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NON–ARCHIMEDEAN SEQUENTIAL SPACES AND

THE FINEST LOCALLY CONVEX TOPOLOGY

WITH THE SAME COMPACTOID SETS

A. K. KATSARAS, C. PETALAS and T. VIDALIS

Abstract. For a non-Archimedean locally convex space (E, τ), the finest locally
convex topology having the same as τ convergent sequences and the finest locally
convex topology having the same as τ compactoid sets are studied.

Introduction

For a locally convex space E over the field of either the real numbers or the

complex numbers, Webb investigated in [13] the finest locally convex topology on

E having the same convergent sequences as the original topology. Also, he studied

the finest locally convex topology which has the same precompact sets.

In this paper we look at analogous problems for non-Archimedean spaces. For

a non-Archimedean locally convex space (E, τ), we study the sequential locally

convex topology τs which is the finest locally convex topology with the same as

τ convergent sequences. Passing from τ to τs, we get that the category of non-

Archimedean sequential locally convex spaces and continuous linear maps is a full

coreflective subcategory of the category of all locally convex spaces. If τ is the

weak topology of c0, then τs coincides with the norm topology of c0 which of course

is not true in the classical case. For a zero dimensional topological space X and a

non-Archimedean locally convex space E, we look at the problem of when is the

space C(X,E), of all continuous E-valued functions on X, with the topology of

either the pointwise convergence or the compact convergence, a sequential space.

In case E is metrizable, it is shown that C(X,E) is sequential iff it is bornological

and this happens iff X is N-replete, where N is the set of natural numbers.

For a non-Archimedean locally convex topology τ on E, we study the locally

convex topology τc which coincides with the finest locally convex topology with

the same as τ compactoid sets. The compactoid sets in non-Archimedean spaces

are much more important than the precompact sets. As in the case of τs, we

get that the category of all non-Archimedean locally convex spaces (E, τ) and

continuous linear maps, for which τ = τc, is a full coreflective subcategory of the
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category of all locally convex spaces. If τ is the weak topology of `∞ and if the field

is non-spherically complete, it is shown that τs coincides with the finest locally

convex topology which agrees with τ on norm bounded sets and with the finest

polar topology having the same as τ compactoid sets.

1. Preliminaries

All vector spaces considered in this paper will be over a complete non-Archime-

dean valued field K whose valuation is non-trivial.

For a subset S of a vector space E overK, we will denote by co (S) the absolutely

convex hull of S. The edged hull Ae, of an absolutely convex subset A of E, is

defined by: Ae = A if the valuation of K is discrete, and Ae = ∩{λA : |λ| > 1} if

the valuation of K is dense (see [9]).

A subset B, of a locally convex space E over K, is called compactoid if, for each

neighborhood V of zero, there exists a finite subset S of E such thatB ⊂ co (S)+V .

For a non-Archimedean seminorm p on E, we will denote by Ep the quotient space

E/ker p equipped with the norm ||[x]p|| = p(x), where ker p = {x : p(x) = 0}. By

Êp we will denote the completion of Ep.

A seminorm p on E is called polar if p = sup{|f | : f ∈ E∗, |f | ≤ p}, where E∗

is the algebraic dual space of E. The locally convex space E is called polar if its

topology is generated by a family of polar seminorms (see [9]).

Equivalently, E is a polar space if it has a base at zero consisting of polar sets, i.e.

sets V with V = V 00, where V 00 is the bipolar of V . For other notions refering to

non-Archimedean locally convex spaces and for related results we refer to [9].

2. Sequential Spaces

Definition 2.1. A subset V , of a locally convex space E, is called a sequential

neighborhood of zero if every null sequence in E lies eventually in V . The spaceE is

called sequential if every convex sequential neighborhood of zero is a neighborhood

of zero.

We have the following easily established

Lemma 2.2. Let V be an absolutely convex absorbing subset of a locally convex

space E. Then, V is a sequential neighborhood of zero iff its Minkowski functional

pV is sequentially continuous.

Proposition 2.3. For a locally convex space E, the following are equivalent:

(1) E is a sequential space.

(2) Every sequentially continuous seminorm on E is continuous.

(3) For every locally convex space F , every sequentially continuous linear map

from E to F is continuous.
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(4) For every Banach space F , every sequentially continuous linear map from

E to F is continuous.

Proof. The equivalence of (1) and (2) follows from Lemma 2.2

(2)⇒ (3) Let f : E → F be linear and sequentially continuous. If V is a convex

neighborhood of zero in F , then f−1(V ) is a convex sequential neighborhood of

zero in E and hence f−1(V ) is a neighborhood of zero.

(4) ⇒ (2) Let p be a sequentially continuous seminorm on E and consider the

Banach space Êp. The canonical mapping πp : E → Êp is sequentially continuous

and hence continuous, which implies that p is continuous. �

Let now (E, τ) be a locally convex space. The family of all convex sequential

τ -neighborhoods of zero is a base at zero for a locally convex topology τs. The

family of polar (with respect to the pair 〈E,E∗〉) sequential τ -neighborhoods of

zero is a base at zero for a polar topology τsπ. We have the following

Proposition 2.4. 1) τs coincides with the coarsest sequential topology finer

than τ .

2) τ is sequential iff τ = τs.

3) τs is the finest locally convex topology on E having the same convergent

sequences as τ .

4) If τ1 is a locally convex topology on E such that every τ-null sequence is also

τ1-null, then τ1 is coarser then τs.

5) The topologies τ and τs have the same bounded sets.

6) If F is a locally convex space and f : E → F a linear mapping, then f is

τs-continuous iff it is sequentially τ-continuous.

7) τs is generated by the family of all non-Archimedean seminorms on E which

are sequentially τ-continuous.

8) τsπ is the finest of all polar topologies τ1 on E such that every τ-convergent

sequence is also τ1-convergent. If τ is polar, then τ ≤ τsπ and the topologies τ and

τsπ have the same convergent sequences.

9) τsπ ≤ τ
s.

10) τsπ is generated by the family of all sequentially τ-continuous polar semi-

norms on E.

11) τsπ is the largest of all polar topologies which are coarser than τs.

Proposition 2.5. Let (E, τ) and (F, τ1) be locally convex spaces. If a linear

map

f : (E, τ)→ (F, τ1)

is continuous, then f is also (τs, τs1 )-continuous and (τsπ , (τ1)sπ)-continuous.

Using the preceding Proposition we get that the category of non-Archimedean

sequential locally convex spaces and continuous linear maps is a full coreflective

subcategory of the category of all locally convex spaces.
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Corollary 2.6. If (E, τ) =
∏
α∈I(Eα, τα), then

τs ≥
∏
α∈I

(τα)s and τsπ ≥
∏
α∈I

(τα)sπ .

Proposition 2.7. Let (E, τ) =
∏n
k=1(Ek, τk). Then

τs =
n∏
k=1

(τk)s and τsπ =
n∏
k=1

(τk)sπ .

Proof. Let τ0 =
∏n
k=1(τk)s. By the preceding Corollary, we have τ0 ≤ τs.

On the other hand, let V be a convex sequential τ -neighborhood of zero in E.

If jk : Ek → E is the canonical injection, then Vk = j−1
k (V ) is a sequential τk-

neighborhood of zero in Ek. It follows that W =
∏n
k=1 Vk is a τ0-neighborhood of

zero with W ⊂ V , which proves that τs ≤ τ0.

The proof for the case of τsπ is analogous. �

Recall that a locally convex space E is called polarly bornological (see [9]) if

every subset of E, which is polar with respect to the pair 〈E,E∗〉 and which absorbs

bounded sets is a neighborhood of zero. Equivalently, E is polarly bornological if

every polar seminorm on E, which is bounded on bounded sets, is continuous.

Proposition 2.8. Let (E, τ) be a locally convex space.

1) If (E, τ) is bornological, then τ = τs.

2) If (E, τ) is polarly bornological, then τsπ ≤ τ .

Proof. 1) It follows from the fact that τ and τs have the same bounded sets.

2) Let p be a sequentially continuous polar seminorm. Then, p is bounded

on bounded sets. In fact, let B be a bounded set with supx∈B p(x) = ∞. Let

|λ| > 1 and choose a sequence (xn) in B with p(xn) > |λ|n. Now, λ−nxn → 0

but p(λ−nxn) ≥ 1 for all n, a contradiction. Since E is polarly bornological, p is

continuous and the result follows from Proposition 2.4. �

Proposition 2.9. If E is finite dimensional, then it is sequential.

Proof. If E is Hausdorff, then E is topologically isomorphic to Kn, where n =

dim(E), and so E is sequential. If E is not Hausdorff, let F = {0}. Since E/F

is Hausdorff and finite-dimensional, its topology is given by some norm ‖ · ‖. If

π : E → E/F is the quotient map, then it is easy to see that the topology of

E is given by the seminorm p(x) = ‖π(x)‖. Thus E is seminormable and hence

sequential. �

We have also the following easily established
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Proposition 2.10. Let {Eα : α ∈ I} be a family of locally convex spaces, E

a vector space and, for each α ∈ I, fα : Eα → E a linear mapping. If each Eα
is sequential and if E is equipped with the finest locally convex topology for which

each fα is continuous, then E is sequential.

Corollary 2.11. Quotient spaces and direct sums of sequential locally convex

spaces are sequential.

The result about direct sums of sequential spaces also follows using the general

theory of coreflective subcategories.

For a locally convex space (E, τ), we will denote by Es the space of all sequen-

tially τ -continuous linear functionals on E. Clearly Es = (E, τs)′.

Definition 2.12. A subset B of E∗ is called sequentially τ -equicontinuous

if xn
τ
→ 0 in E implies that f(xn) → 0 uniformly for f ∈ B, i.e.

limn→∞ supf∈B |f(xn)| = 0. Clearly every sequentially τ -equicontinuous subset

of E∗ is contained in Es and Es is the union of all such subsets of E∗.

Lemma 2.13. If B ⊂ E∗ is sequentially τ-equicontinuous, then its bipolar

B��, with respect to the pair 〈E∗, E〉, is also sequentially τ-equicontinuous.

Proof. It follows from the fact that for each x ∈ E we have

sup
f∈B
|f(x)| = sup

f∈B��
|f(x)| .

�

In the following Proposition, we will denote by b(Es, E) the strong topology

on Es.

Proposition 2.14. If τ is polar, then every sequentially τ-equicontinuous sub-

set H of Es is b(Es, E)-bounded.

Proof. Assume thatH is not strongly bounded and letA be a σ(E,Es)-bounded

subset of E such that

sup
x∈A, f∈H

|f(x)| =∞ .

Since E′ ⊂ Es, the set A is σ(E,E′)-bounded and hence it is τ -bounded since τ

is polar.

Let |λ| > 1 and choose a sequence (xn) in A and a sequence (fn) in H such

that |fn(xn)| ≥ |λ|n for all n. Since A is bounded, we have that λ−nxn
τ
→ 0.

Moreover, |fn(λ−nxn)| ≥ 1 which contradict the fact that H is sequentially τ -

equicontinuous. �

Since, for each f ∈ Es, the seminorm pf(x) = |f(x)| is polar and sequentially

continuous, it is clear that Es = (E, τsπ)′.
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Proposition 2.15. τsπ coincides with the topology of uniform convergence on

the sequentially τ-equicontinuous subsets of Es.

Proof. It is easy to see that a subset of Es is τsπ-equicontinuous iff it is sequen-

tially τ -equicontinuous. Now the result follows form the fact that τsπ is a polar

topology. �

Notation. For a locally convex space (E, τ), we will denote by Eb the space

of all bounded linear functionals on E, i.e. the space of all f ∈ E∗ which are

bounded on τ -bounded sets. By τn we will denote the topology on Eb of uniform

convergence on the τ -null sequences in E.

Proposition 2.16. For an absolutely convex subset H of Es, the following

assertions are equivalent:

(1) H is sequentially τ-equicontinuous.

(2) H is τn-compactoid.

Proof. (1)⇒ (2). Let p be the Minkowski functional of the polar H0 of H in E.

We have that

p(x) = sup
f∈H
|f(x)| (x ∈ E).

Let A = {xn : n ∈ N}, where (xn) is a τ -null sequence in E. Let 0 < |µ| < 1 and

let ε > 0 with 4ε ≤ |µ|. There exists an index n0 such that p(xn) < ε if n > n0.

We choose a basis {z1, . . . , zk} for F = [x1, . . . , xn0 ] which is 1
2 -orthogonal with

respect to the seminorm p. We may assume that p(z1) ≥ p(z2) ≥ · · · ≥ p(zk).

Let m ≤ k be such that p(zi) > 0 if i ≤ m and p(zi) = 0 if i > m. We may assume

that |µ| ≤ p(zi) < 1 for i ≤ m. There are g1, . . . , gm in G′, where G = [z1, . . . , zm],

with gi(zj) = 0 if i 6= j and gi(zi) = 1. For x =
∑m
i=1 λizi ∈ G, we have

p(x) ≥
1

2
sup

1≤i≤m
|λi|p(zi) ≥ sup

1≤i≤m

|µλi|

2
.

Thus,

|gi(x)| = |λi| ≤
2

|µ|
p(x) .

Since p is a polar seminorm, there exists a continuous extension gi of gi to all of

E such that

|gi(y)| ≤
4

|µ|
p(y)

for all y ∈ E. Note that gi ∈ (E, τsπ)′ = Es.

Let now f ∈ H and set h =
∑m
i=1 f(zi)gi. Since f ∈ H, we have |f | ≤ p and so

|f(zi)| ≤ p(zi) ≤ 1, which implies that h ∈ co (g1, . . . , gm). Moreover, h = f on G.

For m < i ≤ k, we have

|gi(zi)| ≤
4

|µ|
p(zi) = 0 ,
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which implies that h = f on F . Finally, for n > n0, we have

|f(xn)| ≤ p(xn) < 1, |gi(xn)| ≤
4

|µ|
p(xn) ≤

4ε

|µ|
≤ 1 .

Therefore, |(f − h)(xn)| ≤ 1 for all n and so f − h ∈ A0, where A0 is the polar of

A in Eb. Thus

H ⊂ co (g1, . . . , gm) +A0,

which proves that H is τn-compactoid.

(2) ⇒ (1). Let (xn) be a τ -null sequence in E and set A = {xn : n ∈ N}. Since

the polar A0 of A in Eb is a τn-neighborhood of zero, given µ 6= 0 in K there are

g1, . . . , gm in the linear hull [H] ⊂ Es of H such that

H ⊂ co (g1, . . . , gm) + µA0 .

Let n0 be such that |gk(xn)| ≤ |µ|, for k = 1, . . . ,m, if n ≥ n0. Now

sup
f∈H
|f(xn)| ≤ |µ|

for all n ≥ n0. In fact, let f ∈ H. There exist g ∈ co (g1, . . . , gm) and h ∈ A0

such that f = g + µh, which implies that, for n ≥ n0, we have |f(xn)| ≤ |µ| since

|g(xn)| ≤ |µ|. This proves that H is sequentially τ -equicontinuous. �

3. The Topology τc

In this section we will study the finest locally convex topology on E having the

same compactoid sets as a given locally convex topology.

Proposition 3.1. Let τ1, τ2 be locally convex topologies on E such that ev-

ery τ1-compactoid is also τ2-compactoid. Then, every τ1-bounded set is also τ2-

bounded.

Proof. Let A be a subset of E which is τ1-bounded but not τ2-bounded. We

may assume that A is absolutely convex. Since A is not τ2-bounded, given µ ∈ K,

with |µ| > 1, there exist a convex τ2-neighborhood V of zero and a sequence (xn)

in A with xn /∈ µ2nV . The sequence (yn), yn = µ−nxn, is τ1-null and hence

τ1-compactoid, which implies that (yn) is τ2-compactoid. Therefore, (yn) is τ2-

bounded and so µ−nyn
τ2→ 0, which is a contradiction since µ−nyn /∈ V .

Let now τ be a locally convex topology on E and let Bτ be the family of

all convex absorbing subsets V of E with the following property: For each τ -

compactoid subset A of E there exists a finite subset S of E such that A ⊂
co (S) + V . Clearly every convex τ -neighborhood of zero is in Bτ and, for each

V ∈ Bτ and each µ /∈ 0, we have µV ∈ Bτ . If V1, V2 are in Bτ , then V = V1 ∩ V2
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is also in Bτ . In fact, let A be an absolutely convex τ -compactoid and let |λ| > 1.

There exists a finite subset S = {x1, . . . , xn} of E such that

A ⊂ co (S) + λ−2V1 .

By [3, Lemma 1.2], there exists a finite subset S1 = {y1, . . . , yn} of λA such that

A ⊂ co (S1) + λ−1V1 .

Since the set B = [A + co (S1)] ∩ (λ−1V1) is a τ -compactoid, using again [3,

Lemma 1.2], we can find a finite subset S2 of λB ⊂ V1 such that

B ⊂ co (S2) + V2.

Now

A ⊂ co (S1 ∪ S2) + V1 ∩ V2 .

In fact, let x ∈ A. There exists z1 ∈ co (S1) such that x − z1 ∈ λ−1V1. Since

x − z1 ∈ B, there exists z2 ∈ co (S2) ⊂ V1 such that x − z1 − z2 ∈ V2. Since

x−z1 ∈ B ⊂ λ−1V1 ⊂ V1, we have that x−z1−z2 ∈ V1∩V2 and z1+z2 ∈ co (S1∪S2),

which completes the proof of our claim. This proves that V1 ∩ V2 ∈ Bτ . It follows

from the above that Bτ is a base at zero for a locally convex topology τc finer

than τ . �

Proposition 3.2. (1) τc is the finest locally convex topology on E having the

same compactoid sets as τ .

(2) If τ1 is a locally convex topology on E such that every τ-compactoid is also

τ1-compactoid, then τ1 ≤ τc.
(3) The topologies τ and τc have the same bounded sets.

(4) If (E, τ) is bornological, then τ = τc.

(5) If F is a locally convex space and f : E → F a linear mapping, then f is

τc-continuous iff it maps τ-compactoid sets into compactoid sets in F .

(6) τc = τ iff, for any locally convex space F , any linear map f : E → F

mapping τ-compactoid sets into compactoid sets is τ-continuous.

(7) τc = τ iff, for any Banach space F , any linear function f : E → F , mapping

τ-compactoid sets into compactoid sets, is τ-continuous.

Proof. (1) and (2) follows easily from the definitions.

(3) It follows from (1) and Proposition 3.1.

(4) It follows from (3) since τ ≤ τc.
(5) Necessity follows from (1) since images of compactoid sets, under continu-

ous linear mappings, are compactoid. For the sufficiency, let the linear function

f : E → F map τ -compactoid sets into compactoid sets and let V be a convex

neighborhood of zero in F . Let A be an absolutely convex τ -compactoid in E
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and let |λ| > 1. Since f(A) is compactoid in F , there exists a finite subset T of

λf(A) such that f(A) ⊂ co (T ) + V . If S is a finite subset of λA with T = f(S),

then A ⊂ co (S) + f−1(V ). This proves that f−1(V ) ∈ Bτ and so f−1(V ) is a

τc-neighborhood of zero.

(6) Necessity follows from (5). To prove the sufficiency of the condition, it

suffices to take F = (E, τc) and consider the identity map from E to F .

(7) Suppose that, for any Banach space F , any linear function from E to F ,

which maps τ -compactoid sets into compactoid sets, is continuous. Let p be a τc-

continuous non-Archimedean seminorm on E and consider the Banach space G =

Êp. The canonical mapping ϕp : E → G maps τ -compactoid sets into compactoid

sets, and so ϕp is continuous, which implies that p is τ -continuous. �

Notation 3.3. We will denote by τcπ the finest of all polar topologies τ1 on E

such that every τ -compactoid set is also τ1-compactoid.

We have the following easily established

Lemma 3.4. a) τcπ is the finest polar topology on E coarser than τc.

b) If τ is polar, then τ ≤ τcπ and the two topologies τ and τcπ have the same

compactoid sets and the same bounded sets.

c) Every τ-bounded set is τcπ-bounded.

Let us recall next the notion of the Kolmogorov diameters of a bounded set.

If p is a non-Archimedean seminorm on E and A a p-bounded set, then for each

non-negative integer n the n-th Kolmogorov diameter δn,p(A) of A, with respect

to p, is the infimum of all |µ|, µ ∈ K, for which there exists a subspace F of E,

with dimF ≤ n, such that

A ⊂ F + µBp(0, 1),

where Bp(0, 1) = {x ∈ E : p(x) ≤ 1} (see [8]).

By [8], a subset A of E is τ -compactoid iff limn→∞ δn,p(A) = 0 for each τ -

continuous seminorm p on E.

Lemma 3.5. A non-Archimedean seminorm p on E is τ-bounded, i.e. it is

bounded on bounded sets, iff p is bounded on τ-compactoid sets.

Proof. Assume that there exists a τ -bounded set A such that supx∈A p(x) =∞.

Given |λ| > 1, there exists a sequence (xn) in A with p(xn) > |λ|2n. Now, the

sequence (λ−nxn) is τ -null and hence τ -compactoid but supn p(λ
−nxn) =∞. �

Proposition 3.6. Let Pτ be the family of all τ-bounded non-Archimedean

seminorms p on E such that limn→∞ δn,p(A) = 0 for each τ-compactoid set A.

Then:

a) If p ∈ Pτ and if q is a non-Archimedean seminorm on E with q ≤ p, then

q ∈ Pτ .

b) If p1, p2 ∈ Pτ , then p1 + p2 and p = max{p1, p2} are also in Pτ .
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c) If p ∈ Pτ , then |µ|p ∈ Pτ for each µ ∈ K.

Proof. Let p ∈ Pτ and let µ 6= 0. Given a τ -compactoid set A, there exists an n

such that δn,p(µA) < |µ| since µA is τ -compactoid. By [8, Proposition 3.2], there

are x1, . . . , xn in E such that

µA ⊂ co (x1, . . . , xn) + µBp(0, 1)

and so

A ⊂ co (µ−1x1, . . . , µ
−1xn) +Bp(0, 1) .

This proves that Bp(0, 1) is in Bτ .

Let now p1, p2 ∈ Pτ and µ 6= 0. Choose λ ∈ K with 0 < |λ| < |µ|/2. Since both

λBp1(0, 1) and λBp2(0, 1) are in Bτ , the same is true for the set

V = [λBp1(0, 1)] ∩ [λBp2(0, 1)] = λ[Bp1(0, 1) ∩Bp2(0, 1)] .

If p = p1 + p2, then V ⊂ µBp(0, 1) and so Bp(0, 1) ∈ Bτ . It follows that there are

y1, . . . , ym in E such that

A ⊂ co (y1, . . . , ym) + µBp(0, 1)

and so δm,p(A) ≤ |µ|. Thus, for n ≥ m, we have δn,p(A) ≤ |µ|, which proves that

δn,p(A)→ 0 and so p ∈ Pτ . The proofs of the other assertions in the Proposition

follow easily from the definitions. �
Proposition 3.7. (1) A non-Archimedean seminorm p on E is τc-continuous

iff it belongs to Pτ .

(2) The family of all polar members of Pτ generates the topology τcπ.

Proof. (1) If p ∈ Pτ , then, as we have seen in the proof of the preceding

Proposition, Bp(0, 1) belongs to Bτ and so p is τc-continuous. Conversely, let p be

τc-continuous. If A is τ -compactoid, then A is τc-compactoid and so δn,p(A)→ 0,

which proves that p ∈ Pτ .

(2) The proof is analogous to that of (1). �
We have the following easily established

Proposition 3.8. If a linear map f : (E, τ)→ (F, τ1) is continuous, then f is

(τc, τc1 )-continuous and (τcπ, (τ1)cπ)-continuous.

In view of the preceding Proposition, we get that the category of all locally

convex spaces (E, τ), with τc = τ , and continuous linear maps is a full coreflective

subcategory of the category of all locally convex spaces.

Corollary 3.9. If (E, τ) =
∏
α∈I(Eα, τα), then τc ≥

∏
α∈I(τα)c and τcπ ≥∏

α∈I(τα)cπ.

The proof of the following Proposition is analogous to that of Proposition 2.7.



NON–ARCHIMEDEAN SEQUENTIAL SPACES 65

Proposition 3.10. If (E, τ) =
∏n
k=1(Ek, τk), then τc =

∏n
k=1 τ

c
k and τcπ =∏n

k=1(τk)cπ.

Proposition 3.11. (E, τc)′ = (E, τcπ)′ = Eb.

Proof. If A is τ -compactoid, then A is τ -bounded and so A is σ(E,Eb)-bounded,

which implies A is σ(E,Eb)-compactoid. Since σ(E,Eb) is a polar topology, we

have that σ(E,Eb) ≤ τcπ and so

Eb = (E, σ(E,Eb))′ ≤ (E, τcπ)′.

On the other hand, let f ∈ (E, τc)′ and let A be a τ -bounded set. Then, A is

τc-bounded and so f is bounded on A which proves that f ∈ Eb. �

We will need the following Proposition which is analogous to the Grothendieck’s

interchange Theorem. We will say that a family M of subsets of a vector space

G is directed if given M1,M2 ∈ M there exists M3 ∈ M containing both M1

and M2.

Proposition 3.12. Let 〈E,F 〉 be a dual pair of vector spaces over K and let

M (resp. N ) be a directed family of σ(E,F )-bounded (resp. σ(F,E)-bounded) sub-

sets of E (resp. F ) covering E (resp. F ). On E we consider the topology τN of

uniform convergence on the members of N and on F the topology τM of uniform

convergence on the members ofM. Then, the following statements are equivalent:

(1) Each member of M is τN -compactoid.

(2) Each member of N is τM-compactoid.

Proof. (1) ⇒ (2). Without loss of generality, we may assume that all members

of M and N are absolutely convex. Let H ∈ N , M ∈M and γ 6= 0. Since γ−1M

is τN -compactoid, given |λ| > 1 there are x1, . . . , xn in E such that

γ−1M ⊂ co (x1, . . . , xn) + λ−1H0 .

The set

D = {(f(x1), . . . , f(xn)) : f ∈ H}

is bounded in Kn. Let µ ∈ K be such that |f(xk)| ≤ |µ| for all f ∈ H and for

k = 1, 2, . . . , n. If z(k) = (0, 0, . . . , µ, . . . , 0), where µ is in the k-position, then

D ⊂ co (z(1), . . . , z(n)). By [3, Lemma 1.2], there are f1, . . . , fn in H such that

D ⊂ λ co (c1, . . . , cn), where ck = (fk(x1), . . . , fk(xn)). Let now f ∈ H. There are

γ1, . . . , γn in K, |γk| ≤ 1 such that

f(xi) = λ

n∑
k=1

γkfk(xi), i = 1, . . . , n .
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Let h = f − λ
∑n
k=1 γkfk. If x ∈M , then

γ−1x =
n∑
i=1

λixi + z, |λi| ≤ 1, z ∈ λ−1H0 .

We have

h

(
n∑
i=1

λixi

)
=

n∑
i=1

λi

(
f(xi)− λ

n∑
k=1

γkfk(xi)

)
= 0 .

Thus,

|h(γ−1x)| =

∣∣∣∣∣f(z)− λ
n∑
k=1

γkfk(z)

∣∣∣∣∣ ≤ 1

since f, fk ∈ H and z ∈ λ−1H0. This proves that h ∈ γM0. Therefore,

H ⊂ λ co (f1, . . . , fn) + γM0,

which proves that H is τM-compactoid.

(2) ⇒ (1). The proof is analogous. �
Let τ0 denote the topology on Eb of uniform convergence on the τ -compactoid

subsets of E. By τ00 we will denote the topology on E of uniform convergence on

the τ0-compactoid subsets of Eb.

Proposition 3.13. If a set B ⊂ Eb is τ0-compactoid, then its bipolar B00,

with respect to the pair
〈
E,Eb

〉
, is also τ0-compactoid.

Proof. Let A ⊂ E be τ -compactoid and let A0 be its polar in Eb. Let |λ| > 1

and let f1, . . . , fn in Eb be such that

B ⊂ co (f1, . . . , fn) + λ−1A0 .

By an argument similar to the one used by Schikhof in [9, Corollary 5.8], we get

that

B00 ⊂ [co (f1, . . . , fn) + λ−1A0]00 ⊂ [co (f1, . . . , fn) + λ−1A0]e

⊂ co (λf1, . . . , λfn) +A0 ,

which proves that B00 is τ0-compactoid. �
Lemma 3.14. If τ is polar, then τ ≤ τ00.

Proof. Consider the dual pair 〈E,E′〉, E′ = (E, τ)′, and take M the family of

all τ -compactoid subsets of E and N the family of all τ -equicontinuous subsets of

E′. Since τ is polar, we have that τ = τN . Using Proposition 3.12, we get that

each H ∈ N is τM-compactoid and so H is τ0-compactoid. If now V is a polar

τ -neighborhood of zero, we have that V = V 00 is a τ00-neighborhood of zero, and

this proves that τ ≤ τ00. �
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Proposition 3.15. For every locally convex space (E, τ), we have τ00 = τcπ.

Proof. LetM be the family of all τ -compactoid subsets of E and N the family

of all τ0-compactoid subsets of Eb. Since τM = τ0 and τN = τ00, it follows from

Proposition 3.12 that every τ -compactoid set is τ00-compactoid and so τ00 ≤ τc.

Since τ00 is a polar topology, we have that τ00 ≤ τcπ. On the other hand, if

τ1 = τcπ, then every τ -compactoid set is τ1-compactoid and so every τ -bounded set

is τ1-bounded, which implies that G = (E, τ1)b ⊂ Eb and τ0|G ≤ τ0
1 . If H ⊂ G is

τ0
1 -compactoid, then H is τ0-compactoid, and this implies that τ00

1 ≤ τ
00. Since τ1

is polar, we have (by the preceding Proposition) τ1 ≤ τ00
1 ≤ τ

00 and so τ00 = τcπ .�
Proposition 3.16. τ00 = τcπ is the finest of all polar topologies on E which

agree with σ(E,Eb) on τ-compactoid sets.

Proof. The topology τ00 is polar and (E, τ00)′ = Eb. If A ⊂ E is τ -compactoid,

then A is τ00-compactoid and so τ00 = σ(E,Eb) on A by [9, Theorem 5.12]. On

the other hand, let τ1 be a polar topology on E agreeing with σ(E,Eb) on τ -

compactoid sets. Let A be an absolutely convex τ -compactoid set. Then, A

is σ(E,Eb)-bounded and hence A is σ(E,Eb)-compactoid. Since τ1 = σ(E,Eb)

on A, it follows that A is τ1-compactoid by [10, Proposition 4.5]. Thus, every

τ -compactoid set is τ1-compactoid, which implies that τ1 ≤ τ00 since τ1 is polar.�
Corollary 3.17. An absolutely convex subset V of E is a τcπ-neighborhood of

zero iff for each τ-compactoid set A there are f1, . . . , fn in Eb such that

n⋂
k=1

{x ∈ E : |fk(x)| ≤ 1} ∩A ⊂ V .

Corollary 3.18. Let τ be a polar topology and assume that Eb = E′. Then,

τcπ is the finest of all polar locally convex topologies on E which agree with τ on

τ-compactoid sets.

Proof. It follows from Proposition 3.16 since τ = σ(E,E′) on τ -compactoid sets

by [9, Theorem 5.12]. �
Proposition 3.19. For a locally convex space (E, τ), the following are equiv-

alent:

(1) τsπ ≤ τ
c
π.

(2) Every τ-compactoid set is τsπ-compactoid.

(3) Every sequentially τ-equicontinuous subset of Eb is τ0-compactoid.

(4) The topologies τsπ and σ(E,Es) coincide on τ-compactoid sets.

(5) The topologies τ0 and σ(Eb, E) coincide on every sequentially τ-equicontinu-

ous subset of Eb.

Proof. (1) ⇒ (2) It follows from the fact that every τ -compactoid set is τcπ-

compactoid.
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(2) ⇒ (1) It is obvious.

(1) ⇒ (3) Let H ⊂ Eb be sequentially τ -equicontinuous. Then, H0 is a τsπ-

neighborhood of zero and so H0 is a τcπ-neighborhood of zero. Therefore, there

exists a τ0-compactoid subset B of Eb such that B0 ⊂ H0. It follows thatH ⊂ B00

and B00 is τ0-compactoid by Proposition 3.13.

(3) ⇒ (1) It follows from Propositions 2.15 and 3.15.

(2) ⇒ (4) Since Es = (E, τsπ)′, the topologies τsπ and σ(E,Es) coincide on

τsπ-compactoid sets (by [9, Theorem 5.12]) and so they coincide on τ -compactoid

sets.

(4) ⇒ (2) Let A be an absolutely convex τ -compactoid. Then, A is τ -bounded

and so A is σ(E,Es)-bounded, which implies that A is σ(E,Es)-compactoid. By

[10, Proposition 4.5], A is τsπ-compactoid.

(3) ⇒ (5) Let H ⊂ Eb be sequentially τ -equicontinuous. Then, H is τ0-

compactoid. Consider the topologies τ0 and σ(Eb, E). The topology τ0 is finer

than σ(Eb, E) and it has a base at zero consisting of absolutely convex σ(Eb, E)-

closed sets. By [10, Theorem 1.4], τ0 = σ(Eb, E) on H.

(5) ⇒ (3) Let H be a sequentially τ -equicontinuous subset of Eb. Without loss

of generality, we may assume that H is absolutely convex. Since H is σ(Eb, E)-

bounded, it is σ(Eb, E)-compactoid and so H is τ0-compactoid by [10, Proposi-

tion 4.5]. �

Proposition 3.20. For every locally convex space (E, τ), the following are

equivalent:

(1) τcπ ≤ τ
s
π.

(2) Es = Eb.

(3) τsπ coincides with the topology of uniform convergence on the τn-compactoid

subsets of Eb.

(4) τsπ ≥ (τcπ)sπ.

(5) τsπ is finer than the topology of uniform convergence on the τn-null sequences

in Eb.

Proof. (1) ⇒ (2)

Eb = (E, τcπ)′ ⊂ (E, τsπ)′ = Es ⊂ Eb .

(2) ⇒ (3) It follows from Proposition 2.15 and 2.16.

(3) ⇒ (1) Let τ1 be the topology of uniform convergence on the τn-compactoid

subsets of Eb. Since every τ -null sequence is τ -compactoid, we have that τn ≤ τ0

and hence every τ0-compactoid is also τn-compactoid. Therefore, τ1 ≥ τ00 = τcπ .

(1) ⇒ (4) It is obvious.

(4) ⇒ (1) Since τcπ is polar, we have

τcπ ≤ (τcπ)sπ ≤ τ
s
π .
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(3)⇒ (5) It follows from the fact that every τn-null sequence is τn-compactoid.

(5)⇒ (2) Let τ2 be the topology of uniform convergence on the τn-null sequences

in Eb. Since τ2 is finer than σ(E,Eb), we have that Eb ⊂ (E, τ2)′ and so

Es ⊂ Eb ⊂ (E, τ2)′ ⊂ (E, τsπ)′ = Es .

�

Note. If τ is polar, then τ ≤ τcπ and so τsπ ≤ (τcπ)sπ. Hence, in case of polar τ ,

in the preceding Proposition (4) may be replaced by τsπ = (τcπ)sπ .

Proposition 3.21. If (E, τ) is a polar space which is polarly bornological, then

τ = τsπ = τcπ.

Proof. Let f ∈ Eb. The seminorm p(x) = |f(x)| is polar and it is bounded on

τ -bounded sets and so p is τ -continuous, since (E, τ) is polarly bornological. It

follows that every f ∈ Eb is τ -continuous and so Eb = Es = E′. Since τ is polar,

we have τ ≤ τcπ . Thus, by Propositions 2.8 and 3.20, we have τ ≤ τcπ ≤ τ
s
π ≤ τ . �

Examples. Taking as τ either the topology σ(`∞, c0) or the topology σ(c0, `
∞),

we will look at the topologies τs, τsπ, τc, τcπ .

Every element y of `∞ defines a continuous linear functional fy on c0 by

fy(x) = 〈x, y〉 =
∑∞
n=1 xnyn. Moreover, ‖fy‖ = ‖y‖. Using the principle of uni-

form boundedness, we get that a subset of `∞ is norm-bounded iff it is σ(`∞, c0)-

bounded. Also, a subset of c0 is norm-bounded iff it is σ(c0, `
∞)-bounded by [9,

Corollary 7.7].

We will need the following

Proposition 3.22. Let τ = σ(`∞, c0) and let τ1 be the finest locally convex

topology on `∞ agreeing with τ on norm-bounded (equivalently on τ-bounded) sets.

Then:

1) The topology τ1 is polar.

2) If τ2 is the metrizable locally convex topology on `∞ generated by the countable

family of seminorms {pn : n ∈ N}, pn(x) = |xn|, then τ2 coincides with τ on norm-

bounded sets and hence τ |A is metrizable on each τ-bounded set A.

Proof. 1) Let Bn = {x ∈ `∞ : ‖x‖ ≤ n}. By [5, Theorem 5.2], τ1 has a base at

zero consisting of sets W of the form

(*) W = W0 ∩

(
∞⋂
n=1

(Bn +Wn)

)
,

where each Wn is a τ -neighborhood of zero. We may assume that, for each n,

there exists a finite subset Sn of c0 such that Wn = S0
n, where S0

n is the polar of

Sn in `∞. If F = (`∞, τ1), then each Wn is a polar set in F . Note that τ ≤ τ1
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and so c0 ⊂ F ′. Since Bn is τ -bounded, it is τ -compactoid and hence, for |λ| > 1,

there exists a finite subset An of Bn such that

Bn ⊂ λc0(An) +Wn .

Taking bipolars with respect to the pair 〈F, F ′〉 and using [9, Corollary 5.8], we

get

(Bn +Wn)00 ⊂ (λc0(An) +Wn)00 = (λc0(An) +Wn)e

⊂ λ(λc0(An) +Wn ⊂ λ
2(c0(An) +Wn) ⊂ λ2(Bn +Wn)

and so W 00 ⊂ λ2W . This proves that τ1 has a base at zero consisting of polar sets

and so it is a polar topology.

2) Clearly τ2 ≤ τ . To show that τ2 = τ on norm-bounded sets, let (xα) be a

norm-bounded net in E with xα
τ2→ 0. Let ε > 0 and let d ≥ supα ‖x

α‖. Let y ∈ c0
and choose ε1 > 0 with ε1(d + ‖y‖) < ε. Let m be such that |yn| < ε1 if n > m.

If α0 is such that |xαk | < ε1 for all α ≥ α0 and all k = 1, 2, . . . ,m, then for α ≥ α0

we have

| 〈xα, y〉 | =

∣∣∣∣∣∑
n

xαnyn

∣∣∣∣∣ ≤ ε .
�

The proof of the next Proposition is similar to the one of Proposition 3.22.

Proposition 3.23. 1) On each norm-bounded subset of c0, the weak topology

τ = σ(c0, `
∞) coincides with the metrizable locally convex topology generated by

the countable family of seminorms {pn : n ∈ N}, pn(x) = |xn|.
2) If τ3 is the finest locally convex topology on c0 agreeing with τ on norm-

bounded sets. then τ3 is polar.

Example I. Let E = `∞ and τ = σ(`∞, c0). If τ1 is as in Proposition 3.22,

then:

1) τs = τsπ = τ1 and each of these topologies is strictly coarser than the norm

topology τ‖·‖ and strictly finer than τ .

2) If K is not spherically complete, then τ1 = τsπ = τs = τcπ.

Proof. We show first that τ = τs on each norm-bounded set A. To show that

τs|A ≤ τ |A, it suffices to prove that the identity map

I : (A, τ |A)→ (A, τs|A)

is continuous. Since τ |A is metrizable, it suffices to show that I is sequentially

continuous, which is clearly true. Thus τ |A = τs|A and so τs ≤ τ1 by the definition

of τ1. To prove that τ1 ≤ τs, it is sufficient to show that every τ -null sequence
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is τ1-null. So, let (yn) be a τ -null sequence. Then (yn) is τ -bounded and hence

norm-bounded. Since τ = τ1 on norm-bounded sets, we have that (yn) is a τ1-null

sequence. Thus τ1 = τs. In view of Proposition 3.2, the topology τs is polar and

so τs = τsπ. The topology τ1 is coarser than the norm topology. In fact, let V be

an absolutely convex subset of E which is not a norm-neighborhood of zero. There

exists a sequence (yn) in E, ‖yn‖ ≤ 1
n

, yn /∈ V . Since τ1 = τ on norm-bounded

sets and since yn
τ
→ 0, it follows that yn

τ1→ 0 and this implies that V is not a

τ1-neighborhood of zero. So, τ1 ≤ τ‖·‖. But τ1 6= τ‖·‖. In fact, let en ∈ `∞, enk = 0

if k 6= n and enn = 1. The sequence (en) is τ -null and hence τ1-null, since (en) is

norm-bounded, but (en) is not a norm-null sequence.

Finally, τ1 is strictly finer than τ . In fact, let 0 < |λ| < 1. The sequence (λnen)

is a sequentially τ -equicontinuous subset of Eb. If H = {λnen : n ∈ N}, then the

polar H0 of H in E is a τsπ-neighborhood of zero by Proposition 2.15. But H0 is

not a τ -neighborhood of zero. In fact, assume that there exists a finite subset S

of c0 such that S0 ⊂ H0. Using [11, Corollary 1.2], we get that the set [c0(S)]e is

σ(c0, l
∞)-closed. Taking bipolars with respect to the pair 〈c0, l∞〉, and using [9,

Proposition 4.10], we get

H ⊂ H00 ⊂ S00 = [c0(S)]00

=

[
c0(S)

σ(c0, l
∞)

]e
= [c0(S)]e ⊂ λc0(S)

for |λ| > 1, which cannot hold since H is linearly independent. This proves that

τ is strictly coarser than τsπ = τ1.

2) Assume that K is not spherically complete. Then (`∞, ‖ · ‖)′ = c0. Since a

subset of `∞ is norm-bounded iff it is τ -bounded, it follows that

Es = Eb = c0 = (`∞, ‖ · ‖)′ = (E, τ)′.

Since a subset A of E is τ -compactoid iff it is τ -bounded and this is true iff A is

norm-bounded, it follows from Corollary 3.18 that τcπ = τ1. Also since a subset

A of E is τ -compactoid iff it is norm-bounded, it follows that the topology τ0

on Eb = c0 is the norm topology of c0. As it is well known, a subset H of c0 is

norm-compactoid iff there exists z ∈ c0 such that

H ⊂ Hz = {y ∈ c0 : |yn| ≤ |zn| for all n}.

If pz is defined on `∞ by pz(x) = supn |znxn|, then the polar of Hz in `∞ coincides

with the set

{x ∈ `∞ : pz(x) ≤ 1}.

Thus τ00 = τcπ is generated by the family of seminorms {pz : z ∈ c0}. �
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Example II. Let E = c0 and τ = σ(c0, `
∞). Then

1) τs = τsπ = τ‖·‖.

2) τc = τcπ and this topology is strictly coarser than the norm topology τ‖·‖ of c0.

Proof. 1) It is well known that a sequence in c0 is norm-convergent iff it is

weakly convergent (see [12, p. 158]). It follows from this that the norm topology

τ‖·‖ on c0 is coarser than τsπ since the norm topology is polar. On the other hand,

every norm-convergent sequence is τ -convergent and hence τs-convergent, which

implies that τs ≤ τ‖·‖. Therefore τs = τsπ = τ‖·‖.

2) There are norm-bounded subsets of c0 which are not norm-compactoid. If

A is such a set, then A is τ -compactoid (since it is τ -bounded) and hence τc-

compactoid. This implies that τc 6= τ‖·‖. If V is an absolutely convex subset

of E which is not a norm-neighborhood of zero and if 0 < |λ| < 1, then there

exists a sequence (yn) in E with yn /∈ V and ‖yn‖ ≤ |λ|n. Now the sequence

(zn) = (λ−nyn) is τ -bounded and hence τc-bounded. Since zn /∈ λ−nV for all n,

it follows that V is not a τc-neighborhood of zero. This proves that τc is strictly

coarser that the norm topology. To prove that τc = τcπ, we consider the topology

τ3 defined in Proposition 3.23. Let A be a τ -bounded set and consider the identity

map

I : (A, τ |A)→ (A, τc|A).

If (yn) is a sequence in A with yn
τ
→ x, then yn → x in the norm topology, which

implies that yn
τc

→ x since τc is coarser than τ‖·‖. Thus I is sequentially continuous

and hence I is continuous since τ |A is metrizable by Proposition 3.23. It follows

that τc|A = τ |A, for each τ -bounded set A, and so τc ≤ τ3. It is also clear that

Eb = c′0 = `∞ since the τ -bounded subsets of E coincide with the norm-bounded

sets. Thus Eb = (E, τ)′. Since τ and τ3 are polar topologies, we have that τ3 = τcπ
and so τc = τcπ = τ3. �

Remark 3.24. Let F be a subspace of a locally convex space (E, τ) and let

τ1 = τ |F . It is easy to see that τc|F ≤ τc1 , τcπ |F ≤ (τ1)cπ , τs|F ≤ τs1 , τsπ|F ≤ (τ1)sπ.

The following is an example where τcπ|F 6= (τ1)cπ, τs|F 6= τs1 , τsπ |F 6= (τ1)sπ .

Example. Assume that K is not spherically complete and take E = `∞, τ =

σ(`∞, c0). As we have seen τcπ = τs = τsπ. Let F = c0, τ1 = τ |F . Since a subset

of F is τ1-bounded iff it is norm-bounded, it follows that (F, τ1)b = c′0 = `∞. Let

z ∈ `∞ \ c0. The set

V = {x ∈ c0 : | 〈x, z〉 | ≤ 1}

is a τ00
1 = (τ1)cπ neighborhood of zero. But V is not a neighborhood of zero with

respect to the topology τ2 = τcπ|F . In fact, if V were a τ2-neighborhood of zero,

then there would exist y ∈ c0 such that

(*) W = {x ∈ c0 : py(x) ≤ 1} ⊂ V .
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It follows easily from (*) that |zn| ≤ |yn|, for all n, and so z ∈ c0, a contradiction.

Thus τ2 is strictly coarser than (τ1)cπ . Since V is clearly a convex sequential τ1-

neighborhood of zero, it follows that τs|F is strictly coarser than τs1 and that τsπ|F
is strictly coarser than (τ1)sπ.

4. Sequential Spaces of Continuous Functions

Let X be a zero-dimensional Hausdorff topological space and let β0X be its

Banaschewski compactification (see [1]). As in [1], v0X is the set of all x ∈ β0X

with the following property: For every sequence (Vn) of neighborhoods of x in β0X

we have ∩∞n=1Vn ∩X 6= ∅. By [1, Theorem 9], v0X is the N-repletion vNX of X.

Let E be a Haudorff locally convex space over K and let C(X,E) be the space

of all continuous E-valued functions on X. We will denote by Cs(X,E) (resp.

Cc(X,E)) the space C(X,E) equipped with the topology of simple convergence

(resp. of compact convergence). If f is a function from X to E, p a seminorm on

E and A a subset of X, we define

‖f‖A,p = sup{p(f(x)) : x ∈ A}.

Let now p be a non-zero non-Archimedean continuous seminorm on E and set

Gp = {p(s) : s ∈ E}. On Gp we consider the ultrametric d defined by

d(a, b) =

{
0, if a = b

max{a, b}, if a 6= b.

Under this metric, Gp becomes a real-compact, strongly ultraregular, non-compact

topological space and so uGpX = v0X = vNX (see [1, Theorem 9]). If f is in

C(X,E), then the function

fp : X → Gp, fp(x) = p(f(x)),

is continuous and so it has a continuous extension f̃p to all of v0X.

Proposition 4.1. If Cs(X,E) or Cc(X,E) is sequential, then E is sequential

and X is N-replete.

Proof. Let W be a convex sequential neighborhood of zero in E. Let F =

Cs(X,E) (resp. F = Cc(X,E)) and suppose that F is sequential. Let x0 ∈ X.

The set

V = {f ∈ F : f(x0) ∈ V }

is a convex sequential neighborhood of zero in F . Since F is sequential, there

exists a finite (resp. compact) subset D of X and a continuous seminorm q on E

such that

(*) {f ∈ F : ‖f‖D,q ≤ 1} ⊂ V .
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It follows from (*) that

{s ∈ E : q(s) ≤ 1} ⊂ V

and so V is a neighborhood of zero in E.

To prove that X is N-replete, suppose that there exists y0 ∈ v0X \X. Let p be a

continuous non-zero seminorm on E. We define q on F by q(f) = f̃p(y0). It is easy

to see that q is a non-Archimedean seminorm on F . Moreover, q is sequentially

continuous.

In fact, let fn → 0 in F and suppose that q(fn) 6→ 0. Going to a subsequence if

necessary, we may assume that q(fn) > ε > 0 for all n. Set

Vn = {y ∈ u0X : (f̃n)p(y) > ε}.

Each Vn is a neighborhood of y0 in v0X and so ∩∞n=1Vn ∩X 6= ∅. Let z ∈ Vn ∩X
for all n. For this z, we have p(fn(z)) > ε for all n, which contradicts the fact

that fn → 0 in F .

Proposition 4.2. If E is metrizable, then the following assertions are equiva-

lent:

(1) Cs(X,E) is bornological.

(2) Cs(X,E) is sequential.

(3) Cc(X,E) is bornological.

(4) Cc(X,E) is sequential.

(5) Cs(X,K) is bornological.

(6) Cs(X,K) is sequential.

(7) Cc(X,K) is bornological.

(8) Cc(X,K) is sequential.

(9) X is N-replete.

Proof. Since every bornological space is sequential, it follows from the preceding

Proposition that each of the (1)–(8) implies (9). Also, by [6, Theorem 2.9], (1) ⇔
(3) ⇔ (9) and (5) ⇔ (7) ⇔ (9). Thus the result follows. �
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