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NON-ARCHIMEDEAN SEQUENTIAL SPACES AND
THE FINEST LOCALLY CONVEX TOPOLOGY
WITH THE SAME COMPACTOID SETS

A. K. KATSARAS, C. PETALAS and T. VIDALIS

Abstract. For a non-Archimedean locally convex space (E, T), the finest locally
convex topology having the same as T convergent sequences and the finest locally
convex topology having the same as T compactoid sets are studied.

Introduction

For a locally convex space E over the field of either the real numbers or the
complex numbers, Webb investigated in [13] the finest locally convex topology on
E having the same convergent sequences as the original topology. Also, he studied
the finest locally convex topology which has the same precompact sets.

In this paper we look at analogous problems for non-Archimedean spaces. For
a non-Archimedean locally convex space (E, 1), we study the sequential locally
convex topology 15 which is the finest locally convex topology with the same as
T convergent sequences. Passing from 1 to 5, we get that the category of non-
Archimedean sequential locally convex spaces and continuous linear maps is a full
coreflective subcategory of the category of all locally convex spaces. If T is the
weak topology of co, then T° coincides with the norm topology of ¢y which of course
is not true in the classical case. For a zero dimensional topological space X and a
non-Archimedean locally convex space E, we look at the problem of when is the
space C(X, E), of all continuous E-valued functions on X, with the topology of
either the pointwise convergence or the compact convergence, a sequential space.
In case E is metrizable, it is shown that C(X, E) is sequential i [ifl is bornological
and this happens i X is N-replete, where N is the set of natural numbers.

For a non-Archimedean locally convex topology T on E, we study the locally
convex topology t°¢ which coincides with the finest locally convex topology with
the same as T compactoid sets. The compactoid sets in non-Archimedean spaces
are much more important than the precompact sets. As in the case of 5, we
get that the category of all non-Archimedean locally convex spaces (E,T) and
continuous linear maps, for which T = 1¢, is a full coreflective subcategory of the
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category of all locally convex spaces. If T is the weak topology of [T and if the field
is non-spherically complete, it is shown that T5 coincides with the finest locally
convex topology which agrees with T on norm bounded sets and with the finest
polar topology having the same as T compactoid sets.

1. Preliminaries

All vector spaces considered in this paper will be over a complete non-Archime-
dean valued field K whose valuation is non-trivial.

For a subset S of a vector space E over K, we will denote by co (S) the absolutely
convex hull of S. The edged hull A%, of an absolutely convex subset A of E, is
defined by: A® = A if the valuation of K is discrete, and A® = n{AA : |A| > 1} if
the valuation of K is dense (see [9]).

A subset B, of a locally convex space E over K, is called compactoid if, for each
neighborhood V of zero, there exists a finite subset S of E such that B [cd(S)+V .
For a non-Archimedean seminorm p on E, we will denote by E, the quotient space
E/kerp equipped with the norm [|[X]p|| = p(X), where ker p = {x : p(x) = 0}. By

E, we will denote the completion of E,.

A seminorm p on E is called polar if p = sup{|f| : f CEY|f| < p}, where E™
is the algebraic dual space of E. The locally convex space E is called polar if its
topology is generated by a family of polar seminorms (see [9]).

Equivalently, E is a polar space if it has a base at zero consisting of polar sets, i.e.
sets V with V. =V %, where V % is the bipolar of V. For other notions refering to
non-Archimedean locally convex spaces and for related results we refer to [9].

2. Sequential Spaces

Definition 2.1. A subset V, of a locally convex space E, is called a sequential
neighborhood of zero if every null sequence in E lies eventually in V. The space E is
called sequential if every convex sequential neighborhood of zero is a neighborhood
of zero.

We have the following easily established

Lemma 2.2. LetV be an absolutely convex absorbing subset of a locally convex
space E. Then, V is a sequential neighborhood of zero i Cifis Minkowski functional
pv is sequentially continuous.

Proposition 2.3. For a locally convex space E, the following are equivalent:

(1) E is a sequential space.

(2) Every sequentially continuous seminorm on E is continuous.

(3) For every locally convex space F, every sequentially continuous linear map
from E to F is continuous.
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(4) For every Banach space F, every sequentially continuous linear map from
E to F is continuous.

Proof. The equivalence of (1) and (2) follows from Lemma 2.2

(2) @) Let f: E - F be linear and sequentially continuous. If V is a convex
neighborhood of zero in F, then £71(V) is a convex sequential neighborhood of
zero in E and hence f~1(V) is a neighborhood of zero.

(4) (2} Let p be a sequentially continuous seminorm on E and consider the
Banach space Ep The canonical mapping m,: E - Ep is sequentially continuous
and hence continuous, which implies that p is continuous. 1

Let now (E, 1) be a locally convex space. The family of all convex sequential
T-neighborhoods of zero is a base at zero for a locally convex topology t5. The
family of polar (with respect to the pair [E, E "fsequential T-neighborhoods of
zero is a base at zero for a polar topology 1. We have the following

Proposition 2.4. 1) 1° coincides with the coarsest sequential topology finer
than T.

2) T is sequential i Tl1= t°5.

3) T° is the finest locally convex topology on E having the same convergent
sequences as T.

4) If 11 is a locally convex topology on E such that every t-null sequence is also
T1-null, then Tty is coarser then t5.

5) The topologies T and 15 have the same bounded sets.

6) If F is a locally convex space and f: E - F a linear mapping, then f is
TS-continuous i il is sequentially T-continuous.

7) 15 is generated by the family of all non-Archimedean seminorms on E which
are sequentially t-continuous.

8) 13 is the finest of all polar topologies 11 on E such that every t-convergent
sequence is also T1-convergent. If T is polar, then T < 13 and the topologies T and
15 have the same convergent sequences.

9) 13 =T5.

10) t5 is generated by the family of all sequentially T-continuous polar semi-
norms on E.

11) 3 is the largest of all polar topologies which are coarser than t°.

Proposition 2.5. Let (E,t) and (F,11) be locally convex spaces. If a linear
map
f:(E,1) - (F1a)

is continuous, then f is also (15, t§)-continuous and (T3, (T1)3)-continuous.

Using the preceding Proposition we get that the category of non-Archimedean
sequential locally convex spaces and continuous linear maps is a full coreflective
subcategory of the category of all locally convex spaces.
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—1
Corollary 2.6. If (E, 1) = ,{Ea, Tq), then

1 1
°= (1g)° and 1.= (Ta);-
all aldl

Proposition 2.7. Let (E, 1) = ,_;(Ex, ). Then

1 1
°= () and o= (W3-
k=1 k=1

Proof. Let 1o = | _,()®. By the preceding Corollary, we have 1o < T°.
On the other hand, let V be a convex sequential t-neighborhood of zero in E.

If jx: Ex — E is the canonical injection, then Vi = 'k_l(V) is a sequential Tk-
neighborhood of zero in Ei. It follows that W = |, _; Vi is a To-neighborhood of
zero with W [V which proves that T° < 1o.

The proof for the case of T3 is analogous. 1

Recall that a locally convex space E is called polarly bornological (see [9]) if
every subset of E, which is polar with respect to the pair [H, E "Fand which absorbs
bounded sets is a neighborhood of zero. Equivalently, E is polarly bornological if
every polar seminorm on E, which is bounded on bounded sets, is continuous.

Proposition 2.8. Let (E, 1) be a locally convex space.
1) If (E, 1) is bornological, then T = T5.
2) If (E, 1) is polarly bornological, then 13 < T.

Proof. 1) It follows from the fact that T and t° have the same bounded sets.

2) Let p be a sequentially continuous polar seminorm. Then, p is bounded
on bounded sets. In fact, let B be a bounded set with sup, [gp(X) = oo. Let
[A] > 1 and choose a sequence (Xn) in B with p(xn) > |A|". Now, A™"%x, - 0
but p(A™"xn) = 1 for all n, a contradiction. Since E is polarly bornological, p is
continuous and the result follows from Proposition 2.4. 1

Proposition 2.9. If E is finite dimensional, then it is sequential.

Proof. If E is Hausdor [,then E is topologically isomorphic to K™, where n =
dim(E), and so E is sequential. If E is not Hausdor [ Jet F = {0}. Since E/F
is Hausdor [Cand finite-dimensional, its topology is given by some norm [CILIf
n: E - E/F is the quotient map, then it is easy to see that the topology of
E is given by the seminorm p(x) = [(x) LI1Thus E is seminormable and hence
sequential. 1

We have also the following easily established
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Proposition 2.10. Let {Eq : a I} be a family of locally convex spaces, E
a vector space and, for each a [I] f4: Eq — E a linear mapping. If each Eq
is sequential and if E is equipped with the finest locally convex topology for which
each fy is continuous, then E is sequential.

Corollary 2.11. Quotient spaces and direct sums of sequential locally convex
spaces are sequential.

The result about direct sums of sequential spaces also follows using the general
theory of coreflective subcategories.

For a locally convex space (E, 1), we will denote by ES the space of all sequen-
tially t-continuous linear functionals on E. Clearly ES = (E, 15)"

Definition 2.12. A subset B of E™is called sequentially T-equicontinuous
if xo 5 0 in E implies that f(xn,) — 0 uniformly for f [B, i.e.
limn _ oo SUPs el T (Xn)| = 0. Clearly every sequentially t-equicontinuous subset
of E'4s contained in ES and ES is the union of all such subsets of E~

Lemma 2.13. If B [CH s sequentially t-equicontinuous, then its bipolar
B F-vith respect to the pair [H5E Clis also sequentially t-equicontinuous.

Proof. It follows from the fact that for each x [CEl we have

sup [F(x)| = sup |F(x)|.
fBl f B

1

In the following Proposition, we will denote by b(ES, E) the strong topology
on ES.

Proposition 2.14. If T is polar, then every sequentially T-equicontinuous sub-
set H of ES is b(ES, E)-bounded.

Proof. Assume that H is not strongly bounded and let A be a 6(E, ES)-bounded
subset of E such that

sup  [F(X)| = oo.
x [A] f [H]

Since EFY CEF, the set A is o(E, ED-bounded and hence it is T-bounded since 1

is polar.

Let |A] > 1 and choose a sequence (Xn) in A and a sequence (f,) in H such
that |[f.(xn)| = |A|" for all n. Since A is bounded, we have that A™"x, % 0.
Moreover, [fa(A™"Xn)| = 1 which contradict the fact that H is sequentially t-
equicontinuous. 1

Since, for each ¥ [CBS, the seminorm pg(X) = |F(X)| is polar and sequentially
continuous, it is clear that ES = (E, t5)"



60 A. K. KATSARAS, C. PETALAS and T. VIDALIS

Proposition 2.15. 13 coincides with the topology of uniform convergence on
the sequentially T-equicontinuous subsets of ES.

Proof. It is easy to see that a subset of ES is 15-equicontinuous i (1l is sequen-
tially t-equicontinuous. Now the result follows form the fact that t; is a polar
topology. 1

Notation. For a locally convex space (E, ), we will denote by EP the space
of all bounded linear functionals on E, i.e. the space of all f [CH™hich are
bounded on t-bounded sets. By t" we will denote the topology on E® of uniform
convergence on the t-null sequences in E.

Proposition 2.16. For an absolutely convex subset H of ES, the following
assertions are equivalent:

(1) H is sequentially t-equicontinuous.

(2) H is T"-compactoid.

Proof. (1) [(2). Let p be the Minkowski functional of the polar H® of H in E.
We have that

p(x) = sup [F(x)] (x CH).
fH

Let A = {Xn : n NI}, where (Xn) is a T-null sequence in E. Let 0 <|u| <1 and
let € > 0 with 4e < |u|. There exists an index ng such that p(xn) < € if n > ng.
We choose a basis {z1,...,zk} for F = [X4,...,Xn,] Which is %—orthogonal with
respect to the seminorm p. We may assume that p(z;) = p(z2) = - - - = p(zk).

Let m < k be such that p(zj) > 0 if i = mand p(zj) = 0if i > m. We may assume

that || < p(zi) <1fori<m. Thereareg,.. .,%;EkGD, where G = [zy,...,Zm],

with gi(z;) =0ifi 8 j and gi(zi) = 1. For x = ;2; Aizi G, we have

1 Ai

) =2 sup ilp@)= sup AL

leism 1<i=m 2

Thus,
2
i) = |Ail = —p(X).
[9i OOl = |Ai] Iulp()

Since p is a polar seminorm, there exists a continuous extension g; of g; to all of
E such that

4
- g—
|93 ()l Iulp(y)
for all y [CE. Note that g; E%;f_fsfl)mz Es.
Letnow f [H and set h = I, T(z;)7;. Since ¥ [H, we have |f| < p and so

[f(zi)| = p(zi) =< 1, which implies that h Ccd (gy,...,T,,). Moreover, h =f on G.
For m <i <k, we have
4

|H|p(zi) =0,

[0;(zi)| =
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which implies that h = f on F. Finally, for n > ng, we have

4 4e
—p(Xn)=— =1.

[l =p(n) <1, [0i(xn)l = m

Therefore, |(F — h)(xn)| < 1 for all n and so f —h AP, where A° is the polar of
Ain EP. Thus
H [cd(@y,...,0m) +A°,

which proves that H is t"-compactoid.

(2) (D). Let (Xn) be a t-null sequence in E and set A = {x, : n [NI}. Since
the polar A° of A in E® is a T"-neighborhood of zero, given g & 0 in K there are
g1,...,09m in the linear hull [H] CEF of H such that

H Ccd(g,...,0m) + HAL.

Let ng be such that [gx(Xn)| < |ul, for k =1,...,m, if n = ng. Now

sup [F(Xn)| < |u|
fH

for all n = ng. In fact, let f CH. There exist g [Ccb(gs,...,gm) and h A°
such that f = g + ph, which implies that, for n = ng, we have [f(Xn)| < || since
[9(Xn)| = |u|. This proves that H is sequentially T-equicontinuous. 1

3. The Topology t°

In this section we will study the finest locally convex topology on E having the
same compactoid sets as a given locally convex topology.

Proposition 3.1. Let 11, T be locally convex topologies on E such that ev-
ery t;-compactoid is also T,-compactoid. Then, every Ti-bounded set is also To-
bounded.

Proof. Let A be a subset of E which is t;-bounded but not 1,-bounded. We
may assume that A is absolutely convex. Since A is not T,-bounded, given p K],
with |4| > 1, there exist a convex T,-neighborhood V of zero and a sequence (X)
in A with x, F_g?"V. The sequence (Yn), Yn = KU "Xn, is T1-null and hence
T;-compactoid, which implies that (yn) is T2-compactoid. Therefore, (yn) is To-
bounded and so p~"y,, 2 0, which is a contradiction since p~"y,, £VI.

Let now T be a locally convex topology on E and let By be the family of
all convex absorbing subsets V of E with the following property: For each t-
compactoid subset A of E there exists a finite subset S of E such that A [1
co(S) + V. Clearly every convex t-neighborhood of zero is in B and, for each
V [Bk and each p Y0 we have uv [Bk. If V1,V are in B¢, thenV =V; n Vs
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is also in B¢. In fact, let A be an absolutely convex T-compactoid and let |A] > 1.
There exists a finite subset S = {xy, ..., Xn} of E such that

A [cd(S)+A2V;.
By [3, Lemma 1.2], there exists a finite subset S; = {yi,...,yn} of AA such that
A [cd(S1)+ A 1v;.

Since the set B = [A + co(S1)] n (A™1V1) is a T-compactoid, using again [3,
Lemma 1.2], we can find a finite subset S, of AB V4 such that

B [Ccd(S;) + Va.

Now
A [Ccd(S; CSp)+VinVs.

In fact, let x [CA. There exists z; [cb(S;) such that x —z; A V. Since
X —z; [B, there exists z; [¢b(S;) [V] such that x —z; —z; [Wb. Since
X—21 ATV, [V, we have that x—z;—z, [N nV, and z1+2z, [cd (S; [SJ),
which completes the proof of our claim. This proves that V; n Vo [Bk. It follows
from the above that B is a base at zero for a locally convex topology ¢ finer
than T. —1

Proposition 3.2. (1) t€ is the finest locally convex topology on E having the
same compactoid sets as T.

(2) If t1 is a locally convex topology on E such that every T-compactoid is also
T;-compactoid, then 1; < T°.

(3) The topologies T and T°¢ have the same bounded sets.

(4) If (E, 1) is bornological, then T = T°.

(5) If F is a locally convex space and f: E - F a linear mapping, then f is
T¢-continuous i il maps T-compactoid sets into compactoid sets in F.

(6) T¢ = 1 iTor any locally convex space F, any linear map f: E - F
mapping T-compactoid sets into compactoid sets is T-continuous.

(7) ¢ = 1 i CTor any Banach space F, any linear function f: E - F, mapping
T-compactoid sets into compactoid sets, is T-continuous.

Proof. (1) and (2) follows easily from the definitions.

(3) It follows from (1) and Proposition 3.1.

(4) 1t follows from (3) since T < T°.

(5) Necessity follows from (1) since images of compactoid sets, under continu-
ous linear mappings, are compactoid. For the su [ciehcy, let the linear function
f: E -~ F map t-compactoid sets into compactoid sets and let V be a convex
neighborhood of zero in F. Let A be an absolutely convex t-compactoid in E
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and let |A] > 1. Since f(A) is compactoid in F, there exists a finite subset T of
AT (A) such that f(A) Ccd(T) + V. If S is a finite subset of AA with T = f(S),
then A [cd(S) + f~1(V). This proves that f~1(vV) [B; and so f~1(V) is a
T¢-neighborhood of zero.

(6) Necessity follows from (5). To prove the su [ciehcy of the condition, it
su [ced to take F = (E, t°) and consider the identity map from E to F.

(7) Suppose that, for any Banach space F, any linear function from E to F,
which maps t-compactoid sets into compactoid sets, is continuous. Let p be a 1°-
continuous non-Archimedean seminorm on E and consider the Banach space G =
ép. The canonical mapping ¢,: E -~ G maps t-compactoid sets into compactoid
sets, and so ¢, is continuous, which implies that p is T-continuous. 1

Notation 3.3. We will denote by t¢ the finest of all polar topologies 1 on E
such that every t-compactoid set is also 1;-compactoid.

We have the following easily established

Lemma 3.4. a) t¢ is the finest polar topology on E coarser than T€.

b) If T is polar, then T < t¢ and the two topologies T and t$ have the same
compactoid sets and the same bounded sets.

c) Every t-bounded set is T5-bounded.

Let us recall next the notion of the Kolmogorov diameters of a bounded set.
If p is a non-Archimedean seminorm on E and A a p-bounded set, then for each
non-negative integer n the n-th Kolmogorov diameter &, ,(A) of A, with respect
to p, is the infimum of all |u|, p K, for which there exists a subspace F of E,
with dimF < n, such that
A CEI+ uBy(0,1),

where Bp(0, 1) = {x [H: p(x) =< 1} (see [8]).
By [8], a subset A of E is t-compactoid i[1imp ., oo 0np(A) = 0 for each t-
continuous seminorm p on E.

Lemma 3.5. A non-Archimedean seminorm p on E is t-bounded, i.e. it is
bounded on bounded sets, i [Cplis bounded on t-compactoid sets.

Proof. Assume that there exists a T-bounded set A such that sup, xp(X) = oo.
Given |A| > 1, there exists a sequence (Xn) in A with p(x,) > |A?". Now, the
sequence (A" "xpn) is T-null and hence t-compactoid but sup, p(A""Xn) = 0. [

Proposition 3.6. Let Py be the family of all T-bounded non-Archimedean
seminorms p on E such that limp . oo dn,p(A) = 0 for each t-compactoid set A.
Then:

a) If p [P, and if g is a non-Archimedean seminorm on E with q < p, then
q CPk.

b) If p1,p2 [Pk, then p1 + p2 and p = max{p1, p2} are also in P+.
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c) If p [P, then |u|p Pk for each p KL

Proof. Let p [Pk and let g & 0. Given a T-compactoid set A, there exists an n
such that dn p(HA) < || since pA is T-compactoid. By [8, Proposition 3.2], there
are X, ..., Xn in E such that

HA (X, ..., Xn) + UBp(0,1)

and so
A Ccd (U, ..., 17 %n) + Bp(0,1).

This proves that By(0, 1) is in By.
Let now p1,p2 [P and p 8 0. Choose A [CK with 0 < |A| < |u]/2. Since both
ABp, (0,1) and ABy, (0, 1) are in B, the same is true for the set

V = [ABy, (0, 1)] n [ABp, (0, 1)] = A[By, (0, 1) n Bp, (0, 1)].

If p=p1+p2, thenV [B,(0,1) and so Bp(0,1) CBL. It follows that there are
Y1,...,Ym in E such that

A Lcd(y1,...,Ym) + HUBp(0, 1)

and so dm p(A) < [4|. Thus, for n = m, we have &, (A) < ||, which proves that
dn,p(A) —» 0 and so p [Pk. The proofs of the other assertions in the Proposition
follow easily from the definitions. 1

Proposition 3.7. (1) A non-Archimedean seminorm p on E is t¢-continuous
i (1l belongs to P+.
(2) The family of all polar members of P, generates the topology t5.

Proof. (1) If p B¢, then, as we have seen in the proof of the preceding
Proposition, B,(0, 1) belongs to B, and so p is t°-continuous. Conversely, let p be
T°-continuous. If A is T-compactoid, then A is T°-compactoid and so d,,,(A) - 0,
which proves that p [Pk.

(2) The proof is analogous to that of (1). 1

We have the following easily established

Proposition 3.8. If a linear map f: (E,T) - (F,T11) is continuous, then f is
(1€, 1f)-continuous and (tg, (t1)%)-continuous.

In view of the preceding Proposition, we get that the category of all locally
convex spaces (E, 1), with 1¢ = 1, and continuous linear maps is a full coreflective
subcategory of the category of all locally convex spaces.

1 1
rollary 3.9. If (E,1) = ,{Ea . Ta), then 1€ = | {Ta)® and 15 =
aDﬁTG)%-

The proof of the following Proposition is analogous to that of Proposition 2.7.
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I__Fgoposition 3.10. If (E,1) = |_;(Ex,T), then 1¢ = |, _, 1¢ and 15 =

k:l(Tk)TC'['
Proposition 3.11. (E,1%)"= (E,t¢)"= E".

Proof. If A is T-compactoid, then A is T-bounded and so A is o(E, EP)-bounded,
which implies A is o(E, EP)-compactoid. Since o(E, EP) is a polar topology, we
have that o(E, E®) < 1¢ and so

E° = (E,o(E,EP)) < (E, 5"

On the other hand, let f [(E,t%)Mand let A be a t-bounded set. Then, A is
1¢-bounded and so f is bounded on A which proves that f [CEP. 1

We will need the following Proposition which is analogous to the Grothendieck’s
interchange Theorem. We will say that a family M of subsets of a vector space
G is directed if given My, My [CIM there exists M3 [CIM containing both M;
and M.

Proposition 3.12. Let [H, F e a dual pair of vector spaces over K and let
M (resp. N) be a directed family of o(E, F)-bounded (resp. o(F, E)-bounded) sub-
sets of E (resp. F) covering E (resp. F). On E we consider the topology tn of
uniform convergence on the members of N and on F the topology tng of uniform
convergence on the members of M. Then, the following statements are equivalent:

(1) Each member of M is TN -compactoid.

(2) Each member of N is Tny-compactoid.

Proof. (1) [(2). Without loss of generality, we may assume that all members
of M and N are absolutely convex. Let H [N, M [CIM1 and y & 0. Since y™*M
is Ty -compactoid, given |A| > 1 there are Xg,...,Xn in E such that

Yy IM Ccd(Xq,...,Xn) + A THO.

The set
D = {(f(x1),...,f(xn)) : f (A}

is bounded in K". Let p [CK be such that [f(xk)| < |u| for all f [CH and for
k=12....,n. Ifz® =(0,0,...,1,...,0), where p is in the k-position, then
D [cd(z®,...,z™M). By [3, Lemma 1.2], there are fy,...,f, in H such that
D [CAto(ct,...,c"), where c® = (F(X1), ..., Fk(Xn)). Let now f [CH. There are
Yi:--+.,¥Yn in K, |yk| = 1 such that

r 1 )
fxi)=A  wbfxi), i=1,...,n.
k=1
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Leth=Ff—A k;=1 Vi Fk. If x M, then

r— 1
v ix= ANxi+z, |A|=<1, z CATHO.
i=1
We have 1 1 L1 1
[ 1 | 1 | I
h Aixi = A FGa) =N wfk(xi)) =0.
i=1 i=1 k=1
Thus,
1
Ity ™)1 = E‘Z) —A kak(Z)Eﬁ 1

k=1
since f, fix [CH and z CAT*HO. This proves that h [yM?. Therefore,
H CAto(fy,...,fa) +yMO,
which proves that H is tTn-compactoid.
(2) C(@). The proof is analogous. 1

Let 1° denote the topology on EP of uniform convergence on the T-compactoid
subsets of E. By 1% we will denote the topology on E of uniform convergence on
the t°-compactoid subsets of EP.

Proposition 3.13. }a set-P [CEP is t°-compactoid, then its bipolar B,
with respect to the pair E,EP , is also 1°-compactoid.

Proof. Let A [Elbe t-compactoid and let A° be its polar in E°. Let |A| > 1
and let f1,..., f, in E® be such that

B Ccd(fy,...,Fn) + A 1AL,

By an argument similar to the one used by Schikhof in [9, Corollary 5.8], we get
that

B Cleb (fy, ..., Fn) + ATTAY% CIab (Fy, ..., Fr) + N TA°
Ccd(Afy,..., Afy) +A°,

which proves that B is 1°-compactoid. 1

Lemma 3.14. If T is polar, then T < 1%,

Proof. Consider the dual pair [H, ETLIEP= (E, 1)5 and take M the family of
all T-compactoid subsets of E and N the family of all T-equicontinuous subsets of
E™ Since T is polar, we have that T = Ty. Using Proposition 3.12, we get that
each H [N is tpm-compactoid and so H is t°-compactoid. If now V is a polar
T-neighborhood of zero, we have that V =V % is a 1%°-neighborhood of zero, and
this proves that T < 1. —1
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Proposition 3.15. For every locally convex space (E, ), we have 1% = t¢.

Proof. Let M be the family of all T-compactoid subsets of E and N the family
of all T°-compactoid subsets of E°. Since tnpy = 1° and 5 = %, it follows from
Proposition 3.12 that every t-compactoid set is T°°-compactoid and so 1%° < t°.
Since 1% is a polar topology, we have that T%° < t<. On the other hand, if
T1 = T3, then every T-compactoid set is 1;-compactoid and so every t-bounded set
is T1-bounded, which implies that G = (E,1;)°* CEP and 1°|G < 1{. If H [Glis
19-compactoid, then H is t°-compactoid, and this implies that T%° < 1. Since 1;
is polar, we have (by the preceding Proposition) T; < 1% < 1% and so 1° = 1¢. 1

Proposition 3.16. 1%° = t¢ is the finest of all polar topologies on E which
agree with o(E, E®) on t-compactoid sets.

Proof. The topology T is polar and (E, t%°)"= EP. If A [Elis T-compactoid,
then A is T°°-compactoid and so 1% = o(E, E®) on A by [9, Theorem 5.12]. On
the other hand, let T, be a polar topology on E agreeing with o(E, E®) on t-
compactoid sets. Let A be an absolutely convex T-compactoid set. Then, A
is o(E, EP)-bounded and hence A is o(E, EP)-compactoid. Since 11 = o(E, EP)
on A, it follows that A is t;-compactoid by [10, Proposition 4.5]. Thus, every
T-compactoid set is T,-compactoid, which implies that 1; < 1% since T, is polar. 1

Corollary 3.17. An absolutely convex subset V of E is a t5-neighborhood of
zero i CTor each T-compactoid set A there are fq,...,f, in EP such that

1
{x [H=H:|fkX)|=1}nA [V
k=1

Corollary 3.18. Let T be a polar topology and assume that EP = EY Then,
t¢ is the finest of all polar locally convex topologies on E which agree with T on
T-compactoid sets.

Proof. It follows from Proposition 3.16 since T = o(E, EY on t-compactoid sets
by [9, Theorem 5.12]. 1

Proposition 3.19. For a locally convex space (E, 1), the following are equiv-
alent:

@) 3=t

(2) Every t-compactoid set is T5-compactoid.

(3) Every sequentially T-equicontinuous subset of EP is 1°-compactoid.

(4) The topologies 15 and o(E, E®) coincide on t-compactoid sets.

(5) The topologies T° and o(E®, E) coincide on every sequentially T-equicontinu-
ous subset of EP.

Proof. (1) (2 It follows from the fact that every t-compactoid set is T5-
compactoid.
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(2) @M It is obvious.
(1) @) Let H [CEP be sequentially t-equicontinuous. Then, H® is a t3-

neighborhood of zero and so H? is a t¢-neighborhood of zero. Therefore, there
exists a T°-compactoid subset B of EP such that B® [CHP. It follows that H [Bf°
and B% is t%-compactoid by Proposition 3.13.

(3) (D) It follows from Propositions 2.15 and 3.15.

(2) (@ Since ES = (E,t3)Y the topologies t$ and o(E, ES) coincide on
13-compactoid sets (by [9, Theorem 5.12]) and so they coincide on T-compactoid
sets.

(4) [(2) Let A be an absolutely convex t-compactoid. Then, A is T-bounded
and so A is a(E, ES)-bounded, which implies that A is o(E, E®)-compactoid. By
[10, Proposition 4.5], A is t;-compactoid.

(3) (B Let H [CH" be sequentially t-equicontinuous. Then, H is T°-
compactoid. Consider the topologies T° and o(E®, E). The topology t° is finer
than o(EP®, E) and it has a base at zero consisting of absolutely convex o(E®, E)-
closed sets. By [10, Theorem 1.4], 1° = o(E®, E) on H.

(5) (@) Let H be a sequentially T-equicontinuous subset of EP. Without loss
of generality, we may assume that H is absolutely convex. Since H is o(E®, E)-
bounded, it is o(EP, E)-compactoid and so H is t°-compactoid by [10, Proposi-
tion 4.5]. 1

Proposition 3.20. For every locally convex space (E,t), the following are
equivalent:

@it

(2) ES = EP.

(3) 13 coincides with the topology of uniform convergence on the t"-compactoid
subsets of EP.

@) 18 = (193

(5) 13 is finer than the topology of uniform convergence on the 1"-null sequences
in EP.

Proof. (1) &)
E’ = (E,t9)"[(H,t)"=ES CEF.

(2) (3} It follows from Proposition 2.15 and 2.16.

(3) [(I) Let 11 be the topology of uniform convergence on the T"-compactoid
subsets of EP. Since every t-null sequence is T-compactoid, we have that T" < 1°
and hence every 1%-compactoid is also T"-compactoid. Therefore, 1, = 1% = 1¢.

(1) @) It is obvious.
(4) C(T) Since 1% is polar, we have

=<1
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(3) (5] It follows from the fact that every T1"-null sequence is T"-compactoid.
(5) [C(2)Let 1, be the topology of uniform convergence on the T1"-null sequences
in EP. Since 1, is finer than o(E, EP), we have that E° [(H, 1,)"and so

ES CEf [(H, )" [H,15)"=ES.

1

Note. If T is polar, then T < t¢ and so 13 < (tf)5. Hence, in case of polar T,
in the preceding Proposition (4) may be replaced by 135 = (15)3.

Proposition 3.21. If (E, 1) is a polar space which is polarly bornological, then

T=13=1;.

Proof. Let f [CHP. The seminorm p(x) = |F(X)| is polar and it is bounded on
T-bounded sets and so p is T-continuous, since (E,T) is polarly bornological. It
follows that every f [CEP is t-continuous and so EP = ES = E Since T is polar,
we have T < 15. Thus, by Propositions 2.8 and 3.20, we have T <15 <1; <T1. [

Examples. Taking as T either the topology o ([T, ¢co) or the topology a(cq, [1),
we will look at the topologies 15, 17, T°, T5.

Every element lﬂl 3 defines a continuous linear functional f, on cy by
fy(x) = My 2 XnYn. Moreover, £} = [yIIUsing the principle of uni-
form boundedness, we get that a subset of [*% is norm-bounded i it is o([9, ¢o)-
bounded. Also, a subset of ¢y is norm-bounded i [Cit is a(co, [°)-bounded by [9,
Corollary 7.7].

We will need the following

Proposition 3.22. Let T = o([®?,¢p) and let t; be the finest locally convex
topology on =1 agreeing with T on norm-bounded (equivalently on t-bounded) sets.
Then:

1) The topology T, is polar.

2) If T2 is the metrizable locally convex topology on =T generated by the countable
family of seminorms {p, : n NI}, pn(X) = |Xn|, then T, coincides with T on norm-
bounded sets and hence T|A is metrizable on each T-bounded set A.

Proof. 1) Let B, = {x [T : XI'< n}. By [5, Theorem 5.2], T; has a base at
zero consisting of sets W of the form

L1 L1
1

™ W =Wy n (Bn +W,)

n=1

where each Wy, is a t-neighborhood of zero. We may assume that, for each n,
there exists a finite subset Sy, of ¢ such that Wy, = S2, where S? is the polar of
Shin 2. If F = ([, 11), then each W, is a polar set in F. Notethatt <1y
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and so ¢o [CEY Since By, is T-bounded, it is T-compactoid and hence, for |A| > 1,
there exists a finite subset A, of B, such that

Bn O(An) + Wn .

Taking bipolars with respect to the pair B, F 4 &nd using [9, Corollary 5.8], we
get

(Bn+ Wn)oo C(Aco (An) + Wn)oo = (Aco(An) + Wp)°®
CAWCo(An) + Wy CAA(Co(An) + Wy) CRA(B + W)

and so W9 [CAX3W. This proves that 1; has a base at zero consisting of polar sets
and so it is a polar topology.

2) Clearly 1, < 1. To show that T, = T on norm-bounded sets, let (x*) be a
norm-bounded net in E with x* 2 0. Let £ >0 and let d = sup, X*[Lety [cd
and choose €1 > 0 with g;(d + yDD K €. Let m be such that |y,| < & if n > m.
If 0 is such that [x7| <&, foralla=0g and all k =1,2,...,m, then for a = ap

we have
1
|6, yl=[0 XpynE=E€.

n

The proof of the next Proposition is similar to the one of Proposition 3.22.

Proposition 3.23. 1) On each norm-bounded subset of ¢y, the weak topology
T = o(co, ) coincides with the metrizable locally convex topology generated by
the countable family of seminorms {p, : n NI}, pn(X) = |Xnl.

2) If 13 is the finest locally convex topology on co agreeing with T on norm-
bounded sets. then T3 is polar.

Example I. Let E = ¥ and 1 = ¢([*?,¢g). If 11 is as in Proposition 3.22,
then:

1) 1% = 137 = 11 and each of these topologies is strictly coarser than the norm
topology Trand strictly finer than t.

2) If K is not spherically complete, then 11 = 13 = 15 = 15.

Proof. We show first that T = 15 on each norm-bounded set A. To show that
T5|A < T|A, it su [ced to prove that the identity map
1: (A TIA) - (A T5|A)

is continuous. Since T|A is metrizable, it su [ced to show that | is sequentially
continuous, which is clearly true. Thus T|A = 13|A and so T° < 1; by the definition
of T;. To prove that t; < 15, it is su [cieht to show that every t-null sequence
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is To-null. So, let (y™) be a t-null sequence. Then (y") is T1-bounded and hence
norm-bounded. Since T = 1; on norm-bounded sets, we have that (y") is a t-null
sequence. Thus 13 = t5. In view of Proposition 3.2, the topology T° is polar and
so T° = 13. The topology T; is coarser than the norm topology. In fact, let V be
an absolutely convex subset of E which is not a norm-neighborhood of zero. There
exists a sequence (y") in E, yT £ % yn £ M. Since 1, = T on norm-bounded
sets and since y"™ 5 0, it follows that y® 2 0 and this implies that V is not a
T1-neighborhood of zero. So, 11 < T But T3 8 Tqln fact, let e [CIT, ef =0
if K & n and ej = 1. The sequence (e") is T-null and hence 11-null, since (e") is
norm-bounded, but (e™) is not a norm-null sequence.

Finally, 15 is strictly finer than t. In fact, let 0 < |A|] < 1. The sequence (A"e")
is a sequentially T-equicontinuous subset of E°. If H = {A"e" : n [N}, then the
polar H® of H in E is a t5-neighborhood of zero by Proposition 2.15. But H° is
not a t-neighborhood of zero. In fact, assume that there exists a finite subset S
of co such that S° [CHFP. Using [11, Corollary 1.2], we get that the set [co(S)]¢ is
0(co, 1°°)-closed. Taking bipolars with respect to the pair [ch, |°°[Jand using [9,
Proposition 4.10], we get

H CHP Cs1° = [|C:°|(S)]OO
= 5y0(C0, I7)

co(S)
= [co(S)]° [Ado(S)

L]

for [A| > 1, which cannot hold since H is linearly independent. This proves that
T is strictly coarser than 15 = 1.

2) Assume that K is not spherically complete. Then (I3, C1DT= co. Since a
subset of [*? is norm-bounded i it is T-bounded, it follows that

ES = EP = ¢o = (3, IDT= (E, 1)V

Since a subset A of E is 1-compactoid i[it is T-bounded and this is true i [CA is
norm-bounded, it follows from Corollary 3.18 that t¢ = 11. Also since a subset
A of E is t-compactoid i[it is norm-bounded, it follows that the topology t°
on E® = ¢g is the norm topology of co. As it is well known, a subset H of cg is
norm-compactoid i [Cthere exists z [¢d such that

H [CH ={y [cd:|yn| <|zn| for all n}.

If p; is defined on =3 by p,(X) = sup,, [znXn]|, then the polar of H; in =3 coincides
with the set
{x 117 : p,(X) < 1}.

Thus 1% = ¢ is generated by the family of seminorms {p, : z [cd}. 1
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Example Il. Let E =c¢p and T = d(cp, [7). Then
)15 =13 =T
2) 1¢ = t¢ and this topology is strictly coarser than the norm topology Tr9f Co.

Proof. 1) It is well known that a sequence in co is norm-convergent it is
weakly convergent (see [12, p. 158]). It follows from this that the norm topology
T9n Co is coarser than T3 since the norm topology is polar. On the other hand,
every norm-convergent sequence is t-convergent and hence t3-convergent, which
implies that t° < T Therefore T° = T3 = T

2) There are norm-bounded subsets of ¢, which are not norm-compactoid. If
A is such a set, then A is t-compactoid (since it is T-bounded) and hence T°-
compactoid. This implies that 1¢ & 1t If V is an absolutely convex subset
of E which is not a norm-neighborhood of zero and if 0 < |A] < 1, then there
exists a sequence (y") in E with y" W and [¥T[£ |A|". Now the sequence
(z™) = (W\""y") is t-bounded and hence 1¢-bounded. Since z" A"V for all n,
it follows that V is not a 1¢-neighborhood of zero. This proves that T¢ is strictly
coarser that the norm topology. To prove that ¢ = 1, we consider the topology
T3 defined in Proposition 3.23. Let A be a T-bounded set and consider the identity
map

1: (A TIA) - (A T A).

If (y") is a sequence in A with y? 5 x, then y™ — x in the norm topology, which

implies that y" ™7 x since T¢ is coarser than T Thus | is sequentially continuous
and hence | is continuous since T|A is metrizable by Proposition 3.23. It follows
that T¢|A = T|A, for each T-bounded set A, and so 1¢ < 13. It is also clear that
EP = ¢f’= [ since the t-bounded subsets of E coincide with the norm-bounded
sets. Thus E® = (E, )" Since T and 13 are polar topologies, we have that 13 = t¢
and so t¢ = 1§ = 1. 1

Remark 3.24. Let F be a subspace of a locally convex space (E, 1) and let
T1 = T|F. Itis easy to see that T°|F < 1f, T¢|F = (11)§, T3|F = 17, T3|F < (11)3.
The following is an example where T|F B (11)S, T5|F B 17, 13|F B (T1)3.

Example. Assume that K is not spherically complete and take E = [3, T =
o(?,co). As we have seen 1§ = 15 = 15. Let F = ¢o, T4 = T|F. Since a subset
of F is 11-bounded i it is norm-bounded, it follows that (F,11)° = ¢f'= 3. Let
z T3 \ cp. The set

V ={x [J:|Xz[O< 1}

is a 1% = (11)¢ neighborhood of zero. But V is not a neighborhood of zero with
respect to the topology 1, = t5|F. In fact, if V were a 12-neighborhood of zero,
then there would exist y [¢d such that

*) W ={x [cd:py(x) =1} VI
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It follows easily from (*) that |z,| < |yn|, for all n, and so z ¢4, a contradiction.
Thus 15 is strictly coarser than (11)S. Since V is clearly a convex sequential T;-
neighborhood of zero, it follows that T°|F is strictly coarser than 17 and that t3|F
is strictly coarser than (11)3.

4. Sequential Spaces of Continuous Functions

Let X be a zero-dimensional Hausdor [tbpological space and let BoX be its
Banaschewski compactification (see [1]). As in [1], voX is the set of all x [BHX
with the following property: For every sequence (Vy) of neighborhoods of x in pX
we have n72;Vnh n X 8 By [1, Theorem 9], voX is the N-repletion vyX of X.
Let E be a Haudor [CIbcally convex space over K and let C(X, E) be the space
of all continuous E-valued functions on X. We will denote by Cs(X, E) (resp.
C:(X,E)) the space C(X, E) equipped with the topology of simple convergence
(resp. of compact convergence). If f is a function from X to E, p a seminorm on
E and A a subset of X, we define

FLal, = sup{p(f(x)) : x CAL}.

Let now p be a non-zero non-Archimedean continuous seminorm on E and set
GP = {p(s) : s CH}. On GP we consider the ultrametric d defined by
Lo ifa=b
d(a,b) = .
max{a,b}, ifaghb.
Under this metric, GP becomes a real-compact, strongly ultraregular, non-compact

topological space and so ugeX = voX = v\X (see [1, Theorem 9]). If f is in
C(X, E), then the function

fp: X =GP, () = p(F(x)),

is continuous and so it has a continuous extension ﬁ, to all of vpX.

Proposition 4.1. If Cs(X,E) or C.(X, E) is sequential, then E is sequential
and X is N-replete.

Proof. Let W be a convex sequential neighborhood of zero in E. Let F =
Cs(X,E) (resp. F = C.(X, E)) and suppose that F is sequential. Let xo [X.
The set

VvV ={f [A: f(xo) M1}

is a convex sequential neighborhood of zero in F. Since F is sequential, there
exists a finite (resp. compact) subset D of X and a continuous seminorm ¢ on E
such that

™ {f [H: Ol =1} V1
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It follows from (*) that
{s H:q(s) =1} [\

and so V is a neighborhood of zero in E.

To prove that X is N-replete, suppose that there exists yo [vdX \ X. Let p be a
continuous non-zero seminorm on E. We define g on F by q(f) = Fp(yo). It is easy
to see that g is a non-Archimedean seminorm on F. Moreover, g is sequentially
continuous.

In fact, let f, —» 0 in F and suppose that q(f,) @ 0. Going to a subsequence if
necessary, we may assume that q(f,) > € > 0 for all n. Set

Vo ={y CmX : (Fa)p(y) > €}.

Each V,, is a neighborhood of yg in voX and so np2;Va n X 8§ [let z [V n X
for all n. For this z, we have p(f,(z)) > € for all n, which contradicts the fact
that f, - 0in F.

Proposition 4.2. If E is metrizable, then the following assertions are equiva-
lent:
(1) Cs(X, E) is bornological.
(2) Cs(X, E) is sequential.
(3) C.(X, E) is bornological.
(4) C.(X, E) is sequential.
(5) Cs(X, K) is bornological.
(6) Cs(X, K) is sequential.
(7) Cc(X, K) is bornological.
(8) Cc(X, K) is sequential.
(9) X is N-replete.

Proof. Since every bornological space is sequential, it follows from the preceding
Proposition that each of the (1)—(8) implies (9). Also, by [6, Theorem 2.9], (1) -
B) = (9) and (5) = (7) = (9). Thus the result follows. 1
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