ and in the case of normality of the vector $Y\left(Y \sim N_{n}(X \beta, \Sigma(\vartheta))\right.$) it represents the ϑ_{0}-LMVIQUE (locally minimum variance invariant quadratic unbiased estimator). The invariance is characterized by (ii) in Definition 2.2.

Lemma 2.3. In the model

$$
\left(Y_{(n, 1)}, X_{(n, k)} \beta_{(k, 1)}, \Sigma(\vartheta)\right), \beta \in R^{k}, \vartheta \in \underline{\vartheta}
$$

(i) an unbiased linear estimator of a function $f(\beta)=f^{\prime} \beta, \beta \in R^{k}$, exists iff $f \in M\left(X^{\prime}\right)=\left\{X^{\prime} u: u \in R^{n}\right\} ;$
(ii) the $\vartheta_{0}-L B L U E$ of the function $f(\cdot)$ in the regular model is

$$
\widehat{f^{\prime} \beta}=f^{\prime}\left(X^{\prime} \Sigma_{0}^{-1} X\right)^{-1} X^{\prime} \Sigma_{0}^{-1} Y
$$

and its dispersion at ϑ_{0} is

$$
\operatorname{Var}\left(\widehat{f^{\prime} \beta} \mid \vartheta_{0}\right)=f^{\prime}\left(X^{\prime} \Sigma_{0}^{-1} X\right)^{-1} f
$$

Proof. Cf. [R1].
Lemma 2.4. The ϑ_{0}-MINQUE of a function $g(\vartheta)=g^{\prime} \vartheta, \vartheta \in \underline{\vartheta}$,
(i) exists iff $g \in M\left(C^{(I)}\right)$, where

$$
\left\{C^{(I)}\right\}_{i, j}=\operatorname{tr}\left(M_{X} V_{i} M_{X} V_{j}\right), i, j=1, \ldots, p
$$

$M_{X}=I-X\left(X^{\prime} X\right)^{-1} X^{\prime}, I$ is the identity matrix, and
(ii) if $g \in M\left(C^{(I)}\right)$, the $\vartheta_{0}-M I N Q U E$ is

$$
\widehat{g^{\prime} \vartheta}=Y^{\prime} A Y=\sum_{i=1}^{p} \lambda_{i} Y^{\prime}\left(M_{X} \Sigma_{0} M_{X}\right)^{+} V_{i}\left(M_{X} \Sigma_{0} M_{X}\right)^{+} Y
$$

with $\left(M_{X} \Sigma_{0} M_{X}\right)^{+}=\Sigma_{0}^{-1}-\Sigma_{0}^{-1} X\left(X^{\prime} \Sigma_{0}^{-1} X\right)^{-1} X^{\prime} \Sigma_{0}^{-1}$, where $\lambda=\left(\lambda_{1}, \ldots, \lambda_{p}\right)^{\prime}$ is a solution of the equation

$$
S_{\left(M_{X} \Sigma_{0} M_{X}\right)^{+}} \lambda=g
$$

here

$$
\left\{S_{\left(M_{X} \Sigma_{0} M_{X}\right)^{+}}\right\}_{i, j}=\operatorname{tr}\left[\left(M_{X} \Sigma_{0} M_{X}\right)^{+} V_{i}\left(M_{X} \Sigma_{0} M_{X}\right)^{+} V_{j}\right], i, j=1, \ldots, p
$$

and $(\cdot)^{+}$denotes the Moore-Penrose inverse (cf. $[\mathbf{R 2}]$) of the matrix in the brackets;
(iii) if $Y \sim N_{n}\left(X \beta, \Sigma_{0}\right)$, the dispersion of the estimator $\widehat{g^{\prime} \vartheta}$ at ϑ_{0} is

$$
\operatorname{Var}\left(\widehat{g^{\prime} \vartheta \mid} \mid \vartheta_{0}\right)=2 g^{\prime} S_{\left(M_{X} \Sigma_{0} M_{X}\right)^{+}}^{-} g
$$

the expression for the variance does not depend on the choice of the generalized inverse $S_{\left(M_{X} \Sigma_{0} M_{X}\right)^{+}}^{-}$of the matrix $S_{\left(M_{X} \Sigma_{0} M_{X}\right)^{+}}$.

Proof. Cf. [R3] or [Se2].
Lemma 2.5. Let $Y \sim N_{n}\left(X_{(n, k)} \beta, \Sigma\right), \beta \in R^{k}$. Let Σ be known; $r(X)=k$ and $r(\Sigma)=n$. A null-hypothesis $A \beta=a$ on β, where A is a $q \times k$ matrix with the $\operatorname{rank} r(A)=q<k$, and a is a given vector, can be tested against $A \beta \neq a$ using the statistic

$$
(A \hat{\beta}-a)^{\prime}\left[A\left(X^{\prime} \Sigma^{-1} X\right)^{-1} A^{\prime}\right]^{-1}(A \hat{\beta}-a)
$$

which has, if the null hypothesis is true, the central chi-square distribution with q degrees of freedom; $\hat{\beta}$ is the $\Sigma-L B L U E$ of β.

Proof. Cf. [R1].

3. Models with Stable and Variable Parameters

One possibility how to design an experiment of deformation measurements is to decompose the vector β into two parts $\beta_{1} \in R^{k_{1}}$ and $\beta_{2} \in R^{k_{2}}, k_{1}+k_{2}=k$, in such a way that β_{1} is connected with stable points and β_{2} with variable ones. The following example can serve as explanation of the situation.

Example. Let $(0,0,0),\left(\gamma_{1}, 0, \gamma_{2}\right),\left(\gamma_{3}, \gamma_{4}, \gamma_{5}\right)$ be cartesian coordinates of three points P_{1}, P_{2}, and P_{3} in R^{3}, respectively, which are located on the river-side in the neighbourhood of a bridge the deformation of which is investigated; they can be considered to be stable because a loading of the bridge cannot influence the coordinates $\gamma_{1}, \ldots, \gamma_{5}$. Let

$$
\left(\gamma_{6}, \gamma_{7}, \gamma_{8}\right),\left(\gamma_{9}, \gamma_{10}, \gamma_{11}\right),\left(\gamma_{12}, \gamma_{13}, \gamma_{14}\right)
$$

be coordinates of points A, B, C which are located on the construction of the bridge at positions determined by a static expert. The problem is to determine the values
of parameters $\gamma_{6}, \ldots, \gamma_{14}$, influenced by the given loading. If the measurements are performed in such a way that the horizontal distances among the points P_{1}, P_{2}, P_{3}, A, B, C and horizontal and vertical angles in different triangles given by these points are measured, the parameters $\gamma_{6}, \ldots, \gamma_{14}$ can be estimated only on the basis of $\gamma_{1}, \ldots, \gamma_{5}$.

If $\beta_{1}=\left(\gamma_{1}, \ldots, \gamma_{5}\right)^{\prime}$ and $\beta_{2}=\left(\gamma_{6}, \ldots, \gamma_{14}\right)^{\prime}$, then in the most simple case the model of these measurements is

$$
\left(Y,\left(X_{1}, X_{2}\right)\binom{\beta_{1}}{\beta_{2}}, \vartheta_{1} V_{1}+\vartheta_{2} V_{2}\right)
$$

where ϑ_{1} is the dispersion of the angle measurements and ϑ_{2} is the dispersion of the distance measurements. Of course this experiment must be replicated for different ways of the loading of the bridge; it is performed in several epochs. During these epochs the parameters ϑ_{1} and ϑ_{2} can be sometimes considered as stable. Therefore in the following this simple case is considered only.

Definition 3.1. An m-epoch model with stable and variable parameters with the same design in each epoch is

$$
\begin{gathered}
\left(\left(\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{m}
\end{array}\right),\left(\mathbf{1} \otimes X_{1}, I \otimes X_{2}\right)\binom{\beta_{1}}{\beta_{2}^{(\cdot)}}, \sum_{i=1}^{p} \vartheta_{i}\left(I \otimes V_{i}\right)\right), \\
\beta_{1} \in R^{k_{1}}, \beta_{2}^{(\cdot)} \in R^{m k_{2}}, \vartheta \in \underline{\vartheta}
\end{gathered}
$$

Here Y_{1}, \ldots, Y_{m} are stochastically independent n-dimensional random vectors, $\mathbf{1}=(1, \ldots, 1)^{\prime} \in R^{m}, I$ is the $m \times m$ identity matrix,

$$
\beta_{2}^{(\cdot)}=\left(\beta_{2}^{(1)^{\prime}}, \ldots, \beta_{2}^{(m)^{\prime}}\right)^{\prime}
$$

$\beta_{2}^{(j)}$ is the value of the parameter β_{2} in the j th epoch, $j=1, \ldots, m$ and \otimes denotes the Kronecker product of matrices.

For the following let us remind the assumption on the regularity of the model (before Definition 2.1), i.e., in the model from Definition 3.1 it holds $r\left(X_{1}, X_{2}\right)=$ $k=k_{1}+k_{2}$ and $r\left(\sum_{i=1}^{p} \vartheta_{i} V_{i}\right)=n$.

Theorem 3.2. In the model from Definition 3.1
(i) the $\vartheta_{0}-L B L U E$ of the vector $\left(\beta_{1}^{\prime}, \beta_{2}^{(\cdot)^{\prime}}\right)^{\prime}$ is

$$
\binom{\hat{\beta}_{1}(\underline{Y})}{\hat{\beta}_{2}^{(\cdot)}(\underline{Y})}=\binom{\left[X_{1}^{\prime}\left(M_{X_{2}} \Sigma_{0} M_{X_{2}}\right)^{+} X_{1}\right]^{-1} X_{1}^{\prime}\left(M_{X_{2}} \Sigma_{0} M_{X_{2}}\right)^{+} \bar{Y}}{(I \otimes B) v_{1}+\mathbf{1} \otimes v_{2}}
$$

where $\underline{Y}=\left(Y_{1}^{\prime}, \ldots, Y_{m}^{\prime}\right)^{\prime}, \bar{Y}=\frac{1}{m} \sum_{i=1}^{m} Y_{j}, B=\left(X_{2}^{\prime} \Sigma_{0}^{-1} X_{2}\right)^{-1} X_{2}^{\prime} \Sigma_{0}^{-1}$,

$$
\begin{aligned}
& v_{1}=\left[\left(Y_{1}-\bar{Y}\right)^{\prime}, \ldots,\left(Y_{m}-\bar{Y}\right)^{\prime}\right]^{\prime} \\
& v_{2}=\left[X_{2}^{\prime}\left(M_{X_{1}} \Sigma_{0} M_{X_{1}}\right)^{+} X_{2}\right]^{-1} X_{2}^{\prime}\left(M_{X_{1}} \Sigma_{0} M_{X_{1}}\right)^{+} \bar{Y}
\end{aligned}
$$

$$
\begin{equation*}
M_{X_{1}}=I-X_{1}\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime}, M_{X_{2}}=I-X_{2}\left(X_{2}^{\prime} X_{2}\right)^{-1} X_{2}^{\prime} \tag{ii}
\end{equation*}
$$

$$
\begin{aligned}
& \operatorname{Var}\left[\left.\binom{\hat{\beta}_{1}(\underline{Y})}{\hat{\beta}_{2}^{(\cdot)}(\underline{Y})} \right\rvert\, \Sigma_{0}\right]=\left(\begin{array}{ll}
\boxed{11}, & \boxed{12} \\
\boxed{21}, & \boxed{22}
\end{array}\right), \\
& \underline{\boxed{11}}=\frac{1}{m}\left[X_{1}^{\prime}\left(M_{X_{2}} \Sigma_{0} M_{X_{2}}\right)^{+} X_{1}\right]^{-1}, \\
& \overline{\boxed{12}}=-\frac{\mathbf{1}^{\prime}}{m} \otimes\left(X_{1}^{\prime} \Sigma_{0}^{-1} X_{1}\right)^{-1} X_{1}^{\prime} \Sigma_{0}^{-1} X_{2}\left[X_{2}^{\prime}\left(M_{X_{1}} \Sigma_{0} M_{X_{1}}\right)^{+} X_{2}\right]^{-1} \\
& =-\frac{\mathbf{1}^{\prime}}{m} \otimes\left[X_{1}^{\prime}\left(M_{X_{2}} \Sigma_{0} M_{X_{2}}\right)^{+} X_{1}\right]^{-1} X_{1}^{\prime} \Sigma_{0}^{-1} X_{2}\left(X_{2}^{\prime} \Sigma_{0}^{-1} X_{2}\right)^{-1} \\
& =\overline{21}^{\prime} \text {, } \\
& \overline{\boxed{22}}=M_{m} \otimes\left(X_{2}^{\prime} \Sigma_{0}^{-1} X_{2}\right)^{-1}+P_{m} \otimes\left[X_{2}^{\prime}\left(M_{X_{1}} \Sigma_{0} M_{X_{1}}\right)^{+} X_{2}\right]^{-1},
\end{aligned}
$$

where $P_{m}=\mathbf{1 1}^{\prime} / m=P_{m}^{2}, M_{m}=I-P_{m}=M_{m}^{2}$ with $P_{m} M_{m}=0=M_{m} P_{m}$.
Proof. With respect to Lemma 2.3 and Definition 3.1 the ϑ_{0}-LBLUE of the vector $\left(\beta_{1}^{\prime}, \beta_{2}^{(\cdot)^{\prime}}\right)^{\prime}$ is

$$
\left[\binom{\mathbf{1}^{\prime} \otimes X_{1}^{\prime}}{I \otimes X_{2}^{\prime}}\left(I \otimes \Sigma_{0}^{-1}\right)\left(\mathbf{1} \otimes X_{1}, I \otimes X_{2}\right)\right]^{-1}\binom{\mathbf{1}^{\prime} \otimes X_{1}^{\prime}}{I \otimes X_{2}^{\prime}}\left(I \otimes \Sigma_{0}^{-1}\right) \underline{Y}
$$

Regarding the assumptions that $r(X)=k=k_{1}+k_{2}=r\left(X_{1}, X_{2}\right)$ and $\Sigma_{0}=$ $\Sigma\left(\vartheta_{0}\right)$ is p.d., the matrix

$$
\binom{\mathbf{1}^{\prime} \otimes X_{1}^{\prime}}{I \otimes X_{2}^{\prime}}\left(I \otimes \Sigma_{0}^{-1}\right)\left(\mathbf{1} \otimes X_{1}, I \otimes X_{2}\right)=\left(\begin{array}{cc}
m \otimes X_{1}^{\prime} \Sigma_{0}^{-1} X_{1}, & \mathbf{1}^{\prime} \otimes X_{1}^{\prime} \Sigma_{0}^{-1} X_{2} \\
\mathbf{1} \otimes X_{2}^{\prime} \Sigma_{0}^{-1} X_{1}, & I \otimes X_{2}^{\prime} \Sigma_{0}^{-1} X_{2}
\end{array}\right)
$$

is regular, thus its inverse exists. It can be verified that this inverse is

$$
\left(\begin{array}{ll}
\boxed{\boxed{11}}, & \boxed{\mid 12} \\
\boxed{21 \mid}, & \underline{\boxed{22}}
\end{array}\right) .
$$

Here the equalities

$$
\begin{gathered}
\left(\begin{array}{cc}
A, & B \\
B^{\prime}, & C
\end{array}\right)^{-1}= \\
=\left(\begin{array}{cc}
A^{-1}+A^{-1} B\left(C-B^{\prime} A^{-1} B\right)^{-1} B^{\prime} A^{-1}, & -A^{-1} B\left(C-B^{\prime} A^{-1} B\right)^{-1} \\
-\left(C-B^{\prime} A^{-1} B\right)^{-1} B^{\prime} A^{-1}, & \left(C-B^{\prime} A^{-1} B\right)^{-1}
\end{array}\right) \\
=\left(\begin{array}{cc}
\left(A-B C^{-1} B^{\prime}\right)^{-1}, & -\left(A-B C^{-1} B^{\prime}\right)^{-1} B C^{-1} \\
-C^{-1} B^{\prime}\left(A-B C^{-1} B^{\prime}\right)^{-1}, & C^{-1}+C^{-1} B^{\prime}\left(A-B C^{-1} B^{\prime}\right)^{-1} B C^{-1}
\end{array}\right)
\end{gathered}
$$

valid for a p.d. matrix $\binom{A, B}{B^{\prime}, C}$ are utilized. In our case it is also necessary to use the equalities

$$
\left(M_{X_{i}} \Sigma_{0} M_{X_{i}}\right)^{+}=\Sigma_{0}^{-1}-\Sigma_{0}^{-1} X_{i}\left(X_{i}^{\prime} \Sigma_{0}^{-1} X_{i}\right)^{-1} X_{i}^{\prime} \Sigma_{0}^{-1}, i=1,2,
$$

and

$$
\begin{aligned}
& {\left[M_{m} \otimes X_{2}^{\prime} \Sigma_{0}^{-1} X_{2}+P_{m} \otimes X_{2}^{\prime}\left(M_{X_{1}} \Sigma_{0} M_{X_{1}}\right)^{+} X_{2}\right]^{-1}=} \\
= & M_{m} \otimes\left(X_{2}^{\prime} \Sigma_{0} X_{2}\right)^{-1}+P_{m} \otimes\left[X_{2}^{\prime}\left(M_{X_{1}} \Sigma_{0} M_{X_{1}}\right)^{+} X_{2}\right]^{-1}
\end{aligned}
$$

which can be directly verified.
The assertion (ii) is a direct consequence of Lemma 2.3 and the assertion (i). \square
Theorem 3.3. The ϑ_{0}-LBLUE of $\left(\beta_{1}^{\prime}, \beta_{2}^{(j)^{\prime}}\right)^{\prime}$, based on the vector Y_{j} only, is

$$
\binom{\hat{\beta}_{1}\left(Y_{j}\right)}{\hat{\beta}_{2}^{(j)}\left(Y_{j}\right)}=\binom{\left[X_{1}^{\prime}\left(M_{X_{2}} \Sigma_{0} M_{X_{2}}\right)^{+} X_{1}\right]^{-1} X_{1}^{\prime}\left(M_{X_{2}} \Sigma_{0} M_{X_{2}}\right)^{+} Y_{j}}{\left[X_{2}^{\prime}\left(M_{X_{1}} \Sigma_{0} M_{X_{1}}\right)^{+} X_{2}\right]^{-1} X_{2}^{\prime}\left(M_{X_{1}} \Sigma_{0} M_{X_{1}}\right)^{+} Y_{j}}
$$

and its covariance matrix is

$$
\operatorname{Var}\left[\left.\binom{\hat{\beta}_{1}\left(Y_{j}\right)}{\hat{\beta}_{2}^{(j)}\left(Y_{j}\right)} \right\rvert\, \Sigma_{0}\right]=\left(\begin{array}{ll}
A, & B \\
C, & D
\end{array}\right),
$$

where

$$
\begin{aligned}
A & =\left[X_{1}^{\prime}\left(M_{X_{2}} \Sigma_{0} M_{X_{2}}\right)^{+} X_{1}\right]^{-1}, \\
B & =-\left[X_{1}^{\prime}\left(M_{X_{2}} \Sigma_{0} M_{X_{2}}\right)^{+} X_{1}\right]^{-1} X_{1}^{\prime} \Sigma_{0}^{-1} X_{2}\left(X_{2}^{\prime} \Sigma_{0}^{-1} X_{2}\right)^{-1}=C^{\prime}, \\
C & =-\left[X_{2}^{\prime}\left(M_{X_{1}} \Sigma_{0} M_{X_{1}}\right)^{+} X_{2}\right]^{-1} X_{2}^{\prime} \Sigma_{0}^{-1} X_{1}\left(X_{1}^{\prime} \Sigma_{0}^{-1} X_{1}\right)^{-1}=B^{\prime}, \\
D & =\left[X_{2}^{\prime}\left(M_{X_{1}} \Sigma_{0} M_{X_{1}}\right)^{+} X_{2}\right]^{-1} .
\end{aligned}
$$

Proof. As $E\left(Y^{(j)} \mid \beta_{1}, \beta_{2}^{(j)}\right)=\left(X_{1}, X_{2}\right)\binom{\beta_{1}}{\beta_{2}^{(j)}}$, the ϑ_{0}-LBLUE of the vector $\left(\beta_{1}^{\prime}, \beta_{2}^{(j)^{\prime}}\right)^{\prime}$ is

$$
\left[\binom{X_{1}^{\prime}}{X_{2}^{\prime}} \Sigma_{0}^{-1}\left(X_{1}, X_{2}\right)\right]^{-1}\binom{X_{1}^{\prime}}{X_{2}^{\prime}} \Sigma_{0}^{-1} Y^{(j)} .
$$

The proof can be easily finished using the analogous equalities as in proof of Theorem 3.2.

Corollary 3.4. Theorems 3.2 and 3.3 form a good basis for comparing results from separate epochs with results from the experiment in the whole. If the normality of the vector Y is presupposed and points connected with β_{1} can be considered to be stable, then

$$
\hat{\beta}_{1}\left(Y_{j}\right)-\hat{\beta}_{1}\left(Y_{1}, \ldots, Y_{j-1}\right) \sim N_{k_{1}}\left\{0,[(j) /(j-1)]\left[X_{1}^{\prime}\left(M_{X_{2}} \Sigma_{0} M_{X_{2}}\right)^{+} X_{1}\right]^{-1}\right\}
$$

Thus the statistic

$$
\begin{aligned}
{\left[\hat{\beta}_{1}\left(Y_{j}\right)-\hat{\beta}_{1}\left(Y_{1}, \ldots, Y_{j-1}\right)\right]^{\prime} } & \frac{j-1}{j}\left[X_{1}^{\prime}\left(M_{X_{2}} \Sigma_{0} M_{X_{2}}\right)^{+} X_{1}\right] \\
& \cdot\left[\hat{\beta}_{1}\left(Y_{j}\right)-\hat{\beta}_{1}\left(Y_{1}, \ldots, Y_{j-1}\right)\right] \sim \chi_{k_{1}}^{2}
\end{aligned}
$$

(distributed as central chi-square with k_{1} degrees of freedom) can be used for testing the stability after each epoch. Another possibility is given by the following theorem and corollary.

Theorem 3.5. Under the normality of the vector $\left(Y_{1}^{\prime}, \ldots, Y_{j}^{\prime}\right)^{\prime}, j \leq m$, in the model from Definition 3.1 the joint distribution of the $\vartheta_{0}-L B L U E$ of $\beta_{2}^{(j)}$ based on Y_{j} and $\left(Y_{1}^{\prime}, \ldots, Y_{j}^{\prime}\right)^{\prime}$, respectively, is

$$
\binom{\hat{\beta}_{2}^{(j)}\left(Y_{j}\right)}{\hat{\beta}_{2}^{(j)}\left(Y_{1}, \ldots, Y_{j}\right)} \sim N_{2 k_{2}}\left[\binom{\hat{\beta}_{2}^{(j)}}{\hat{\beta}_{2}^{(j)}},\left(\begin{array}{ll}
W_{1,1}, & W_{1,2} \\
W_{2,1}, & W_{2,2}
\end{array}\right)\right]
$$

where

$$
\begin{aligned}
& W_{1,1}=\left[X_{2}^{\prime}\left(M_{X_{1}} \Sigma_{0} M_{X_{1}}\right)^{+} X_{2}\right]^{-1} \\
& W_{1,2}=\frac{1}{j}\left[X_{2}^{\prime}\left(M_{X_{1}} \Sigma_{0} M_{X_{1}}\right)^{+} X_{2}\right]^{-1}+\left(1-\frac{1}{j}\right)\left(X_{2}^{\prime} \Sigma_{0}^{-1} X_{2}\right)^{-1}=W_{2,1}^{\prime} \\
& W_{2,2}=\frac{1}{j}\left[X_{2}^{\prime}\left(M_{X_{1}} \Sigma_{0} M_{X_{1}}\right)^{+} X_{2}\right]^{-1}+\left(1-\frac{1}{j}\right)\left(X_{2}^{\prime} \Sigma_{0}^{-1} X_{2}\right)^{-1}=W_{1,2}=W_{2,1}
\end{aligned}
$$

Proof. Let

$$
\begin{aligned}
& A=\left[X_{2}^{\prime}\left(M_{X_{1}} \Sigma_{0} M_{X_{1}}\right)^{+} X_{2}\right]^{-1} X_{2}^{\prime}\left(M_{X_{1}} \Sigma_{0} M_{X_{1}}\right)^{+} \\
& B=\left(X_{2}^{\prime} \Sigma_{0}^{-1} X_{2}\right)^{-1} X_{2}^{\prime} \Sigma_{0}^{-1}
\end{aligned}
$$

Then, with respect to Theorems 3.3 and 3.2,

$$
\begin{aligned}
\hat{\beta}_{2}^{(j)}\left(Y_{j}\right) & =A\left(e_{j}^{\prime} \otimes I\right)\left(Y_{1}^{\prime}, \ldots Y_{j}^{\prime}\right)^{\prime} \\
\hat{\beta}_{2}^{(j)}\left(Y_{1}, \ldots, Y_{j}\right) & =\left[A\left(\frac{\left.1^{\prime} \otimes I\right)}{j}\right)+B\left(e_{j}^{\prime} \otimes I-\frac{1^{\prime} \otimes I}{j}\right)\right]\left(Y_{1},{ }^{\prime}, \ldots, Y_{j}^{\prime}\right)^{\prime}
\end{aligned}
$$

Now, if the equalities

$$
\begin{gathered}
\left(M_{X_{1}} \Sigma_{0} M_{X_{1}}\right)^{+} \Sigma_{0}\left(M_{X_{1}} \Sigma_{0} M_{X_{1}}\right)^{+}=\left(M_{X_{1}} \Sigma_{0} M_{X_{1}}\right)^{+}, \\
A \Sigma_{0} A^{\prime}=\left[X_{2}^{\prime}\left(M_{X_{1}} \Sigma_{0} M_{X_{1}}\right)^{+} X_{2}\right]^{-1}
\end{gathered}
$$

and

$$
A \Sigma_{0} B^{\prime}=\left(X_{2}^{\prime} \Sigma_{0}^{-1} X_{2}\right)^{-1}=B \Sigma_{0} B^{\prime}
$$

are taken into account, we obtain

$$
\begin{array}{ll}
W_{1,1}=A \Sigma_{0} A^{\prime}, & W_{1,2}=\left(1-\frac{1}{j}\right) A \Sigma_{0} B^{\prime}+\frac{1}{j} A \Sigma_{0} A^{\prime}, \\
W_{2,1}=W_{1,2}^{\prime}, & W_{2,2}=\left(1-\frac{1}{j}\right) B \Sigma_{0} B^{\prime}+\frac{1}{j} A \Sigma_{0} A^{\prime} .
\end{array}
$$

Now it is elementary to finish the proof.
Corollary 3.6. If the vector $\left(Y_{1}^{\prime}, \ldots, Y_{m}^{\prime}\right)^{\prime}$ is normally distributed, then

$$
\hat{\beta}_{2}^{(j)}\left(Y_{j}\right)-\hat{\beta}_{2}^{(j)}\left(Y_{1}, \ldots, Y_{j}\right) \sim N_{k_{2}}(0, K),
$$

where

$$
\begin{aligned}
K= & \left(1-\frac{1}{j}\right)\left(X_{2}^{\prime} \Sigma_{0}^{-1} X_{2}\right)^{-1} X_{2}^{\prime} \Sigma_{0}^{-1} X_{1}\left[X_{1}^{\prime}\left(M_{X_{2}} \Sigma_{0} M_{X_{2}}\right)^{+} X_{1}\right]^{-1} \\
& \cdot X_{1}^{\prime} \Sigma_{0}^{-1} X_{2}\left(X_{2}^{\prime} \Sigma_{0}^{-1} X_{2}\right)^{-1} .
\end{aligned}
$$

Proof. With respect to Theorem 3.5

$$
\begin{aligned}
\operatorname{Var} & \left\{\left[\hat{\beta}_{2}^{(j)}\left(Y_{j}\right)-\hat{\beta}_{2}^{(j)}\left(Y_{1}, \ldots, Y_{j}\right)\right] \mid \Sigma_{0}\right\}=W_{1,1}+W_{2,2}-2 W_{1,2} \\
& =\left(1-\frac{1}{j}\right)\left\{\left[X_{2}^{\prime}\left(M_{X_{1}} \Sigma_{0} M_{X_{1}}\right)^{+} X_{2}\right]^{-1}-\left(X_{2}^{\prime} \Sigma_{0}^{-1} X_{2}\right)^{-1}\right\} .
\end{aligned}
$$

With respect to the equality

$$
\left(M_{X_{1}} \Sigma_{0} M_{X_{1}}\right)^{+}=\Sigma_{0}^{-1}-\Sigma_{0}^{-1} X_{1}\left(X_{1}^{\prime} \Sigma_{0}^{-1} X_{1}\right)^{+} X_{1}^{\prime} \Sigma_{0}^{-1}
$$

we can write

$$
\left[X_{2}^{\prime}\left(M_{X_{1}} \Sigma_{0} M_{X_{1}}\right)^{+} X_{2}\right]^{-1}=\left[X_{2}^{\prime} \Sigma_{0}^{-1} X_{2}-X_{2}^{\prime} \Sigma_{0}^{-1} X_{1}\left(X_{1}^{\prime} \Sigma_{0}^{-1} X_{1}\right)^{-1} X_{1}^{\prime} \Sigma_{0}^{-1} X_{2}\right]^{-1} .
$$

Now, using the equality

$$
\left(S_{1}-A S_{2} A^{\prime}\right)^{-1}=S_{1}^{-1}+S_{1}^{-1} A\left(S_{2}^{-1}-A^{\prime} S_{1}^{-1} A\right)^{-1} A^{\prime} S_{1}^{-1}
$$

where $S_{1}=X_{2}^{\prime} \Sigma_{0}^{-1} X_{2}, A=X_{2}^{\prime} \Sigma_{0}^{-1} X_{1}, S_{2}=\left(X_{1}^{\prime} \Sigma_{0}^{-1} X_{1}\right)^{-1}$, we obtain

$$
\begin{aligned}
& {\left[X_{2}^{\prime}\left(M_{X_{1}} \Sigma_{0} M_{X_{1}}\right)^{+} X_{2}\right]^{-1}=\left(X_{2}^{\prime} \Sigma_{0}^{-1} X_{2}\right)^{-1}+\left(X_{2}^{\prime} \Sigma_{0}^{-1} X_{2}\right)^{-1} X_{2}^{\prime} \Sigma_{0}^{-1} X_{1}} \\
& \quad \cdot\left[X_{1}^{\prime} \Sigma_{0}^{-1} X_{1}-X_{1}^{\prime} \Sigma_{0}^{-1} X_{2}\left(X_{2}^{\prime} \Sigma_{0}^{-1} X_{2}\right)^{-1} X_{2}^{\prime} \Sigma_{0}^{-1} X_{1}\right]^{-1} X_{1}^{\prime} \Sigma_{0}^{-1} X_{2}\left(X_{2}^{\prime} \Sigma_{0}^{-1} X_{2}\right)^{-1} .
\end{aligned}
$$

As

$$
\left[X_{1}^{\prime} \Sigma_{0}^{-1} X_{1}-X_{1}^{\prime} \Sigma_{0}^{-1} X_{2}\left(X_{2}^{\prime} \Sigma_{0}^{-1} X_{2}\right)^{-1} X_{2}^{\prime} \Sigma_{0}^{-1} X_{1}\right]^{-1}=\left[X_{1}^{\prime}\left(M_{X_{2}} \Sigma_{0} M_{X_{2}}\right)^{+} X_{1}\right]^{-1}
$$

the proof is finished.

Corollary 3.7. With respect to Theorem 3.3

$$
\operatorname{Var}\left[\hat{\beta}_{2}^{(j)}\left(Y_{j}\right) \mid \Sigma_{0}\right]=\left[X_{2}^{\prime}\left(M_{X_{1}} \Sigma_{0} M_{X_{1}}\right)^{+} X_{2}\right]^{-1}
$$

and with respect to Theorem 3.5,
$\operatorname{Var}\left[\hat{\beta}_{2}^{(j)}\left(Y_{1}, \ldots, Y_{j}\right) \mid \Sigma_{0}\right]=\left(1-\frac{1}{j}\right)\left(X_{2}^{\prime} \Sigma_{0}^{-1} X_{2}\right)^{-1}+\frac{1}{j}\left[X_{2}^{\prime}\left(M_{X_{1}} \Sigma_{0} M_{X_{1}}\right)^{+} X_{2}\right]^{-1}$.
Thus

$$
\begin{aligned}
\operatorname{Var} & {\left[\hat{\beta}_{2}^{(j)}\left(Y_{j}\right) \mid \Sigma_{0}\right]=\operatorname{Var}\left[\hat{\beta}_{2}^{(j)}\left(Y_{1}, \ldots, Y_{j}\right) \mid \Sigma_{0}\right] } \\
& +\left(1-\frac{1}{j}\right)\left\{\left[X_{2}^{\prime}\left(M_{X_{1}} \Sigma_{0} M_{X_{1}}\right)^{+} X_{2}\right]^{-1}-\left(X_{2}^{\prime} \Sigma_{0}^{-1} X_{2}\right)^{-1}\right\}
\end{aligned}
$$

The expression $\left[X_{2}^{\prime}\left(M_{X_{1}} \Sigma_{0} M_{X_{1}}\right)^{+} X_{2}\right]^{-1}-\left(X_{2}^{\prime} \Sigma_{0}^{-1} X_{2}\right)^{-1}$ is given in Corollary 3.6; it shows the effect of the measurements of the preceding epochs on the estimator of $\beta_{2}^{(j)}$. From this point of view the relationship

$$
\begin{aligned}
& \operatorname{Var}\left[\hat{\beta}_{2}^{(j)}\left(Y_{1}, \ldots, Y_{j}\right) \mid \Sigma_{0}\right]=\left(X_{2}^{\prime} \Sigma_{0}^{-1} X_{2}\right)^{-1} \\
& +\frac{1}{j}\left(X_{2}^{\prime} \Sigma_{0}^{-1} X_{2}\right)^{-1} X_{2}^{\prime} \Sigma_{0}^{-1} X_{1}\left[X_{1}^{\prime}\left(M_{X_{2}} \Sigma_{0} M_{X_{2}}\right)^{+} X_{1}\right]^{-1} X_{1}^{\prime} \Sigma_{0}^{-1} X_{2}\left(X_{2}^{\prime} \Sigma_{0}^{-1} X_{2}\right)^{-1}
\end{aligned}
$$

is instructive.
Theorem 3.8. In the model from Definition 3.1
(i) the $\vartheta_{0}-M I N Q U E$ of a function $g(\vartheta)=g^{\prime} \vartheta, \vartheta \in \underline{\vartheta}$, exists iff

$$
g \in M\left[(m-1) S_{M_{X_{2}}}+S_{M_{\left(X_{1}, X_{2}\right)}}\right]
$$

where

$$
\begin{aligned}
\left\{S_{M_{X_{2}}}\right\}_{i, j} & =\operatorname{tr}\left(M_{X_{2}} V_{i} M_{X_{2}} V_{j}\right), i, j=1, \ldots, p, \\
\left\{S_{M_{\left(X_{1}, X_{2}\right)}}\right\}_{i, j} & =\operatorname{tr}\left(M_{\left(X_{1}, X_{2}\right)} V_{i} M_{\left(X_{1}, X_{2}\right)} V_{j}\right), i, j=1, \ldots, p
\end{aligned}
$$

and

$$
\begin{aligned}
M_{X_{2}} & =I-X_{2}\left(X_{2}^{\prime} X_{2}\right)^{-1} X_{2} \\
M_{\left(X_{1}, X_{2}\right)} & =I-\left(X_{1}, X_{2}\right)\left[\left(X_{1}, X_{2}\right)^{\prime}\left(X_{1}, X_{2}\right)\right]^{-1}\left(X_{1}, X_{2}\right)^{\prime}
\end{aligned}
$$

(ii) if $g \in M\left[(m-1) S_{M_{X_{2}}}+S_{\left.M_{\left(X_{1}, X_{2}\right)}\right]}\right.$, then ϑ_{0}-MINQUE of the function $g(\vartheta)=g^{\prime} \vartheta, \vartheta \in \underline{\vartheta}$, is

$$
\tau_{g}(\underline{Y})=\sum_{i=1}^{p} \lambda_{i}\left\{\operatorname{tr}\left[A_{i} \sum_{j=1}^{m}\left(Y_{j}-\bar{Y}\right)\left(Y_{j}-\bar{Y}\right)^{\prime}\right]+m \bar{Y}^{\prime} B_{i} \bar{Y}\right\}
$$

where

$$
\begin{aligned}
\underline{Y} & =\left(Y_{1}^{\prime}, \ldots, Y_{m}^{\prime}\right)^{\prime} \\
A_{i} & =\left(M_{X_{2}} \Sigma_{0} M_{X_{2}}\right)^{+} V_{i}\left(M_{X_{2}} \Sigma_{0} M_{X_{2}}\right)^{+} \\
B_{i} & =\left(M_{\left(X_{1}, X_{2}\right)} \Sigma_{0} M_{\left(X_{1}, X_{2}\right)}\right)^{+} V_{i}\left(M_{\left(X_{1}, X_{2}\right)} \Sigma_{0} M_{\left(X_{1}, X_{2}\right)}\right)^{+}
\end{aligned}
$$

and $\lambda=\left(\lambda_{1}, \ldots, \lambda_{p}\right)^{\prime}$ is a solution of the equation

$$
\left((m-1) S_{\left(M_{X_{2}} \Sigma_{0} M_{X_{2}}\right)^{+}}+S_{\left(M_{\left(X_{1}, X_{2}\right)} \Sigma_{0} M_{\left(X_{1}, X_{2}\right)}\right)^{+}}\right) \lambda=g
$$

(iii) if the observation vector Y is normally distributed, then the variance of $\tau_{g}(\underline{Y})$ at ϑ_{0} is

$$
\operatorname{Var}\left[\tau_{g}(\underline{Y}) \mid \vartheta_{0}\right]=2 g^{\prime}\left((m-1) S_{\left(M_{X_{2}} \Sigma_{0} M_{X_{2}}\right)^{+}}+S_{\left(M_{\left(X_{1}, X_{2}\right)} \Sigma_{0} M_{\left(X_{1}, X_{2}\right)}\right)^{+}}\right)^{-} g
$$

(it does not depend on the choice of the generalized inverse of the matrix in the last expression).

Proof. Applying in Lemma 2.4 the design matrix and the covariance matrix of the model from Definition 3.1 we obtain
(i)

$$
\left\{C^{(I)}\right\}_{i, j}=\operatorname{tr}\left[M_{\left(1 \otimes X_{1}, I \otimes X_{2}\right)}\left(I \otimes V_{i}\right) M_{\left(1 \otimes X_{1}, I \otimes X_{2}\right)}\left(I \otimes V_{j}\right)\right]
$$

$i, j=1, \ldots p$,
$M_{\left(1 \otimes X_{1}, I \otimes X_{2}\right)}=\left(M_{m} \otimes I+P_{m} \otimes I\right)-\left(\mathbf{1} \otimes X_{1}, I \otimes X_{2}\right)\left(\begin{array}{l}\underline{\boxed{11}}, \\ \underline{\boxed{21}}, \\ \underline{\boxed{22}}\end{array}\right)\binom{\mathbf{1}^{\prime} \otimes X_{1}^{\prime}}{I \otimes X_{2}^{\prime}}$,
where (cf. Theorem 3.2)

$$
\begin{aligned}
\boxed{11} & =\frac{1}{m}\left(X_{1}^{\prime} M_{X_{2}} X_{1}\right)^{-1} \\
\boxed{12} & =-\frac{\mathbf{1}^{\prime}}{m} \otimes\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} X_{2}\left(X_{2}^{\prime} M_{X_{1}} X_{2}\right)^{-1} \\
& =-\frac{\mathbf{1}^{\prime}}{m} \otimes\left(X_{1}^{\prime} M_{X_{2}} X_{1}\right)^{-1} X_{1}^{\prime} X_{2}\left(X_{2}^{\prime} X_{2}\right)^{-1} \\
& =21 \\
\boxed{22} & =M_{m} \otimes\left(X_{2}^{\prime} X_{2}\right)^{-1}+P_{m} \otimes\left(X_{2}^{\prime} M_{X_{1}} X_{2}\right)^{-1}
\end{aligned}
$$

Thus

$$
\left(\mathbf{1} \otimes X_{1}, I \otimes X_{2}\right)\left(\begin{array}{ll}
\boxed{\boxed{11}}, & \boxed{\boxed{12}} \\
\underline{\boxed{\mid 21}}, & \underline{\boxed{22}}
\end{array}\right)\binom{\mathbf{1}^{\prime} \otimes X_{1}^{\prime}}{I \otimes X_{2}^{\prime}}=M_{m} \otimes P_{X_{2}}+P_{m} \otimes P_{\left(X_{1}, X_{2}\right)}
$$

Here the equality $P_{\left(X_{1}, X_{2}\right)}=P_{X_{1}}^{M_{X_{2}}}+P_{X_{2}}^{M_{X_{1}}}$, which can be easily verified, is used. We obtain

$$
M_{\left(1 \otimes X_{1}, I \otimes X_{2}\right)}=M_{m} \otimes M_{X_{2}}+P_{m} \otimes M_{\left(X_{1}, X_{2}\right)}
$$

what implies

$$
\left\{C^{(I)}\right\}_{i, j}=(m-1) \operatorname{tr}\left(M_{X_{2}} V_{i} M_{X_{2}} V_{j}\right)+\operatorname{tr}\left(M_{\left(X_{1}, X_{2}\right)} V_{i} M_{\left(X_{1}, X_{2}\right)} V_{j}\right)
$$

(ii) Taking into account the equality

$$
\begin{gathered}
\left(M_{\left(1 \otimes X_{1}, I \otimes X_{2}\right)}\left(I \otimes \Sigma_{0}\right) M_{\left(1 \otimes X_{1}, I \otimes X_{2}\right)}\right)^{+}= \\
=M_{m} \otimes \Sigma_{0}^{-1}+P_{m} \otimes \Sigma_{0}^{-1}-\left(M_{m} \otimes \Sigma_{0}^{-1}+P_{m} \otimes \Sigma_{0}^{-1}\right)\left(\mathbf{1} \otimes X_{1}, I \otimes X_{2}\right) \\
\cdot\left(\begin{array}{cc}
m \otimes X_{1}^{\prime} \Sigma_{0}^{-1} X_{1}, & \mathbf{1}^{\prime} \otimes X_{1}^{\prime} \Sigma_{0}^{-1} X_{2} \\
\mathbf{1} \otimes X_{2}^{\prime} \Sigma_{0}^{-1} X_{1}, & I \otimes X_{2}^{\prime} \Sigma_{0}^{-1} X_{2}
\end{array}\right)^{-1}\binom{\mathbf{1}^{\prime} \otimes X_{1}^{\prime}}{I \otimes X_{2}^{\prime}}\left(M_{m} \otimes \Sigma_{0}^{-1}+P_{m} \otimes \Sigma_{0}^{-1}\right)
\end{gathered}
$$

and expressions $\boxed{11}, \boxed{12}, \boxed{21}, \boxed{22}$ from Theorem 3.2 we obtain

$$
\begin{aligned}
\left(M_{\left(1 \otimes X_{1}, I \otimes X_{2}\right)}\right. & \left.\left(I \otimes \Sigma_{0}\right) M_{\left(1 \otimes X_{1}, I \otimes X_{2}\right)}\right)^{+}= \\
& =M_{m} \otimes\left(M_{X_{2}} \Sigma_{0} M_{X_{2}}\right)^{+}+P_{m} \otimes\left(M_{\left(X_{1}, X_{2}\right)} \Sigma_{0} M_{\left(X_{1}, X_{2}\right)}\right)^{+}
\end{aligned}
$$

in an analogous way as in (i). Considering the last expression and the equality

$$
\begin{aligned}
& \left(Y_{1}^{\prime}, \ldots, Y_{m}^{\prime}\right)\left(M_{m} \otimes A+P_{m} \otimes B\right)\left(\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{m}
\end{array}\right)= \\
& =\operatorname{tr}\left[A \sum_{i=1}^{m}\left(Y_{i}-\bar{Y}\right)\left(Y_{i}-\bar{Y}\right)^{\prime}\right]+m \bar{Y}^{\prime} B \bar{Y}
\end{aligned}
$$

we obtain easily the assertion from (ii).
(iii) is a direct consequence of (ii), the assumption of normality and (iii) of Lemma 2.4.

Remark 3.9. In the following the matrix $S_{\left(M_{\left(X_{1}, X_{2}\right)} \Sigma_{0} M_{\left(X_{1}, X_{2}\right)}\right)+\text { will be as- }}$ sumed to be p.d.

This matrix is always at least p.s.d. since it is the Gram matrix of the p-tuple

$$
\left\{\left[\left(M_{\left(X_{1}, X_{2}\right)} \Sigma_{0} M_{\left(X_{1}, X_{2}\right)}\right)^{+}\right]^{1 / 2} V_{i}\left[\left(M_{\left(X_{1}, X_{2}\right)} \Sigma_{0} M_{\left(X_{1}, X_{2}\right)}\right)^{+}\right]^{1 / 2}\right\}_{i=1}^{p}
$$

in the Hilbert space $\mathcal{M}_{n, n}$ of $n \times n$ matrices with the inner product

$$
\langle A, B\rangle=\operatorname{tr}\left(A B^{\prime}\right), \quad A, B \in \mathcal{M}_{n, n}
$$

An important consequence of this assumption consists in the fact that the whole vector ϑ can be estimated by the ϑ_{0}-MINQUE in each separate epoch; for this reason it must be fulfilled always in practice. For our purposes this assumption enables us to compare easily MINQUEs from a separate epoch and MINQUEs from several epochs.

Corollary 3.10. The $\vartheta_{0}-M I N Q U E$ of the function $g(\cdot)$ from Theorem 3.8, based on the observation vector Y_{j} from the j-th epoch only, is

$$
\hat{\vartheta}\left(Y_{j}\right)=S_{\left(M_{\left(X_{1}, X_{2}\right)} \Sigma_{0} M_{\left(X_{1}, X_{2}\right)}\right)}^{-1} \hat{\gamma}
$$

where $\hat{\gamma}=\left(\hat{\gamma}_{1}, \ldots, \hat{\gamma}_{p}\right)^{\prime}$,

$$
\hat{\gamma}_{i}=Y_{j}^{\prime}\left(M_{\left(X_{1}, X_{2}\right)} \Sigma_{0} M_{\left(X_{1}, X_{2}\right)}\right)^{+} V_{i}\left(M_{\left(X_{1}, X_{2}\right)} \Sigma_{0} M_{\left(X_{1}, X_{2}\right)}\right)^{+} Y_{j},
$$

$i=1, \ldots, p$, and if the vector Y is normal,

$$
\operatorname{Var}\left(\hat{\vartheta}\left(Y_{j}\right) \mid \Sigma_{0}\right)=2 S_{\left(M_{\left(X_{1}, x_{2}\right)} \Sigma_{0} M_{\left(X_{1}, x_{2}\right)}\right)^{+}}^{-1}
$$

Corollary 3.10 and Theorem 3.8 give us a tool for investigating a behaviour of the estimators

$$
\hat{\vartheta}\left(Y_{1}\right), \hat{\vartheta}\left(Y_{2}\right), \ldots
$$

the estimators

$$
\hat{\vartheta}\left(Y_{1}, Y_{2}\right), \hat{\vartheta}\left(Y_{1}, Y_{2}, Y_{3}\right), \ldots
$$

and the relations among them.
Remark 3.11. With respect to Corollary 3.10, Theorem 3.8 and Lemma 3.12, three types of estimators of the parameter ϑ can be calculated after m epochs of measurements:
(i)

$$
\hat{\vartheta}_{1}\left(Y_{1}, \ldots, Y_{m}\right)=\left[(m-1) S_{\left(M_{X_{2}} \Sigma_{0} M_{X_{2}}\right)^{+}}+S_{\left(M_{\left(X_{1}, X_{2}\right)} \Sigma_{0} M_{\left(X_{1}, X_{2}\right)}\right)^{+}}\right]^{-1} \hat{\gamma}
$$

where $\hat{\gamma}=\left(\hat{\gamma}_{1}, \ldots, \hat{\gamma}_{p}\right)^{\prime}$,

$$
\begin{aligned}
\hat{\gamma}_{i}= & \operatorname{tr}\left[\left(M_{X_{2}} \Sigma_{0} M_{X_{2}}\right)^{+} V_{i}\left(M_{X_{2}} \Sigma_{0} M_{X_{2}}\right)^{+} \sum_{j=1}^{m}\left(Y_{j}-\bar{Y}\right)\left(Y_{j}-\bar{Y}\right)^{\prime}\right] \\
& +m \bar{Y}^{\prime}\left(M_{\left(X_{1}, X_{2}\right)} \Sigma_{0} M_{\left(X_{1}, X_{2}\right)}\right)^{+} V_{i}\left(M_{\left(X_{1}, X_{2}\right)} \Sigma_{0} M_{\left(X_{1}, X_{2}\right)}\right)^{+} \bar{Y}
\end{aligned}
$$

(ii)

$$
\hat{\vartheta}_{2}\left(Y_{1}, \ldots, Y_{m}\right)=\frac{1}{m-1} S_{\left(M_{X_{2}} \Sigma_{0} M_{X_{2}}\right)+}^{-1} \hat{\kappa}
$$

where $\hat{\kappa}=\left(\hat{\kappa}_{1}, \ldots, \hat{\kappa}_{p}\right)^{\prime}$,

$$
\hat{\kappa}_{i}=\operatorname{tr}\left[\left(M_{X_{2}} \Sigma_{0} M_{X_{2}}\right)^{+} V_{i}\left(M_{X_{2}} \Sigma_{0} M_{X_{2}}\right)^{+} \sum_{j=1}^{m}\left(Y_{j}-\bar{Y}\right)\left(Y_{j}-\bar{Y}\right)^{\prime}\right]
$$

and
(iii)

$$
\hat{\vartheta}_{3}\left(Y_{1}, \ldots, Y_{m}\right)=\frac{1}{m} \sum_{j=1}^{m} \hat{\vartheta}\left(Y_{j}\right)
$$

where

$$
\begin{aligned}
\hat{\vartheta}\left(Y_{j}\right) & =S_{\left(M_{\left(X_{1}, X_{2}\right)} \Sigma_{0} M_{\left(X_{1}, X_{2}\right)}\right)+} \hat{\omega}, \quad \hat{\omega}=\left(\hat{\omega}_{1}, \ldots, \hat{\omega}_{p}\right)^{\prime} \\
\hat{\omega}_{i} & =Y_{j}^{\prime}\left(M_{\left(X_{1}, X_{2}\right)} \Sigma_{0} M_{\left(X_{1}, X_{2}\right)}\right)^{+} V_{i}\left(M_{\left(X_{1}, X_{2}\right)} \Sigma_{0} M_{\left(X_{1}, X_{2}\right)}\right)^{+} Y_{j} \\
i=1, \ldots, p ; j & =1, \ldots, m
\end{aligned}
$$

The estimator $\hat{\vartheta}_{2}\left(Y_{1}, \ldots, Y_{m}\right)$ is based on the following lemma.
Lemma 3.12. In the model from Definition 3.1 for any $n \times n$ symmetric matrix A

$$
\begin{aligned}
& E\left\{\operatorname{tr}\left[A \sum_{j=1}^{m}\left(Y_{j}-\bar{Y}\right)\left(Y_{j}-\bar{Y}\right)^{\prime}\right] \mid \Sigma\right\}= \\
& \quad=(m-1) \operatorname{tr}(A \Sigma)+\sum_{j=1}^{m}\left(\beta_{2}^{(j)}-\overline{\beta_{2}^{(\cdot)}}\right)^{\prime} X_{2}^{\prime} A X_{2}\left(\beta_{2}^{(j)}-\overline{\beta_{2}^{(\cdot)}}\right)
\end{aligned}
$$

where $\overline{\beta_{2}^{(\cdot)}}=\frac{1}{m} \sum_{j=1}^{m} \beta_{2}^{(j)}$.
Proof. The proof can be made in a straightforward way and therefore it is omitted.

In our case

$$
A=\left(M_{X_{2}} \Sigma_{0} M_{X_{2}}\right)^{+} V_{i}\left(M_{X_{2}} \Sigma_{0} M_{X_{2}}\right)^{+}, \quad i=1, \ldots, p
$$

because of $\left(M_{X_{2}} \Sigma_{0} M_{X_{2}}\right)+X_{2}=0$,

$$
\begin{aligned}
E\left(\hat{\kappa}_{i} \mid \Sigma\right) & =(m-1) \operatorname{tr}\left[\left(M_{X_{2}} \Sigma_{0} M_{X_{2}}\right)^{+} V_{i}\left(M_{X_{2}} \Sigma_{0} M_{X_{2}}\right)^{+} \sum_{j=1}^{m} \vartheta_{j} V_{j}\right] \\
& =(m-1)\left\{S_{\left(M_{X_{2}} \Sigma_{0} M_{X_{2}}\right)+}\right\}_{i .} \vartheta
\end{aligned}
$$

and the last relationship enables us to establish easily the estimator $\hat{\vartheta}_{2}$.
Remark 3.13. In general it is relatively difficult to compare the variances of the estimators $\hat{\vartheta}_{1}, \hat{\vartheta}_{2}$ and $\hat{\vartheta}_{3}$; nevertheless in the case of normality obviously

$$
\begin{aligned}
\operatorname{Var} & {\left[\hat{\vartheta}_{1}\left(Y_{1}, \ldots, Y_{m}\right) \mid \Sigma_{0}\right]=} \\
& =2\left\{(m-1) S_{\left(M_{X_{2}} \Sigma_{0} M_{X_{2}}\right)^{+}}+S_{\left(M_{\left(X_{1}, X_{2}\right)} \Sigma_{0} M_{\left(X_{1}, X_{2}\right)}\right)^{+}}\right\}^{-1} \\
& \leq \operatorname{Var}\left[\hat{\vartheta}_{2}\left(Y_{1}, \ldots, Y_{m}\right) \mid \Sigma_{0}\right]=\frac{2}{m-1} S_{\left(M_{X_{2}} \Sigma_{0} M_{X_{2}}\right)^{+}}^{-1}
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Var}\left[\hat{\vartheta}_{1}\left(Y_{1}, \ldots, Y_{m}\right) \mid \Sigma_{0}\right] & \leq \operatorname{Var}\left[\hat{\vartheta}_{3}\left(Y_{1}, \ldots, Y_{m}\right) \mid \Sigma_{0}\right] \\
& =(2 / m) S_{\left(M_{\left(X_{1}, X_{2}\right)} \Sigma_{0} M_{\left(X_{1}, X_{2}\right)}\right)^{+}}^{-1}
\end{aligned}
$$

(\leq means the Loewner ordering of p.s.d. matrices).
Further

$$
\lim _{m \rightarrow \infty} \operatorname{Var}\left[\hat{\vartheta}_{1}\left(Y_{1}, \ldots, Y_{m}\right) \mid \Sigma_{0}\right]\left\{\operatorname{Var}\left[\hat{\vartheta}_{2}\left(Y_{1}, \ldots, Y_{m}\right) \mid \Sigma_{0}\right]\right\}^{-1}=I_{(p, p)}
$$

thus the estimator $\hat{\vartheta}_{2}$ is to be preferred to $\hat{\vartheta}_{3}$ if the number of epochs is sufficiently large. It is rather surprising; $\hat{\vartheta}_{1}$ has been suggested already by B. Schaffrin ([Sch2], Chapter 2.1), and similarly by J. Kleffe ([Kl]) and others, though in more general form. It seems that even in the case of a relatively small number of epochs the estimator $\hat{\vartheta}_{3}$ is significantly worse than $\hat{\vartheta}_{1}$ and $\hat{\vartheta}_{2}$, respectively, c.f. Example in [Ká4].

It is rather unpleasant when the vector ϑ is unknown and must be estimated. Therefore it may be of some interest to know a class of such linear functions of parameteres β_{1} and $\beta_{2}^{(\cdot)}$ which can be estimated by UBLUEs (uniformly best linear unbiased estimators). In solving this problem we can start from Theorem 5.7.2 in [K2]. In our case the following theorem can be stated.

Theorem 3.14. The class of linear functions of β_{1} and $\beta_{2}^{(\cdot)}$

$$
f\left(\beta_{1}, \beta_{2}^{(\cdot)}\right)=f_{1}^{\prime} \beta_{1}+f_{2}^{(1)^{\prime}} \beta_{2}^{(1)}+\ldots+f_{2}^{(m)^{\prime}} \beta_{2}^{(m)}, \beta_{1} \in R^{k_{1}}, \beta_{2}^{(\cdot)} \in R^{m k_{2}}
$$

estimable by UBLUEs is

$$
\begin{aligned}
\mathcal{F}= & \left\{\left(\begin{array}{c}
f_{1} \\
f_{2}^{(1)} \\
\vdots \\
f_{2}^{(m)}
\end{array}\right): f_{1}=m X_{1}^{\prime}\left[I-\left(\sum_{i=1}^{p} V_{i} M_{\left(X_{1}, X_{2}\right)} V_{i}\right)^{-}\left(\sum_{i=1}^{p} V_{i} M_{\left(X_{1}, X_{2}\right)} V_{i}\right)\right] \bar{L} .,\right. \\
f_{2}^{(j)}= & {\left[I-\left(\sum_{i=1}^{p} V_{i} M_{X_{2}} V_{i}\right)^{-}\left(\sum_{i=1}^{p} V_{i} M_{X_{2}} V_{i}\right)\right]\left(L_{j}-\bar{L}_{.}\right), } \\
& \left.j=1, \ldots, m, \bar{L}=\frac{1}{m} \sum_{j=1}^{m} L_{j}, L=\left(L_{1}^{\prime}, \ldots, L_{m}^{\prime}\right)^{\prime} \in R^{m n}\right\} .
\end{aligned}
$$

Proof. Regarding Theorem 5.7.2 from [K2],

$$
\mathcal{F}=\mathcal{M}\left\{\binom{1^{\prime} \otimes X_{1}^{\prime}}{I \otimes X_{2}^{\prime}} \mathcal{K} e r\left[\sum_{i=1}^{p}\left(I \otimes V_{i}\right) M_{\left(1 \otimes X_{1}, I \otimes X_{2}\right)}\left(I \otimes V_{i}\right)\right]\right\}
$$

As $M_{\left(1 \otimes X_{1}, I \otimes X_{2}\right)}=M_{m} \otimes M_{X_{2}}+P_{m} \otimes M_{\left(X_{1}, X_{2}\right)}$ (cf. proof of Theorem 3.8) and $\sum_{i=1}^{p}\left(I \otimes V_{i}\right) M_{\left(1 \otimes X_{1}, I \otimes X_{2}\right)}\left(I \otimes V_{i}\right)=M_{m} \otimes \sum_{i=1}^{p} V_{i} M_{X_{2}} V_{i}+P_{m} \otimes \sum_{i=1}^{p} V_{i} M_{\left(X_{1}, X_{2}\right)} V_{i}$,
we obtain

$$
\begin{aligned}
\operatorname{Ker} & {\left[\sum_{i=1}^{p}\left(I \otimes V_{i}\right) M_{\left(1 \otimes X_{1}, I \otimes X_{2}\right)}\left(I \otimes V_{i}\right)\right]=} \\
= & \mathcal{M}\left\{M_{m} \otimes\left[I-\left(\sum_{i=1}^{p} V_{i} M_{X_{2}} V_{i}\right)^{-}\left(\sum_{i=1}^{p} V_{i} M_{X_{2}} V_{i}\right)\right]\right. \\
& \left.\quad+P_{m} \otimes\left[I-\left(\sum_{i=1}^{p} V_{i} M_{\left(X_{1}, X_{2}\right)} V_{i}\right)^{-}\left(\sum_{i=1}^{p} V_{i} M_{\left(X_{1}, X_{2}\right)} V_{i}\right)\right]\right\}
\end{aligned}
$$

Now we can easily finish the proof.
Another important representant of the class of m-epoch models with stable and variable parameters is

$$
\begin{equation*}
\left(\underline{Y},\left(\mathbf{1} \otimes X_{1}, I \otimes X_{2}\right)\binom{\beta_{1}}{\beta_{2}^{(\cdot)}}, D \otimes V\right), \tag{3.1}
\end{equation*}
$$

where $D=\operatorname{Diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{m}^{2}\right)$ is an unknown diagonal matrix, V is a given $n \times n$ p.d. matrix and the other notations have the same meaning as in Definition 3.1. In the following the ratio $\sigma_{1}^{2}: \sigma_{2}^{2}: \ldots: \sigma_{m}^{2}$ is supposed to be unknown.

Theorem 3.15. In the model (3.1)
(i) the $\vartheta_{0}-L B L U E$ of β_{1} based on the observation vector $\underline{Y}=\left(Y_{1}^{\prime}, \ldots, Y_{m}^{\prime}\right)^{\prime}$ is

$$
\hat{\beta}_{1}\left(Y_{1}, \ldots, Y_{m}\right)=\left(\sum_{s=1}^{m} \frac{1}{\sigma_{s 0}^{2}}\right)^{-1} \sum_{s=1}^{m} \frac{1}{\sigma_{s 0}^{2}} \hat{\beta}_{1}\left(Y_{j}\right)
$$

where $\vartheta_{0}=\left(\sigma_{10}^{2}, \ldots, \sigma_{m 0}^{2}\right)^{\prime}$ and

$$
\hat{\beta}_{1}\left(Y_{j}\right)=\left[X_{1}^{\prime}\left(M_{X_{2}} V M_{X_{2}}\right)^{+} X_{1}\right]^{-1} X_{1}^{\prime}\left(M_{X_{2}} V M_{X_{2}}\right)^{+} Y_{j}, j=1, \ldots, m
$$

(ii) the $\vartheta_{0}-L B L U E$ of $\beta_{2}^{(j)}$ based on \underline{Y} is

$$
\hat{\beta}_{2}^{(j)}\left(Y_{1}, \ldots, Y_{m}\right)=\left(X_{2}^{\prime} V^{-1} X_{2}\right)^{-1} X_{2}^{\prime} V^{-1}\left\{Y_{j}-X_{1} \hat{\beta}_{1}\left(Y_{1}, \ldots, Y_{m}\right)\right\}
$$

and
(iii) the ϑ_{0}-MINQUE of the function $g(\vartheta)=g^{\prime} \vartheta, \vartheta \in \underline{\vartheta}$, is

$$
\widehat{g^{\prime} \vartheta}=\sum_{i=1}^{m} \lambda_{i} \frac{1}{\sigma_{i 0}^{4}}\left[Y_{i}-X_{i} \hat{\beta}_{1}\left(Y_{1}, \ldots, Y_{m}\right)\right]^{\prime}\left(M_{X_{2}} V M_{X_{2}}\right)^{+}\left[Y_{i}-X_{i} \hat{\beta}_{1}\left(Y_{1}, \ldots, Y_{m}\right)\right]
$$

if the system

$$
S_{(*)} \lambda=g
$$

is consistent. Here $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)^{\prime}$ and

$$
\begin{aligned}
S_{(*)}= & \left(n-k_{2}\right) D_{0}^{-2}+k_{1}\left(\sum_{s=1}^{m} \frac{1}{\sigma_{s 0}^{2}}\right)^{-2}\left(\begin{array}{c}
1 / \sigma_{10}^{4} \\
\vdots \\
1 / \sigma_{m 0}^{4}
\end{array}\right)\left(1 / \sigma_{10}^{4}, \ldots, 1 / \sigma_{m 0}^{4}\right) \\
& -2 k_{1}\left(\sum_{s=1}^{m} \frac{1}{\sigma_{s 0}^{2}}\right)^{-1} D_{0}^{-3} \\
D_{0}= & \operatorname{Diag}\left(\sigma_{10}^{2}, \ldots, \sigma_{m 0}^{2}\right)
\end{aligned}
$$

Proof. Let the notation

$$
\underline{V}_{i}=e_{i}^{(m)} e_{i}^{(m)^{\prime}} \otimes V_{i}, i=1, \ldots, m
$$

be used. Then

$$
D \otimes V=\sum_{i=1}^{m} \sigma_{i}^{2} \underline{V}_{i}=\sum_{i=1}^{m} \sigma_{i}^{2}\left(e_{i}^{(m)} e_{i}^{(m)^{\prime}} \otimes V_{i}\right)
$$

Now, regarding Lemma 2.3, it is sufficient to reestablish the expression

$$
\left(\underline{X}^{\prime} \underline{\Sigma}_{0}^{-1} \underline{X}\right)^{-1} \underline{X}^{\prime} \underline{\Sigma}_{0}^{-1} \underline{Y}
$$

where

$$
\underline{X}=\left(1 \otimes X_{1}, I \otimes X_{2}\right) \quad \text { and } \quad \underline{\Sigma}_{0}=D_{0} \otimes V=\sum_{i=1}^{m} \sigma_{i 0}^{2}\left(e_{i}^{(m)} e_{i}^{(m)^{\prime}} \otimes V\right)
$$

The formulae given in the proof of Theorem 3.2 must be used in order to obtain the expressions from (i) and (ii).

Regarding Lemma 2.4 and the relationships

$$
\begin{aligned}
\left(M_{\underline{X}} \underline{\Sigma}_{0} M_{\underline{X}}\right)^{+}= & D_{0}^{-1} \otimes\left(M_{X_{2}} V M_{X_{2}}\right)^{+}-\frac{D_{0}^{-1} 11^{\prime} D_{0}^{-1}}{1^{\prime} D_{0}^{-1} 1} \otimes\left(M_{X_{2}} V M_{X_{2}}\right)^{+} X_{1} \\
& \cdot\left[X_{1}^{\prime}\left(M_{X_{2}} V M_{X_{2}}\right)^{+} X_{1}\right]^{-1} X_{1}^{\prime}\left(M_{X_{2}} V M_{X_{2}}\right)^{+}
\end{aligned}
$$

and

$$
\left(M_{\underline{X}} \underline{\Sigma}_{0} M_{\underline{X}}\right)^{+} \underline{Y}=\left(v_{1}^{\prime}, \ldots, v_{m}^{\prime}\right)^{\prime}
$$

where

$$
\begin{aligned}
v_{i}= & \frac{1}{\sigma_{i 0}^{2}}\left(M_{X_{2}} V M_{X_{2}}\right)^{+} Y_{i}-\frac{1 / \sigma_{i 0}^{2}}{\sum_{j=1}^{m} 1 / \sigma_{j 0}^{2}}\left(M_{X_{2}} V M_{X_{2}}\right)^{+} X_{1} \\
& \cdot \sum_{j=1}^{m}\left(1 / \sigma_{j 0}^{2}\right)\left[X_{1}^{\prime}\left(M_{X_{2}} V M_{X_{2}}\right)^{+}\right]^{-1} X_{1}^{\prime}\left(M_{X_{2}} V M_{X_{2}}\right)^{+} Y_{j}
\end{aligned}
$$

which is applied in its rewritten form

$$
v_{i}=\frac{1}{\sigma_{i 0}^{2}}\left(M_{X_{2}} V M_{X_{2}}\right)^{+}\left[Y_{i}-X_{1} \hat{\beta}_{1}\left(Y_{1}, \ldots, Y_{m}\right)\right], i=1, \ldots, m
$$

(the way of rewriting is easy however tedious, therefore is omitted), we obtain

$$
\widehat{g^{\prime} \vartheta}=\sum_{i=1}^{m} \lambda_{i} \frac{1}{\sigma_{i 0}^{4}}\left[Y_{i}-X_{1} \hat{\beta}_{1}\left(Y_{1}, \ldots, Y_{m}\right)\right]^{\prime}\left(M_{X_{2}} V M_{X_{2}}\right)^{+}\left[Y_{i}-X_{1} \hat{\beta}_{1}\left(Y_{1}, \ldots, Y_{m}\right)\right]
$$

For determining the matrix $S_{\left(M_{\underline{X}} \underline{\Sigma}_{0} M_{\underline{X}}\right)^{+}}$the relationships

$$
\operatorname{tr}\left[\left(M_{X_{2}} V M_{X_{2}}\right)^{+} P_{X_{1}}^{\left(M_{X_{2}} V M_{X_{2}}\right)^{+}} V\left(M_{X_{2}} V M_{X_{2}}\right)^{+} V\right]=\operatorname{tr}\left(P_{X_{1}}^{\left(M_{X_{2}} V M_{X_{2}}\right)^{+}}\right)=k_{1}
$$

and

$$
\operatorname{tr}\left[\left(M_{X_{2}} V M_{X_{2}}\right)^{+} V\left(M_{X_{2}} V M_{X_{2}}\right)^{+} V\right]=\operatorname{tr}\left(I-P_{X_{2}}^{V^{-1}}\right)=n-k_{2}
$$

where

$$
P_{X_{1}}^{\left(M_{X_{2}} V M_{X_{2}}\right)^{+}}=X_{1}\left[X_{1}^{\prime}\left(M_{X_{2}} V M_{X_{2}}\right)^{+} X_{1}\right]^{-1} X_{1}^{\prime}\left(M_{X_{2}} V M_{X_{2}}\right)^{+}
$$

and

$$
P_{X_{2}}^{V^{-1}}=X_{2}\left(X_{2}^{\prime} V^{-1} X_{2}\right)^{-1} X_{2}^{\prime} V^{-1}
$$

must be taken into account. After applying them we obtain

$$
\left\{S_{\left(M_{\underline{X}} \underline{\Sigma}_{0} M_{\underline{X}}\right)^{+}}\right\}_{i, j}= \begin{cases}\frac{n-k_{2}}{\sigma_{i 0}^{4}}+k_{1} \frac{1 / \sigma_{i 0}^{8}}{\left(\sum_{s=1}^{m} 1 / \sigma_{s 0}^{2}\right)^{2}}-2 k_{1} \frac{1 / \sigma_{i 0}^{6}}{\sum_{s=1}^{m} 1 / \sigma_{s 0}^{2}}, & i=j \\ k_{1} \frac{\left[1 /\left(\sigma_{i 0}^{2} \sigma_{j 0}^{2}\right)\right]^{2}}{\left(\sum_{s=1}^{m} 1 / \sigma_{s 0}^{2}\right)^{2}}, & i \neq j\end{cases}
$$

thus $S_{\left(M_{\underline{X}} \underline{\Sigma}_{0} M_{\underline{X}}\right)}$ has the form given in (iii).

Example 3.16. Let in Theorem $3.15 m=1$, i.e., the first epoch is considered only. Then MINQUE of σ_{1}^{2} becomes the uniformly minimum variance quadratic unbiased invariant estimator of the well known form

$$
\hat{\sigma}_{1}^{2}=\left[1 /\left(n-k_{1}-k_{2}\right)\right]\left[Y_{1}-X_{1} \hat{\beta}_{1}\left(Y_{1}\right)\right]^{\prime}\left(M_{X_{2}} V M_{X_{2}}\right)^{+}\left[Y_{1}-X_{1} \hat{\beta}_{1}\left(Y_{1}\right)\right]
$$

where

$$
\hat{\beta}_{1}\left(Y_{1}\right)=\left[X_{1}^{\prime}\left(M_{X_{2}} V M_{X_{2}}\right)^{+} X_{1}\right]^{-1} X_{1}^{\prime}\left(M_{X_{2}} V M_{X_{2}}\right)^{+} Y_{1} .
$$

It is to be remarked that after $m(>1)$ epochs the estimator of σ_{1}^{2} given in Theorem 3.15 is better at least at ϑ_{0}, cf. A motivating example in [Ká4].

Remark 3.17. Up to now the investigated models are the simplest representants of the class of m-epoch models with stable and variable parameters. More complicated models arise when the design matrix $\left(X_{1}, X_{2}\right)$ is not the same in each epoch, when nuisance parameters occur in separate epochs, when restrictions on parameters β_{1} and $\beta_{2}^{(j)}$, respectively, must be respected, etc. Some investigation of other models from the mentioned class are in $[\mathbf{K a ́ 2}]$ and $[\mathbf{K 3}]$; see also [Sch1].

4. Models with Variable Parameters

Sometimes it is possible to create such a design of experiment that it is not necessary to measure indirectly the stable parameter β_{1} from the preceding section. Then the model

$$
\left(\left(Y_{1}, \ldots, Y_{m}\right), X\left(\beta^{(1)}, \beta^{(2)}, \ldots, \beta^{(m)}\right), I \otimes \sum_{i=1}^{p} \vartheta_{i} V_{i}\right)
$$

can be considered; here X is an analogue of the matrix X_{2} from Definition 3.1, $\beta^{(j)}$ is considered instead of $\beta_{2}^{(j)}$ and $I \otimes \vartheta_{i} V_{i}$ is the covariance matrix of the vector $\left(Y_{1},{ }^{\prime} \ldots, Y_{m}^{\prime}\right)^{\prime}$.

Let $Y=\left(Y_{1}, \ldots, Y_{m}\right), B=\left(\beta^{(1)}, \ldots, \beta^{(m)}\right)$ and $\Sigma(\vartheta)=\sum_{i=1}^{p} \vartheta_{i} V_{i}-$ we have the well known model from multivariate statistics (cf. $[\mathbf{S}]$)

$$
\begin{equation*}
(Y, X B, I \otimes \Sigma(\vartheta)) \tag{4.1}
\end{equation*}
$$

in contrast of the standard model here $I \otimes \Sigma(\vartheta)$ occurs instead of $\Sigma(\vartheta) \otimes I$; see also [Ko1, p. 301-313]. It is to be remarked that in the model $(Y, X B, \Sigma(\vartheta) \otimes I)$ there exists the uniformly (with respect to $\vartheta \in \underline{\vartheta}$) best linear unbiased estimator \hat{B} of B in the form $\hat{B}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y$. In our case only the ϑ_{0}-LBLUE of the form $\hat{B}=\left[X^{\prime} \Sigma^{-1}\left(\vartheta_{0}\right) X\right]^{-1} X^{\prime} \Sigma^{-1}\left(\vartheta_{0}\right) Y$ exists.

The ϑ_{0}-MINQUE of ϑ exists iff the matrix $C^{(I)}$,

$$
\left\{C^{(I)}\right\}_{i, j}=\operatorname{tr}\left(M_{X} V_{i} M_{X} V_{j}\right), i, j=1, \ldots, p
$$

is regular. After m epochs the ϑ_{0}-MINQUE of ϑ is

$$
\begin{gathered}
\hat{\vartheta}=\frac{1}{m} \sum_{j=1}^{m} S_{\left(M_{X} \Sigma_{0} M_{X}\right)^{+}}^{-1} \hat{\gamma}_{j}, \\
\hat{\gamma}_{j}=\left(\hat{\gamma}_{j, 1}, \ldots, \hat{\gamma}_{j, p}\right)^{\prime}, \hat{\gamma}_{j, i}=Y_{j}^{\prime}\left(M_{X} \Sigma_{0} M_{X}\right)^{+} V_{i}\left(M_{X} \Sigma_{0} M_{X}\right)^{+} Y_{j}
\end{gathered}
$$

If the matrix Y is normally distributed, then

$$
\operatorname{Var}\left[\hat{\vartheta}(Y) \mid \Sigma_{0}\right]=(2 / m) S_{\left(M_{X} \Sigma_{0} M_{X}\right)^{+}}^{-1}
$$

Thus it can be seen that from the viewpoint of estimation no new problems arise in this case. Some testing problems are investigated in $[\mathbf{K 4}]$, which can be compared with the procedures in $[\mathbf{K o 1}]$. However in deformation measurements with variable parameters the growth-curve model of R. F. Potthoff/S. N. Roy (1964) [$\mathbf{P}]$, cf. [Ká3], may be better suited than the model just mentioned.

The value of the parameter β in the j-th epoch, i.e., in the time t_{j} is supposed in the form (the i-th component)

$$
\beta_{i}\left(t_{j}\right)=b_{i, 1}+b_{i, 2} \phi_{1}\left(t_{j}\right)+\ldots+b_{i, s-1} \phi_{s-1}\left(t_{j}\right)
$$

Here $\phi_{1}(\cdot), \ldots, \phi_{s-1}(\cdot)$ are known linearly independent functions defined on R^{1} having the property

$$
\phi_{r}\left(t_{1}\right)=0, r=1, \ldots, s-1
$$

e.g., $\phi_{r}(t)=\left(t-t_{1}\right)^{r}, t \in R^{1}, r=1, \ldots, s-1$. Thus the mean value of the observation matrix Y can be written in the form

$$
E(Y \mid B)=X_{(n, k)} B_{(k, s)} Z_{(s, m)}
$$

where

$$
B=\left(\begin{array}{cccc}
b_{1.1}, & b_{1,2}, & \ldots, & b_{1, s} \\
\ldots \ldots & \ldots \ldots \ldots & \ldots & \ldots \\
b_{k, 1}, & b_{k, 2}, & \ldots, & b_{k, s}
\end{array}\right)
$$

and

$$
Z=\left(\begin{array}{cccc}
1, & 1, & \ldots, & 1 \\
\phi_{1}\left(t_{1}\right), & \phi_{1}\left(t_{2}\right), & \ldots, & \phi_{1}\left(t_{m}\right) \\
\ldots \ldots \ldots \ldots & \ldots \ldots \ldots & \ldots \ldots & \ldots \\
\phi_{s-1}\left(t_{1}\right), & \phi_{s-1}\left(t_{2}\right), & \ldots, & \phi_{s-1}\left(t_{m}\right)
\end{array}\right)
$$

Thus the deformation measurements with variable parameters result in the following growth-curve model with variance components

$$
\begin{equation*}
\left(Y, X B Z, \sum_{i=1}^{p} \vartheta_{i}\left(I \otimes V_{i}\right)\right) \tag{4.2}
\end{equation*}
$$

Lemma 4.1. Let $P_{(s, k)}$ be a given $s \times k$ matrix. The function $f(B)=\operatorname{tr}(P B)$, $B \in \mathcal{M}_{k, s}$, is unbiasedly estimable iff there exists an $m \times n$ matrix L such that $P=Z L X$.

Proof. The proof is obvious: $f(B)=\operatorname{tr}(P B)=\left(\operatorname{vec}\left(P^{\prime}\right)\right)^{\prime}$ vec (B) estimable in the model $E(\operatorname{vec}(Y))=\left(Z^{\prime} \otimes X\right) \operatorname{vec}(B) \Leftrightarrow\left(\operatorname{vec}\left(P^{\prime}\right)\right)^{\prime}=\left(\operatorname{vec}\left(L^{\prime}\right)\right)^{\prime}\left(Z^{\prime} \otimes X\right)=$ $\left(\operatorname{vec}\left(X^{\prime} L^{\prime} Z^{\prime}\right)\right)^{\prime} \Leftrightarrow P=\left(X^{\prime} L^{\prime} Z^{\prime}\right)^{\prime}=Z L X$.

Corollary 4.2. The necessary and sufficient condition for the unbiased estimability of each linear function $f(B), B \in \mathcal{M}_{k, s}$, in (4.1) is

$$
r(X)=k \quad \text { and } \quad r(Z)=s
$$

which means that the number of the epochs must be equal or greater than s.
Lemma 4.3. Let in (4.1) $r\left(X_{n, k)}\right)=k<n$ and $r\left(Z_{(s, m)}\right)=s<m$. Then the $\vartheta_{0}-L B L U E$ of the matrix B is

$$
\hat{B}(\underline{Y})=\left(X^{\prime} \Sigma_{0}^{-1} X\right)^{-1} X^{\prime} \Sigma_{0}^{-1} \underline{Y} Z^{\prime}\left(Z Z^{\prime}\right)^{-1}
$$

and

$$
\operatorname{Var}\left\{\operatorname{vec}[\hat{B}(\underline{Y})] \mid \Sigma_{0}\right\}=\left(Z Z^{\prime}\right)^{-1} \otimes\left(X^{\prime} \Sigma_{0}^{-1} X\right)^{-1}
$$

Proof. The model (4.1) can be rewritten, according to [Se1], as

$$
\left(\left(Y_{1}^{\prime}, \ldots, Y_{m}^{\prime}\right)^{\prime},\left(Z^{\prime} \otimes X\right) \operatorname{vec}(B), I \otimes \sum_{i=1}^{p} \vartheta_{i} V_{i}\right)
$$

Now it is sufficient to use Lemma 2.3.
Theorem 4.5. Let in (4.1) $r\left(X_{n, k)}\right)=k<n$ and $r\left(Z_{(s, m)}\right)=s<m$. Then (i) the $\vartheta_{0}-L B L U E$ of $B \phi\left(t_{j}\right)$ based on Y_{j} is

$$
\widehat{B \phi\left(t_{j}\right)}\left(Y_{j}\right)=\left(X^{\prime} \Sigma_{0}^{-1} X\right)^{-1} X^{\prime} \Sigma_{0}^{-1} Y_{j}
$$

and

$$
\operatorname{Var}\left[\widehat{B \phi\left(t_{j}\right)}\left(Y_{j}\right) \mid \Sigma_{0}\right]=\left(X^{\prime} \Sigma_{0}^{-1} X\right)^{-1}
$$

(ii) the $\vartheta_{0}-L B L U E$ of $B \phi\left(t_{j}\right)$ based on the whole observation matrix \underline{Y} is

$$
\widehat{B \phi\left(t_{j}\right)}(\underline{Y})=\left(\widehat{B \phi\left(t_{1}\right)}\left(Y_{1}\right), \ldots, \widehat{B \phi\left(t_{m}\right)}\left(Y_{m}\right)\right)\left\{P_{Z^{\prime}}\right\}_{. j}
$$

where $P_{Z^{\prime}}=Z^{\prime}\left(Z Z^{\prime}\right)^{-1} Z$ and $\left\{P_{Z^{\prime}}\right\}_{. j}$ is the j-th column of the matrix $P_{Z^{\prime}}$;

$$
\operatorname{Var}\left[\widehat{B \phi\left(t_{j}\right)}(\underline{Y}) \mid \Sigma_{0}\right]=\left\{P_{Z^{\prime}}\right\}_{j, j}\left(X^{\prime} \Sigma_{0}^{-1} X\right)^{-1}
$$

Proof. (i) is a direct consequence of Lemma 2.3 if the relationships

$$
E\left(Y_{j} \mid B\right)=X B \phi\left(t_{j}\right) \quad \text { and } \quad \operatorname{Var}\left(Y_{j} \mid \Sigma_{0}\right)=\Sigma_{0}
$$

are taken into account.
(ii) Regarding Lemma 4.3. and (i)

$$
\hat{B}(\underline{Y}) Z=\left(\widehat{B \phi\left(t_{1}\right)}\left(Y_{1}\right), \ldots, \widehat{B \phi\left(t_{m}\right)}\left(Y_{m}\right)\right) P_{Z^{\prime}}
$$

which implies

$$
\widehat{B \phi\left(t_{j}\right)}(\underline{Y})=\left(\widehat{B \phi\left(t_{1}\right)}\left(Y_{1}\right), \ldots, \widehat{B \phi\left(t_{m}\right)}\left(Y_{m}\right)\right)\left\{P_{Z^{\prime}}\right\}_{. j}
$$

Further, in consequence

$$
\operatorname{Var}\left[\widehat{B \phi\left(t_{j}\right)}\left(Y_{j}\right) \mid \Sigma_{0}\right]=\left(X^{\prime} \Sigma_{0} X\right)^{-1}, j=1, \ldots m
$$

(see (i)) and the fact that the estimators $\widehat{B \phi\left(t_{1}\right)}\left(Y_{1}\right), \ldots, \widehat{B \phi\left(t_{m}\right)}\left(Y_{m}\right)$ are stochastically independent
$\left.\operatorname{Var}\left[\widehat{B \phi\left(t_{j}\right.}\right)(\underline{Y}) \mid \Sigma_{0}\right]=\left(\left\{P_{Z^{\prime}}\right\}_{. j}\right)^{\prime}\left\{P_{Z^{\prime}}\right\}_{. j}\left(X^{\prime} \Sigma_{0}^{-1} X\right)^{-1}=\left\{P_{Z^{\prime}}\right\}_{j, j}\left(X^{\prime} \Sigma_{0}^{-1} X\right)^{-1}$, since the matrix $P_{Z^{\prime}}$ is symmetric and idempotent.

Corollary 4.6. The estimator of B from Lemma 4.3 is identical with the ϑ_{0} LBLUE of B based on $\hat{\beta}\left(t_{1}, Y_{1}\right), \ldots, \hat{\beta}\left(t_{m}, Y_{m}\right)$ in the model

$$
\left[\left(\begin{array}{c}
\hat{\beta}\left(t_{1}, Y_{1}\right) \\
\vdots \\
\hat{\beta}\left(t_{m}, Y_{m}\right)
\end{array}\right),\left(\begin{array}{c}
B \phi\left(t_{1}\right) \\
\vdots \\
B \phi\left(t_{m}\right)
\end{array}\right), I \otimes\left(X^{\prime} \Sigma_{0}^{-1} X\right)^{-1}\right]
$$

where $\hat{\beta}\left(t_{j}, Y_{j}\right)=\left(X^{\prime} \Sigma_{0}^{-1} X\right)^{-1} X^{\prime} \Sigma_{0}^{-1} Y_{j}$ and B is the $k \times n$ matrix of unknown parameters.

Proof. As

$$
\left(\begin{array}{c}
B \phi\left(t_{1}\right) \\
\vdots \\
B \phi\left(t_{m}\right)
\end{array}\right)=\left(Z^{\prime} \otimes I_{(k, k)}\right) \operatorname{vec}(B)
$$

Lemma 2.3 implies

$$
\begin{aligned}
& \widehat{\operatorname{vec}(B)}= \\
& =\left\{(Z \otimes I)\left[I \otimes\left(X^{\prime} \Sigma_{0}^{-1} X\right]\left(Z^{\prime} \otimes I\right)\right\}^{-1}(Z \otimes I)\left[I \otimes\left(X^{\prime} \Sigma_{0}^{-1} X\right)\right]\left(\begin{array}{c}
\hat{\beta}\left(t_{1}, Y_{1}\right) \\
\vdots \\
\hat{\beta}\left(t_{m}, Y_{m}\right)
\end{array}\right)\right. \\
& =\left[\left(Z Z^{\prime}\right)^{-1} Z \otimes I\right]\left(\begin{array}{c}
\hat{\beta}\left(t_{1}, Y_{1}\right) \\
\vdots \\
\hat{\beta}\left(t_{m}, Y_{m}\right)
\end{array}\right)=\operatorname{vec}\left\{\left[\hat{\beta}\left(t_{1}, Y_{1}\right), \ldots, \hat{\beta}\left(t_{m}, Y_{m}\right)\right] Z^{\prime}\left(Z Z^{\prime}\right)^{-1}\right\} \\
& =\operatorname{vec}\left[\left(X^{\prime} \Sigma_{0}^{-1} X\right)^{-1} X^{\prime} \Sigma_{0}^{-1} \underline{Y} Z^{\prime}\left(Z Z^{\prime}\right)^{-1}\right] .
\end{aligned}
$$

Remark 4.7. Corollary 4.6 is of great practical importance. During the deformation measurements we sequentially obtain the estimates

$$
\hat{\beta}\left(t_{1}, y_{1}\right), \hat{\beta}\left(t_{2}, y_{2}\right), \ldots
$$

After several epochs we are able to recognize the law of the deformations, over time, i.e., the proper combinations of functions $\phi_{0}(\cdot), \phi_{1}(\cdot), \ldots$ In accordance with Corollary 4.6 , the matrix B of the coefficients can be obtained directly from $\hat{\beta}\left(t_{1}, y_{1}\right), \ldots, \hat{\beta}\left(t_{m}, y_{m}\right)$.

Remark 4.8. The matrix Z can be expressed as follows

$$
Z=\left(\begin{array}{ccc}
\phi_{0}\left(t_{1}\right), & \ldots, & \phi_{0}\left(t_{m}\right) \\
\ldots \ldots \ldots \ldots \ldots \\
\phi_{s-1}\left(t_{1}\right), & \ldots, & \phi_{s-1}\left(t_{m}\right)
\end{array}\right)=\left(\Phi\left(t_{1}\right), \ldots, \Phi\left(t_{m}\right)\right)=\left(\begin{array}{c}
\Phi_{0}^{\prime} \\
\Phi_{1}^{\prime} \\
\vdots \\
\Phi_{s-1}^{\prime}
\end{array}\right)
$$

Thus

$$
Z Z^{\prime}=\left(\begin{array}{ll}
\Phi_{0}^{\prime} \Phi_{0}, & \Phi_{0}^{\prime} G \\
G^{\prime} \Phi_{0}, & G^{\prime} G
\end{array}\right), \text { where } G=\left(\Phi_{1}, \ldots, \Phi_{s-1}\right)
$$

and

$$
\begin{aligned}
\left\{\left(Z Z^{\prime}\right)^{-1}\right\}_{1,1} & =\left[\Phi_{0}^{\prime} \Phi_{0}-\Phi_{0}^{\prime} G\left(G^{\prime} G\right)^{-1} G^{\prime} \Phi_{0}\right]^{-1} \\
& =\frac{1}{\Phi_{0}^{\prime} \Phi_{0}}+\frac{1}{\Phi_{0}^{\prime} \Phi_{0}} \Phi_{0}^{\prime} G\left(G^{\prime} G-G^{\prime} \Phi_{0} \frac{1}{\Phi_{0}^{\prime} \Phi_{0}} \Phi_{0}^{\prime} G\right)^{-1} G^{\prime} \Phi_{0} \frac{1}{\Phi_{0}^{\prime} \Phi_{0}}
\end{aligned}
$$

Regarding (ii) from Theorem 4.5, we have

$$
\left.\left.\operatorname{Var}\left[\widehat{B \Phi\left(t_{1}\right)}(\underline{Y}) \mid \Sigma_{0}\right]=\Phi^{\prime}\left(t_{1}\right)\left(\begin{array}{ll}
\Phi_{0}^{\prime} \Phi_{0}, & \Phi_{0}^{\prime} G \\
G^{\prime} \Phi_{0}, & G^{\prime} G
\end{array}\right)^{-1} \Phi\left(t_{1}\right) \operatorname{Var}\left[\widehat{B \Phi\left(t_{1}\right.}\right)\left(Y_{1}\right) \right\rvert\, \Sigma_{0}\right]
$$

As

$$
\Phi^{\prime}\left(t_{1}\right)\left(\begin{array}{ll}
\Phi_{0}^{\prime} \Phi_{0}, & \Phi_{0}^{\prime} G \\
G^{\prime} \Phi_{0}, & G^{\prime} G
\end{array}\right)^{-1} \Phi\left(t_{1}\right)=\left\{P_{Z^{\prime}}\right\}_{1,1}
$$

and $P_{Z^{\prime}}$ is the projection matrix, it is clear that $\left\{P_{Z^{\prime}}\right\}_{1,1} \leq 1$.
Special cases: If $\Phi_{0}, \Phi_{1}, \ldots, \Phi_{s-1}$ is derived for the system of orthogonal Chebyshev polynomials on the set $\left\{t_{1}, \ldots, t_{m}\right\}$, i.e.,

$$
Z Z^{\prime}=\left(\begin{array}{cccc}
\Phi_{0}^{\prime} \Phi_{0}, & 0, & \ldots, & 0 \\
0, & \Phi_{1}^{\prime} \Phi_{1}, & , \ldots, & 0 \\
\ldots \ldots \ldots & \ldots \ldots & \ldots \ldots \ldots \ldots \\
0, & 0, & \ldots, & \Phi_{s-1}^{\prime} \Phi_{s-1}
\end{array}\right)
$$

then

$$
\left\{P_{Z^{\prime}}\right\}_{1,1}=\sum_{i=1}^{s-1} \frac{\phi_{i}^{2}\left(t_{1}\right)}{\Phi_{i}^{\prime} \Phi_{i}}
$$

If $\phi_{0}\left(t_{i}\right)=1, i=1, \ldots, n, \Phi\left(t_{1}\right)=e_{1}^{(s)}=(1,0, \ldots, 0)^{\prime} \in R^{s}$ (in this case the functions $\phi_{0}(\cdot), \ldots, \phi_{s-1}(\cdot)$ are not necesarily orthogonal on the set $\left\{t_{1}, \ldots, t_{m}\right\}$),

$$
\left\{Z^{\prime}\left(Z Z^{\prime}\right)^{-1} Z\right\}_{1,1}=\frac{1}{m-\mathbf{1}^{\prime} P_{H} \mathbf{1}}
$$

where

$$
\binom{\left(0_{s-1,1}\right)^{\prime}}{H}=\left(\Phi_{1}, \ldots, \Phi_{s-1}\right), \quad P_{H}=H\left(H^{\prime} H\right)^{-1} H^{\prime}
$$

The last statement is a consequence of the fact that

$$
Z_{(s, m)}=\left(\begin{array}{cc}
1, & \mathbf{1}^{\prime} \\
0_{(s-1,1)}, & H_{(s-1, m-1)}^{\prime}
\end{array}\right)
$$

which implies

$$
\begin{aligned}
\left\{Z^{\prime}\left(Z Z^{\prime}\right)^{-1} Z\right\}_{1,1} & =\left\{\left(\begin{array}{cc}
1, & 0^{\prime} \\
\mathbf{1}, & H
\end{array}\right)\left(\begin{array}{cc}
m, & \mathbf{1}^{\prime} H \\
H^{\prime} \mathbf{1}, & H^{\prime} H
\end{array}\right)^{-1}\left(\begin{array}{cc}
1, & \mathbf{1}^{\prime} \\
0, & H^{\prime}
\end{array}\right)\right\}_{1,1} \\
& =\left[m-\mathbf{1}^{\prime} H\left(H^{\prime} H\right)^{-1} H^{\prime} \mathbf{1}\right]^{-1}
\end{aligned}
$$

The number $\left\{Z^{\prime}\left(Z Z^{\prime}\right)^{-1} Z\right\}_{1,1}$ is important, since we want to know how the accuracy in the estimation of the starting value $\beta\left(t_{1}\right)$ increases after m epochs.

If $\phi_{0}(\cdot) \equiv 1, \phi_{1}(t)=\left(t-t_{1}\right), \phi_{2}(t)=\left(t-t_{1}\right)^{2}, t_{i}=t_{1}+i, i=0, \ldots, 4$, then $\left\{Z^{\prime}\left(Z Z^{\prime}\right)^{-1} Z\right\}_{1,1}=0.813$, what means a not negligible decrease of variances of the estimator.

Remark 4.9. The consideration in Remark 4.8 on the value $\left\{Z^{\prime}\left(Z Z^{\prime}\right)^{-1} Z\right\}_{1,1}$ is justified and has a reasonable meaning if the functions $\phi_{0}(\cdot), \ldots, \phi_{s-1}(\cdot)$, are chosen adequately. To verify the proper choice of these functions the following procedure can be used.

Let $\left\{T \beta\left(t_{1}\right), \ldots, T \beta\left(t_{m}\right)\right\}$ be any trajectory important from the viewpoint of a static expert. Here T is a $q \times k$ matrix with $\operatorname{rank} r(T)=q \leq k$. This trajectory expresses a law of the deformation over time for which the functions $\phi_{0}(\cdot), \ldots, \phi_{s-1}(\cdot)$ must be chosen properly. If the choice is correct, then the trajectory is $\left\{T B \Phi\left(t_{1}\right), \ldots, T B \Phi\left(t_{m}\right)\right\}$.

If $\operatorname{vec}(\underline{Y})$ is normally distributed and its actual covariance matrix is $I \otimes \Sigma_{0}$, then

$$
v=\left(\begin{array}{c}
\hat{\beta}\left(t_{1}, Y_{1}\right) \\
\vdots \\
\hat{\beta}\left(t_{m}, Y_{m}\right)
\end{array}\right)-\left(\begin{array}{c}
\hat{B}(\underline{Y}) \Phi\left(t_{1}\right) \\
\vdots \\
\hat{B}(\underline{Y}) \Phi\left(t_{m}\right)
\end{array}\right) \sim N_{m k}\left(0, M_{Z^{\prime}} \otimes\left(X^{\prime} \Sigma_{0}^{-1} X\right)^{-1}\right)
$$

and $(I \otimes T) v \sim N_{m q}\left(0, M_{Z^{\prime}} \otimes T\left(X^{\prime} \Sigma_{0}^{-1} X\right)^{-1} T^{\prime}\right)$ where $M_{Z^{\prime}}=I_{(m, m)}-P_{Z^{\prime}}$ has rank $r\left(M_{Z^{\prime}}\right)=m-s$.

Therefore the random variable

$$
\begin{aligned}
\sum_{i=1}^{m} \sum_{j=1}^{m}\left\{M_{Z^{\prime}}\right\}_{i, j} & {\left[\hat{\beta}\left(t_{i}, Y_{i}\right)-\hat{B} \Phi\left(t_{i}\right)\right]^{\prime} T^{\prime} } \\
\cdot & {\left[T\left(X^{\prime} \Sigma_{0}^{-1} X\right)^{-1} T^{\prime}\right]^{-1} T\left[\hat{\beta}\left(t_{j}, Y_{j}\right)-\hat{B} \Phi\left(t_{j}\right)\right] }
\end{aligned}
$$

has the central chi-square distribution with $(m-s) q$ degrees of freedom and it can be used as a test statistic for the null hypothesis that the trajectory is properly characterized by $\left\{T B \Phi\left(t_{1}\right), \ldots, T B \Phi\left(t_{m}\right)\right\}$. This procedure is to be used for each trajectory important for the statics expert; simultaneously the Bonferroni correction (cf. e.g. [Hu, p. 492]) for the significance level must be taken into account (if f trajectories are taken into account simultaneously, then instead the value α of the significance level the value α / f must be used).

Theorem 4.10. Let \underline{Y} in the model (4.1) be normally distributed and the actual covariance matrix be Σ_{0}; let $L_{(q, k)}$ be any $q \times k$ matrix with the rank $r(L)=q \leq k$ and $R_{(s, r)}$ be any $s \times r$ matrix with the rank $r(R)=r \leq s$. If $L B R+H=0$, then

$$
(L \hat{B} R+H)\left[R^{\prime}\left(Z Z^{\prime}\right)^{-1} R\right]^{-1}(L \hat{B} R+H)^{\prime} \sim W_{q}\left[r, L\left(X^{\prime} \Sigma_{0}^{-1} X\right)^{-1} L^{\prime}\right]
$$

(the central Wishart distribution with r degrees of freedom and with the covariance matrix $\left.L\left(X^{\prime} \Sigma_{0}^{-1} X\right)^{-1} L^{\prime}\right)$.

Proof. It is necessary and sufficient to show that
$\forall\left\{u \in R^{q}\right\} u^{\prime}(L \hat{B} R+H)\left[R^{\prime}\left(Z Z^{\prime}\right)^{-1} R\right]^{-1}(L \hat{B} R+H)^{\prime} u \sim u^{\prime} L\left(X^{\prime} \Sigma_{0}^{-1} X\right)^{-1} L^{\prime} u \chi_{r}^{2}$,
where χ_{r}^{2} is the central chi-square distributed random variable with r degrees of freedom.

As

$$
R^{\prime} \hat{B}^{\prime} L^{\prime} u \sim N_{r}\left[-H^{\prime} u,\left(u^{\prime} L\left(X^{\prime} \Sigma_{0}^{-1} X\right)^{-1} L^{\prime} u\right) R^{\prime}\left(Z Z^{\prime}\right)^{-1} R\right]
$$

and, with respect to our assumptions, $R^{\prime}\left(Z Z^{\prime}\right)^{-1} R$ is regular and

$$
u \neq 0 \Rightarrow u^{\prime} L\left(X^{\prime} \Sigma_{0}^{-1} X\right)^{-1} L^{\prime} u>0
$$

the statement follows from [R1, p. 535]; see also [Ko2].
Remark 4.11. The Wishart matrix from Theorem 4.10 can be used for testing a null-hypothesis in several ways; cf. [R1, p. 547]. One of them is given in the following corollary.

Corollary 4.12. If $U \sim W_{q}(r, \Psi)$, where Ψ is p.d., then $\operatorname{tr}\left(\Psi^{-1} U\right) \sim \chi_{q r}^{2}$; the random variable

$$
\operatorname{tr}\left\{(L \hat{B} R+H)^{\prime}\left[L\left(X^{\prime} \Sigma_{0}^{-1} X\right)^{-1} L^{\prime}\right]^{-1}(L \hat{B} R+H)\left[R^{\prime}\left(Z Z^{\prime}\right)^{-1} R\right]^{-1}\right\}
$$

is distributed as $\chi_{q r}^{2}$, which can be used for testing the above null-hypothesis.
This test is also a direct consequence of Lemmas 2.5 and 4.3.
If the matrix $\Sigma(\vartheta)=\sum_{i=1}^{p} \vartheta_{i} V_{i}$ in the model (4.1) is not known, the following theorem can be used (cf. also [Z]).

Theorem 4.13. Let in (4.1) $r(X)=k$ and $r(Z)=s$. Then
(i) a function $g(\vartheta)=g^{\prime} \vartheta, \vartheta \in \underline{\vartheta}$, can be estimated by the $\vartheta_{0}-M I N Q U E$ iff

$$
g \in \mathcal{M}\left(C^{(I)}\right)
$$

where

$$
\left\{C^{(I)}\right\}_{i, j}=(m-s) \operatorname{tr}\left(V_{i} V_{j}\right)+s \operatorname{tr}\left(M_{X} V_{i} M_{X} V_{j}\right), i, j=1, \ldots, p
$$

(ii) if $g \in \mathcal{M}\left(C^{(I)}\right)$, then the ϑ_{0}-MINQUE of the function $g(\cdot)$ is

$$
\begin{aligned}
\widehat{g^{\prime} \vartheta}= & \sum_{i=1}^{p} \lambda_{i}\left\{\operatorname{tr}\left(\underline{Y}^{\prime} \Sigma_{0}^{-1} V_{i} \Sigma_{0}^{-1} \underline{Y} M_{Z^{\prime}}\right)\right. \\
& \left.+\operatorname{tr}\left[\underline{Y^{\prime}}\left(M_{X} \Sigma_{0} M_{X}\right)^{+} V_{i}\left(M_{X} \Sigma_{0} M_{X}\right)^{+} \underline{Y} P_{Z^{\prime}}\right]\right\}
\end{aligned}
$$

where $\lambda=\left(\lambda_{1}^{\prime}, \ldots, \lambda_{p}\right)^{\prime}$ is a solution of the equation

$$
\left[(m-s) S_{\Sigma_{0}^{-1}}+s S_{\left(M_{X} \Sigma_{0} M_{X}\right)^{+}}\right] \lambda=g
$$

Proof. With respect to Lemma 2.4,

$$
\left\{C^{(I)}\right\}_{i, j}=\operatorname{tr}\left(M_{\underline{X}} \underline{V}_{i} M_{\underline{X}} \underline{V}_{j}\right), i, j=1, \ldots, p
$$

where

$$
\underline{X}=Z^{\prime} \otimes X \quad \text { and } \quad \underline{V}_{i}=I \otimes V_{i}
$$

Thus

$$
\begin{aligned}
M_{\underline{X}} & =I_{(m, m)} \otimes I_{(n, n)}-\left(Z^{\prime} \otimes X\right)\left[\left(Z \otimes X^{\prime}\right)\left(Z^{\prime} \otimes X\right)\right]^{-1}\left(Z \otimes X^{\prime}\right) \\
& =M_{Z^{\prime}} \otimes I+P_{Z^{\prime}} \otimes M_{X}
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{tr}\left(M_{\underline{X}} \underline{V}_{i} M_{\underline{X}} \underline{V}_{j}\right) & =\operatorname{tr}\left[M_{Z^{\prime}} \otimes\left(V_{i} V_{j}\right)\right]+\operatorname{tr}\left[P_{Z^{\prime}} \otimes\left(M_{X} V_{i} M_{X} V_{j}\right)\right] \\
& =(m-s) \operatorname{tr}\left(V_{i} V_{j}\right)+s \operatorname{tr}\left(M_{X} V_{i} M_{X} V_{j}\right)
\end{aligned}
$$

Further

$$
\begin{aligned}
\left(M_{\underline{X}} \underline{\Sigma}_{0} M_{\underline{X}}\right)^{+}= & I \otimes \Sigma_{0}^{-1}-\left(I \otimes \Sigma_{0}^{-1}\right)\left(Z^{\prime} \otimes X\right) \\
& \left.\cdot\left[\left(Z \otimes X^{\prime}\right)\left(I \otimes \Sigma_{0}^{-1}\right) Z^{\prime} \otimes X\right)\right]^{-1}\left(Z \otimes X^{\prime}\right)\left(I \otimes \Sigma_{0}^{-1}\right) \\
= & M_{Z^{\prime}} \otimes \Sigma_{0}^{-1}+P_{Z^{\prime}} \otimes\left(M_{X} \Sigma_{0} M_{X}\right)^{+}
\end{aligned}
$$

and

$$
\begin{aligned}
& \operatorname{tr} {\left[\left(M_{\underline{X}} \underline{\Sigma}_{0} M_{\underline{X}}\right)^{+} \underline{V}_{i}\left(M_{\underline{X}} \underline{\Sigma}_{0} M_{\underline{X}}\right)^{+} \underline{V}_{j}\right]=} \\
& \quad=\operatorname{tr}\left\{M_{Z^{\prime}} \otimes\left(\Sigma_{0}^{-1} V_{i} \Sigma_{0}^{-1} V_{j}\right)+P_{Z^{\prime}} \otimes\left[\left(M_{X} \Sigma_{0} M_{X}\right)^{+} V_{i}\left(M_{X} \Sigma_{0} M_{X}\right)^{+} V_{j}\right]\right\} \\
& \quad=(m-s) \operatorname{tr}\left(\Sigma_{0}^{-1} V_{i} \Sigma_{0}^{-1} V_{j}\right)+s \operatorname{tr}\left[\left(M_{X} \Sigma_{0} M_{X}\right)^{+} V_{i}\left(M_{X} \Sigma_{0} M_{X}\right)^{+} V_{j}\right] .
\end{aligned}
$$

Using the fact that

$$
\begin{aligned}
& {[\operatorname{vec}(\underline{Y})]^{\prime}\left(M_{X} \underline{\Sigma_{0}} M_{\underline{X}}\right)^{+} \underline{V_{i}}\left(M_{X} \underline{\Sigma}_{0} M_{\underline{X}}\right)^{+} \operatorname{vec}(\underline{Y})=} \\
&= {[\operatorname{vec}(\underline{Y})]^{\prime}\left\{M_{Z^{\prime}} \otimes \Sigma_{0}^{-1} V_{i} \Sigma_{0}^{-1}+P_{Z^{\prime}} \otimes\left[\left(M_{X} \Sigma_{0} M_{X}\right)^{+}\right.\right.} \\
&\left.\left.\cdot V_{i}\left(M_{X} \Sigma_{0} M_{X}\right)^{+}\right]\right\} \operatorname{vec}(\underline{Y}) \\
&= \operatorname{tr}\left(\underline{Y^{\prime}} \Sigma_{0}^{-1} V_{i} \Sigma_{0}^{-1} \underline{Y} M_{Z^{\prime}}\right)+\operatorname{tr}\left[\underline{Y^{\prime}}\left(M_{X} \Sigma_{0} M_{X}\right)^{+} V_{i}\left(M_{X} \Sigma_{0} M_{X}\right)^{+} \underline{Y} P_{Z^{\prime}}\right]
\end{aligned}
$$

the proof can easily be finished.
Remark 4.14. Let $s=m$ and $Z=I$, i.e., the model $\left(\underline{Y}, X B, I \otimes \Sigma_{0}\right)$ from the beginning of this section. In this case $C^{(I)}=s S_{M_{X}}$. If V_{1}, \ldots, V_{p} are linearly independent (i.e., the matrix Σ is properly parametrized) the matrix $S_{M_{X}}$ need not be regular. However the matrix $(m-s) S_{I}+s S_{M_{X}}$ is regular, since S_{I} is p.d. This fact must be respected in preparing the design of the deformation measurements.

Remark 4.15. Analogously as in Section 3 the estimator of ϑ can be based also either on the terms

$$
\operatorname{tr}\left(\underline{Y}^{\prime} \Sigma_{0}^{-1} V_{i} \Sigma_{0}^{-1} \underline{Y} M_{Z^{\prime}}\right), i=1, \ldots, p
$$

or on the terms

$$
\operatorname{tr}\left(\underline{Y}^{\prime}\left(M_{X} \Sigma_{0} M_{X}\right)^{+} V_{i}\left(M_{X} \Sigma_{0} M_{X}\right)^{+} \underline{Y} P_{Z^{\prime}}\right), i=1, \ldots, p
$$

Let us compare the efficiency of such estimators for m increasing at least in the case of normality. For the sake of simplicity let $S_{\left(M_{x} \Sigma_{0} M_{x}\right)+}$ be p.d. The estimator of ϑ based on $\operatorname{tr}\left(\underline{Y}^{\prime} \Sigma_{0}^{-1} V_{i} \Sigma_{0}^{-1} \underline{Y} M_{Z^{\prime}}\right)$ is denoted as $\hat{\vartheta}_{1}$, the other as $\hat{\vartheta}_{2}$.

Since

$$
E\left[\operatorname{tr}\left(\underline{Y}^{\prime} \Sigma_{0}^{-1} V_{i} \Sigma_{0}^{-1} \underline{Y} M_{Z^{\prime}}\right) \mid \Sigma=\sum_{i=1}^{p} \vartheta_{i} V_{i}\right]=(m-s)\left\{S_{\Sigma_{0}^{-1}}\right\}_{i .} \vartheta, \vartheta \in \underline{\vartheta}
$$

the former is

$$
\hat{\vartheta}_{1}=\frac{1}{m-s} S_{\Sigma_{0}^{-1}}^{-1}\left(\begin{array}{c}
\operatorname{tr}\left[\underline{Y}^{\prime} \Sigma_{0}^{-1} V_{1} \Sigma_{0}^{-1} \underline{Y} M_{Z^{\prime}}\right) \\
\vdots \\
\operatorname{tr}\left[\underline{Y}^{\prime} \Sigma_{0}^{-1} V_{p} \Sigma_{0}^{-1} \underline{Y} M_{Z^{\prime}}\right)
\end{array}\right)
$$

and in the case of normality of the observation matrix \underline{Y}

$$
\begin{aligned}
\operatorname{cov} & {\left[\operatorname{tr}\left(\underline{Y}^{\prime} \Sigma_{0}^{-1} V_{i} \Sigma_{0}^{-1} \underline{Y} M_{Z^{\prime}}\right), \operatorname{tr}\left[\underline{Y}^{\prime} \Sigma_{0}^{-1} V_{j} \Sigma_{0}^{-1} \underline{Y} M_{Z^{\prime}}\right) \mid \Sigma_{0}\right]=} \\
& =2 \operatorname{tr}\left\{\left(I \otimes \Sigma_{0}\right)\left[M_{Z^{\prime}} \otimes\left(\Sigma_{0}^{-1} V_{i} \Sigma_{0}^{-1}\right)\right]\left(I \otimes \Sigma_{0}\right)\left[M_{Z^{\prime}} \otimes\left(\Sigma_{0}^{-1} V_{j} \Sigma_{0}^{-1}\right)\right]\right\} \\
& =2(m-s)\left\{S_{\Sigma_{0}^{-1}}\right\}_{i, j}
\end{aligned}
$$

Thus

$$
\operatorname{Var}\left(\hat{\vartheta}_{1} \mid \Sigma_{0}\right)=\frac{2}{m-s} S_{\Sigma_{0}^{-1}}^{-1}
$$

Analogously we obtain

$$
\begin{aligned}
\hat{\vartheta}_{2} & =\frac{1}{s} S_{\left(M_{X} \Sigma_{0} M_{X}\right)^{+}}^{-1}\left(\begin{array}{c}
\operatorname{tr}\left[\underline{Y^{\prime}}\left(M_{X} \Sigma_{0} M_{X}\right)^{+} V_{1}\left(M_{X} \Sigma_{0} M_{X}\right)^{+} \underline{Y} P_{Z^{\prime}}\right] \\
\vdots \\
\operatorname{tr}\left[\underline{Y^{\prime}}\left(M_{X} \Sigma_{0} M_{X}\right)^{+} V_{p}\left(M_{X} \Sigma_{0} M_{X}\right)^{+} \underline{Y} P_{Z^{\prime}}\right]
\end{array}\right) \\
\operatorname{Var}\left(\hat{\vartheta}_{2} \mid \Sigma_{0}\right) & =\frac{2}{s} S_{\left(M_{X} \Sigma_{0} M_{X}\right)^{+}}^{-1}
\end{aligned}
$$

(realize that it is independent of m).
The estimator $\hat{\vartheta}$ from Theorem 4.13 is

$$
\hat{\vartheta}=\left[(m-s) S_{\Sigma_{0}^{-1}}+s S_{\left(M_{X} \Sigma_{0} M_{X}\right)^{+}}\right]^{-1} \hat{\gamma}
$$

where $\hat{\gamma}=\left(\hat{\gamma}_{1}, \ldots, \hat{\gamma}_{p}\right)^{\prime}$,

$$
\hat{\gamma}_{i}=\operatorname{tr}\left(\underline{Y}^{\prime} \Sigma_{0}^{-1} V_{i} \Sigma_{0}^{-1} \underline{Y} M_{Z^{\prime}}\right)+\operatorname{tr}\left[\underline{Y}^{\prime}\left(M_{X} \Sigma_{0} M_{X}\right)^{+} V_{i}\left(M_{X} \Sigma_{0} M_{X}\right)^{+} \underline{Y} P_{Z^{\prime}}\right]
$$

$i=1, \ldots, p$, and

$$
\operatorname{Var}\left(\hat{\vartheta} \mid \Sigma_{0}\right)=2\left[(m-s) S_{\Sigma_{0}^{-1}}+s S_{\left(M_{X} \Sigma_{0} M_{X}\right)^{+}}\right]^{-1}
$$

Therefore

$$
\lim _{m \rightarrow \infty} \operatorname{Var}\left(\hat{\vartheta}_{1} \mid \Sigma_{0}\right)\left[\operatorname{Var}\left(\hat{\vartheta} \mid \Sigma_{0}\right)\right]^{-1}=I_{(p, p)}
$$

and

$$
\lim _{m \rightarrow \infty} \operatorname{Var}\left(\hat{\vartheta}_{1} \mid \Sigma_{0}\right)\left[\operatorname{Var}\left(\hat{\vartheta}_{2} \mid \Sigma_{0}\right)\right]^{-1}=0
$$

Obviously

$$
\operatorname{Var}\left(\hat{\vartheta} \mid \Sigma_{0}\right) \leq \operatorname{Var}\left(\hat{\vartheta}_{1} \mid \Sigma_{0}\right)
$$

and

$$
\operatorname{Var}\left(\hat{\vartheta} \mid \Sigma_{0}\right) \leq \operatorname{Var}\left(\hat{\vartheta}_{2} \mid \Sigma_{0}\right)
$$

Concluding remark. It is to be said that there are numerous models of deformation measurements which are either not yet investigated or investigations of them are in "statu nascendi" only. Because of their practical importance it is desirable to attract the interest of mathematicians to this class of problems.

Acknowledgements. The author would like to express his deepest gratitude to the reviewer not only for the thorough reading the manuscript and correcting a great number of typist's errors and mistakes but also for drawing the author's attention to papers which were not known to him in the time of the preparation of the manuscript.

References

[Hu] Humak K. M. S., Statistische Methoden der Modellbildung, Akademie-Verlag, Berlin, 1977.
[Kl] Kleffe J., On C. R. Rao's MINQUE for replicated and multivariate observations, Proc. of the 6th Int. Conf. on Math Statistics (Wisla), Springer Lect, Notes Statist 2, 1980, pp. 188-200.
[Ko1] Koch K. R. and Fritsch D., Multivariate hypothesis tests for detecting recent crustal movements, Tectonophysics 71 (1981), 301-313.
[Ko2] Koch K. R., Estimation Theory and Hypothesis Testing in Linear Models, Springer, New York-Berlin-Heidelberg, 1988.
[K1] Kubáček L. and Kubáčková L., Statistical aspects of eliminating systematic effects, Studia geoph. et geod. 30 (1986), 1-12.
[K2] Kubáček L., Foundations of Estimation Theory, Elsevier, Amsterdam-OxfordNew York-Tokyo, 1988.
[K3] , Estimation of the first and second order parameters in regression models with special structure, Journal of Statistical Planning and Inference 30 (1992), 195-211.
[K4] Kubáček L. and Kubáčková L., A statistical approach to studying recent movements, Contr. Geoph. Inst. SAS 22 (1992), 7-20.
[Ká1] Kubáčková L., Kubáček L. and Kukuča J., Probability and Statistics in Geodesy and Geophysics, Elsevier, Amsterdam-Oxford-New York-Tokyo, 1987.
[Ká2] Kubáčková L., The locally best estimators of the first and second order parameters in epoch regression models, Applications of Mathematics 37 (1992), 1-12.
[Ká3] Kubáčková L. and Kubáček L., A growth curve model with a priori unknown variance components in geodetical networks, submitted to Manuscripta Geodaetica.
[Ká4] _, A group of gravimeters - statistical problems and their solution, Proceedings of the 7th International Symposium Geodesy and Physics of the Earth, (Eds. H. Montag and Ch. Reigber), IAG - Symposium No. 112, Potsdam 1992, p. 275-278.
[P] Potthoff R. F. and Roy S. N., A generalized multivariate analysis of variance model useful especially for growth curve problems, Biometrika 51 (1964), 313-326.
[R1] Rao C. R., Linear Statistical Inference and Its Applications, second edition, J. Wiley, New York, 1973.
[R2] Rao C. R. and Mitra S. K., Generalized Inverse of Matrices and Its Applications, J. Wiley, New York, 1971.
[R3] Rao C. R. and Kleffe J., Estimation of Variance Components and Applications, North Holland, Amsterdam-Oxford-New York-Tokyo, 1988.
[Sch1] Schaffrin B., Best invariant covariance component estimation and its application to the generalized multivariate adjustment of heterogeneous deformation observations, Bull. Geodés. 55 (1981), 73-85.
[Sch2] , Variance covariance component estimation for the adjustment of heterogeneous replicated measurements, Publ of the German Geodetic Comm., Serie C 282, Munich (1983). (in German)
[Se1] Searle S. R., A univariate formulation of the multivariate model., Contribution to Survey Sampling and Applied Statistics (N. A. David, ed.), New York-San Francisco-London, 1978, pp. 181-189.
[Se2] , Variance Components, J. Wiley, New York, 1992.
[S] Srivastava M. S. and Khatri C. G., An Introduction to Multivariate Statistics, North Holland, Amsterdam-New York, 1979.
[W] Wimmer G., Linear model with variance depending on the mean value, Math. Slovaca 42 (1992), 223-238.
[Z] Žežula I., Covariance components estimation in the growth curve model, Statistics 24 (1993), 321-330.
L. Kubáček, Mathematical Institute, Slovak Academy of Sciences, 81473 Bratislava, Slovak Republic

[^0]: Received July 9, 1992; revised December 6, 1993.
 1980 Mathematics Subject Classification (1991 Revision). Primary 62J05.
 Supported by the grant No 366 of the Slovak Academy of Sciences.

