AVOIDANCE IN TRIPLE SYSTEMS

T. S. GRIGGS and A. ROSA

1. Introduction

A triple system $\operatorname{TS}(v, \lambda)$ is a pair (V, \boldsymbol{B}) where V is a v-set of elements, and \boldsymbol{B} is a collection of 3 -subsets of V called triples or lines such that every 2-subset of V is contained in exactly λ triples. The number v is called the order of the triple system and λ its index. A triple system of index $1, \operatorname{TS}(v, 1)$, is also called a Steiner triple system, $\operatorname{STS}(v)$, and a triple system of index 2 , $\mathrm{TS}(v, 2)$ is sometimes called a twofold triple system, $\operatorname{TTS}(v)$.

If in the above definition of a triple system, "in exactly λ " is replaced by "in at most λ ", we have a partial triple system $\operatorname{PTS}(v, \lambda)$. We will use the term configuration to describe a partial triple system with a small or fixed number of lines. We will often denote a configuration just by \boldsymbol{C} rather than by (v, \boldsymbol{C}) when there is no danger of confusion or when it is irrelevant what the actual element-set is. In what follows we will always assume $v \geq 3$.

It is possible for a triple system with $\lambda>1$ to contain the same triple $\{x, y, z\}$ more than once; such a triple is then termed repeated. A $\operatorname{TS}(v, \lambda)$ is simple if it contains no repeated triples.

If \boldsymbol{C} is a configuration, we will say that a $\operatorname{TS}(v, \lambda)($ or a $\operatorname{PTS}(v, \lambda))(V, \boldsymbol{B})$ contains \boldsymbol{C} if there exists a $\operatorname{PTS}\left(U, \boldsymbol{C}^{\prime}\right)$ with $U \subseteq V, \boldsymbol{C}^{\prime} \subseteq \boldsymbol{B}$ and $\boldsymbol{C} \simeq \boldsymbol{C}^{\prime}$. Otherwise, (V, \boldsymbol{B}) will be said to avoid \boldsymbol{C} or to be without \boldsymbol{C}.

It has been shown by Hanani (cf. $[\mathbf{H}]$) that a $\operatorname{TS}(v, \lambda)$ exists if and only if $v \in B(\lambda)$ where $B(\lambda)$ is the set of admissible values of v for given λ, i.e. the set of values of v satisfying the obvious arithmetic necessary conditions. Explicitly,

$$
B(\lambda)= \begin{cases}\{v: v \equiv 1 \text { or } 3(\bmod 6) & \text { if } \lambda \equiv 1 \text { or } 5(\bmod 6)\} \\ \{v: v \equiv 0 \text { or } 1(\bmod 3) & \text { if } \lambda \equiv 2 \text { or } 4(\bmod 6)\} \\ \{v: v \equiv 1(\bmod 2) & \text { if } \lambda \equiv 3(\bmod 6)\} \\ \{v: v \geq 3 & \text { if } \lambda \equiv 0(\bmod 6)\}\end{cases}
$$

[^0]Let now \boldsymbol{C} be a configuration. The avoidance set $\Omega(\boldsymbol{C}, \lambda)$ for \boldsymbol{C} and given λ is the set

$$
\Omega(\boldsymbol{C}, \lambda)=\{v: v \in B(\lambda) \text { and } \exists \operatorname{TS}(v, \lambda) \text { without } \boldsymbol{C}\}
$$

Whenever convenient, we may consider $U(\boldsymbol{C}, \lambda)=B(\lambda) \backslash \Omega(\boldsymbol{C}, \lambda)$, i.e.

$$
U(\boldsymbol{C}, \lambda)=\{v: v \in B(\lambda) \text { and } \forall \mathrm{TS}(v, \lambda) \text { contain } \boldsymbol{C}\}
$$

Similarly, if Σ is a set of configurations, the simultaneous avoidance set $\Omega(\Sigma, \lambda)$ for Σ and given λ is the set

$$
\Omega(\Sigma, \lambda)=\{v: v \in B(\lambda) \text { and } \exists \mathrm{TS}(v, \lambda) \text { without } \boldsymbol{C} \text { for all } \boldsymbol{C} \in \Sigma\}
$$

Trivially, $\Omega(\Sigma, \lambda) \subseteq \bigcap_{C \in \Sigma} \Omega(\Sigma, \lambda)$.
Although not in this setting, in at least one case the problem of determining the avoidance set has been attempted in the literature: several papers are devoted to the spectrum problem for anti-Pasch Steiner triple systems $[\mathbf{B}],[\mathbf{G M P}],[\mathbf{S W}]$, a problem which is still not completely settled. In this paper, we determine the avoidance sets for all configurations with up to three lines, leaving just a couple of undecided individual cases in the case of two of the three-line configurations.

2. Avoiding Two-Line Configurations

The following observations are immediate.
Lemma 2.1. If $\Sigma^{\prime} \subseteq \Sigma$ are two sets of configurations then $\Omega(\Sigma, \lambda) \subseteq \Omega\left(\Sigma^{\prime}, \lambda\right)$ for any λ.

Lemma 2.2. If C, C^{\prime} are two configurations and C contains C^{\prime} then $\Omega\left(C^{\prime}, \lambda\right) \subseteq \Omega(C, \lambda)$.

In what follows we will often use the following result on the existence of triple systems without repeated triples which was first proved by Dehon [D].

Lemma 2.3. A simple $T S(v, \lambda)$ exists if and only if $v \in B(\lambda)$ and $\lambda \leq v-2$.
There are exactly 4 nonisomorphic two-line configurations as shown in Fig. 1.

Figure 1

It is easily seen (and well known) that if (V, \boldsymbol{B}) is a $\operatorname{TS}(v, \lambda)$ with $v>7$, there must exist two triples $B, B^{\prime} \in \boldsymbol{B}$ such that $B \cap B^{\prime}=\emptyset$. The following theorem is then almost immediate.

Theorem 2.4. Let $A_{1}, A_{2}, A_{3}, A_{4}$ be the four two-line configurations as in Fig. 1. Then

$$
\begin{aligned}
& \Omega\left(A_{1}, \lambda\right)=B(\lambda) \cap\{3,4,5,6,7\} \\
& \Omega\left(A_{2}, \lambda\right)=B(\lambda) \cap\{3,4\} \\
& \Omega\left(A_{3}, \lambda\right)=B(1) \\
& \Omega\left(A_{4}, \lambda\right)=B(\lambda) \cap\{v: v \geq \lambda+2\}
\end{aligned}
$$

Proof. The assertion of the theorem concerning A_{4} is a restatement of Lemma 2.3. The rest is obvious.

The following result on simultaneous avoidance sets is easy to establish; nevertheless, it will be useful for us in the next section, and so we state it explicitly.

Theorem 2.5.

$$
\begin{aligned}
\Omega\left(\left\{A_{1}, A_{2}\right\}, \lambda\right) & =\Omega\left(A_{2}, \lambda\right)=B(\lambda) \cap\{3,4\}, \\
\Omega\left(\left\{A_{1}, A_{3}\right\}, \lambda\right) & =\{3,7\}, \\
\Omega\left(\left\{A_{1}, A_{4}\right\}, \lambda\right) & = \begin{cases}\{3,7\} & \text { if } \lambda=1, \\
\{4,6\} & \text { if } \lambda=2, \\
\{5\} & \text { if } \lambda=3, \\
\emptyset & \text { if } \lambda \geq 4,\end{cases} \\
\Omega\left(\left\{A_{2}, A_{4}\right\}, \lambda\right) & =\Omega\left(\left\{A_{1}, A_{2}, A_{4}\right\}, \lambda\right)= \begin{cases}\{3\} & \text { if } \lambda=1, \\
\{4\} & \text { if } \lambda=2, \\
\emptyset & \text { if } \lambda \geq 3,\end{cases} \\
\Omega\left(\left\{A_{2}, A_{3}\right\}, \lambda\right) & =\Omega\left(\left\{A_{1}, A_{2}, A_{3}\right\}, \lambda\right)=\{3\}, \\
\Omega\left(\left\{A_{3}, A_{4}\right\}, \lambda\right) & = \begin{cases}B(1) & \text { if } \lambda=1, \\
\emptyset & \text { if } \lambda \geq 2,\end{cases} \\
\Omega\left(\left\{A_{1}, A_{3}, A_{4}\right\}, \lambda\right) & = \begin{cases}\{3,7\} & \text { if } \lambda=1, \\
\emptyset & \text { if } \lambda \geq 2,\end{cases} \\
\Omega\left(\left\{A_{2}, A_{3}, A_{4}\right\}, \lambda\right) & =\Omega\left(\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}, \lambda\right)= \begin{cases}\{3\} & \text { if } \lambda=1, \\
\emptyset & \text { if } \lambda \geq 2 .\end{cases}
\end{aligned}
$$

Proof. An exercise using Lemmas 2.1 and 2.2.

3. Avoiding Three-Line Configurations

There are exactly 16 nonisomorphic three-line configurations in triple systems shown in Fig. 2. The first five of these contain no repeated pairs.

Figure 2.

We now turn to determining the avoidance sets for each $B_{i}, i=1,2, \ldots, 16$. The avoidance set for B_{i} is finite if $i \in\{1,2,3,4,5\}$ but is infinite for the remaining configurations.

Denote $N(i, j)=\{n: i \leq n \leq j, n$ integer $\}$. The following is a simple but useful lemma.

Lemma 3.1. Let C be a $\operatorname{PTS}(v, \lambda)$ without A_{4} (i.e., containing no repeated triples). Then $v \in \Omega(C, \lambda)$ implies $v \in \Omega(C, m \lambda)$ for any integer $m \geq 1$.

Proof. Take a $\mathrm{TS}(v, \lambda)$ avoiding C, and repeat each triple m times.
Lemma 3.2. Any $\operatorname{TS}(v, \lambda)$ with $v \geq 12$ contains B_{1}.
Proof. Let (V, \boldsymbol{B}) be a $\operatorname{TS}(v, \lambda)$ with $v \geq 12$. Then \boldsymbol{B} must contain two disjoint triples, say, $\{a, b, c\}$ and $\{d, e, f\}$. Let $Y=V \backslash\{a, b, c, d, e, f\}$, and assume that \boldsymbol{B} avoids B_{1}; then if $\{x, y, z\} \in \boldsymbol{B}$ and $\{x, y\} \subseteq Y$, we must have $z \in\{a, b, c, d, e, f\}$. A simple counting argument shows that this is impossible if $|Y| \geq 8$, i.e. if $v \geq 14$. Thus it remains only to consider $v \in\{12,13\}$.

Let first $v=13$, and let $Y=\{1,2,3,4,5,6,7\}$. Then for $u \in\{a, b, c, d, e, f\}$, the set $F_{u}=\{\{v, w\}:\{u, v, w\} \in \boldsymbol{B},\{v, w\} \subset Y\}$ is a λ-factor of λK_{7} on Y, and $\boldsymbol{F}=\left\{F_{a}, F_{b}, F_{c}, F_{d}, F_{e}, F_{f}\right\}$ is a λ-factorization of λK_{7} on Y. It is easily seen that then there exist three edges which are pairwise disjoint and belong to three distinct λ-factors of \boldsymbol{F}, say, w.l.o.g., $\{m, n\} \in F_{a},\{p, q\} \in F_{b},\{r, s\} \in F_{c}$. But then $\{a, m, n\},\{b, p, q\},\{c, r, s\}$ are three disjoint triples forming B_{1}.

Let now $v=12$. We present the proof for $\lambda=2$; the proof for an arbitrary $\lambda=$ 2μ is similar, with only the obvious modifications. Let now $Y=\{1,2,3,4,5,6\}$, and let $\{1,2, u\},\{1,2, v\}$ be the two triples containing $\{1,2\}$. Distinguish the following three cases.

Case 1. $u \in\{a, b, c\}, v \in\{d, e, f\}$. Then there is at least one triple $\{x, y, w\}$ with $\{x, y\} \subset\{3,4,5,6\}, w \in\{a, b, c, d, e, f\} \backslash\{u, v\}$, say, $w=b$. But then $\{1,2, u\},\{x, y, b\},\{d, e, f\}$ are three parallel triples.

Case 2. $\{u, v\} \subset\{a, b, c\}, u \neq v$. Then \boldsymbol{B} contains no triple of the form $\{x, y, w\}$ with $\{x, y\} \subset\{3,4,5,6\}, w \in\{a, b, c\}$ since otherwise we would have $\{x, y, w\},\{d, e, f\}$ and $\{1,2, t\}, t \in\{u, v\}, t \neq w$, as three parallel triples. Thus all triples $\{x, y, w\}$ with $\{x, y\} \subset\{3,4,5,6\}$ must have $w \in\{d, e, f\}$. If $\{x, y, w\},\{r, s, z\} \in \boldsymbol{B}$ with $\{x, y, r, s\}=\{3,4,5,6\}$ and $w \neq z,\{w, z\} \subset$ $\{d, e, f\}$ then we have three parallel triples $\{x, y, w\},\{r, s, z\}$ and $\{1,2, u\}$. It follows that the triples containing $\{x, y\} \subset\{3,4,5,6\}$ are, w.l.o.g., $\{3,4, d\}$, $\{5,6, d\},\{3,5, e\},\{4,6, e\},\{3,6, f\},\{4,5, f\}$, each taken twice. But then all 8 triples containing the pairs $\{1, x\}, x \in\{3,4,5,6\}$ must have as its third element $w \in\{a, b, c\}$ which is impossible.

Case 3. $u=v \in\{a, b, c\}$. In fact, if neither of the above cases is to occur, then all triples $\{x, y, w\}$ with $\{x, y\} \subset\{1,2,3,4,5,6\}, w \in\{a, b, c, d, e, f\}$ are repeated. W.l.o.g., let the triples containing 1 be $\{1,2, a\}$, $\{1,3, b\},\{1,4, c\}$, $\{1,5, d\}$, and let $\{1,6, e\}$, each repeated twice. But then there can be no triple in \boldsymbol{B} containing $\{1, f\}$.

Theorem 3.3.

(i) $\Omega\left(B_{1}, 1\right)=\{3,7\}$;
(ii) $\{3,7\} \subseteq \Omega\left(B_{1}, \lambda\right) \subseteq\{3,7,9\}$ if $\lambda \equiv 1,5(\bmod 6), \lambda>1$;
(iii) $\Omega\left(B_{1}, 2\right)=\{3,4,6,7,9\}$;
(iv) $\{3,4,6,7,9\} \subseteq \Omega\left(B_{1}, \lambda\right) \subseteq\{3,4,6,7,9,10\}$ if $\lambda \equiv 2,4(\bmod 6), \lambda>2$;
(v) $\{3,5,7\} \subseteq \Omega\left(B_{1}, 3\right) \subseteq\{3,5,7,11\}$;
(vi) $\{3,5,7\} \subseteq \Omega\left(B_{1}, \lambda\right) \subseteq\{3,5,7,9,11\}$ if $\lambda \equiv 3(\bmod 6), \lambda>3$;
(vii) $N(3,9) \subseteq \Omega\left(B_{1}, \lambda\right) \subseteq N(3,11)$ if $\lambda \equiv 0(\bmod 6)$.

Proof. Trivially, any $\operatorname{TS}(v, \lambda)$ with $v \leq 8$ avoids B_{1}, thus in view of Lemma 3.2 it suffices to consider $v \in\{9,10,11\}$. Also Lemma 3.2 proves (ii) and (vi). While the unique $\operatorname{STS}(9)$ is resolvable and thus contains four disjoint parallel classes (i.e. $B_{1} s$), there exists a $\operatorname{TTS}(9)$ without B_{1}. In fact, exactly five out of 36 nonisomorphic $\operatorname{TTS}(9)$, namely Nos. 13, 22, 34, 35, and 36 in the listing of [MR] avoid B_{1}. This together with Lemma 3.1 implies that $9 \in \Omega\left(B_{1}, \lambda\right)$ for all $\lambda \equiv 0$ (mod 2). This proves (i), (iv) and (vii). An inspection of the 960 nonisomorphic TTS(10) (cf. [GGMR], [CCHR]) reveals that each of them contains B_{1}. This proves (iii). None of the 22521 nonisomorphic $\operatorname{TS}(9,3)$ avoids $B_{1}[\mathbf{M L}]$ which proves (v).

Let us remark that some of the undecided cases in Theorem 3.3 could be settled if one knew what is the largest possible index λ in an indecomposable $\operatorname{TS}(9, \lambda)$ with repeated triples.

Theorem 3.4. $\Omega\left(B_{2}, \lambda\right)=(B(\lambda) \cap N(3,9)) \backslash\{8\}$.
Proof. It is easy to see that any $\mathrm{TS}(v, \lambda)$ with $v \geq 10$ contains B_{2}. At the same time, clearly any $\operatorname{TS}(v, \lambda)$ with $v \leq 7$ avoids B_{2}, thus it is suffices to consider $v \in\{8,9\}$. The unique $\operatorname{STS}(9)$ avoids B_{2}, and so $9 \in \Omega\left(B_{2}, \lambda\right)$ for all $\lambda \geq 1$ by Lemma 3.1. Finally, consider a $\operatorname{TS}(8, \lambda)$. It must contain two disjoint triples, say, $a b c, d e f$. Then any triple through the two remaining elements must have as its third element one of a, b, c, d, e, f, yielding B_{2}.

Theorem 3.5. $\Omega\left(B_{3}, \lambda\right)=B(\lambda) \cap N(3,6)$.
Proof. Trivially, any $\operatorname{TS}(v, \lambda)$ with $v \leq 6$ avoids B_{3}. To show that any $\operatorname{TS}(v, \lambda)$ with $v \geq 7$ must contain B_{3}, consider the neighbourhood of an element x. This is a multigraph whose vertices are elements other than x, and whose edges (with corresponding multiplicities) are pairs $y z$ such that $x y z$ is a triple. A copy of B_{3} corresponds to a 3-edge matching in a neighbourhood. This observation immediately implies that any $\operatorname{TS}(v, \lambda)$ with $v \geq 8$ contains B_{3}. For a $\operatorname{TS}(7, \lambda)$ not to contain B_{3}, the neighbourhood of every element would have to consist (if we suppress the multiplicities) of two disjoint triangles; it is well known that this is impossible (cf. [CR]).

Theorem 3.6. $\Omega\left(B_{4}, \lambda\right)=B(\lambda) \cap N(3,7)$.
Proof. Clearly any $\operatorname{TS}(v, \lambda)$ with $v \leq 6$ avoids B_{4}. The unique $\operatorname{STS}(7)$ avoids B_{4}, and so $7 \in \Omega\left(B_{4}, \lambda\right)$ for all $\lambda \geq 1$ by Lemma 3.1. Consider now an arbitrary $\mathrm{TS}(8, \lambda)$. It must contain two disjoint lines, say $X=\{a, b, c\}, Y=\{d, e, f\}$, and let p, q be the remaining two elements. The element p occurs in λ triples with q, and so it must occur in $5 \lambda / 2$ triples of type $p z z^{\prime}$ with $z, z^{\prime} \in X \cup Y$. Similarly, q must occur in $5 \lambda / 2$ other triples of type $q z z^{\prime}$. If one of these triples were of type $p x y$ or $q x y, x \in X, y \in Y$, it would yield together with X and Y a copy of B_{4}. Assume therefore that there are no triples of type $p x y$ or $q x y$, thus there are altogether 5λ triples of types $p x x$, pyy, $q x x$, qyy. Consider now all triples containing pairs $x y, x \in X, y \in Y$. Clearly, there are $9 \lambda / 2$ such triples, all of type either $x x y$ or $x y y$. Thus there would by $9 \lambda / 2+5 \lambda=19 \lambda / 2$ pairs of type $x x$ or $y y$ but there are only $6 \lambda-6$ pairs of type $x x$ or $y y$ available, a contradiction. Thus any $\operatorname{TS}(8, \lambda)$ contains B_{4}. A proof that any $\operatorname{TS}(v, \lambda)$ with $v \geq 9$ contains B_{4} presents no difficulties, and is left to the reader.

Theorem 3.7. $\Omega\left(B_{5}, \lambda\right)=B(\lambda) \cap N(3,5)$.
Proof. Any $\operatorname{TS}(v, \lambda)$ with $v \leq 5$ avoids B_{5}. On the other hand, any $\operatorname{TS}(v, \lambda)$ with $v \geq 6$ must contain B_{5}. Let (V, \boldsymbol{B}) be a $\operatorname{TS}(v, \lambda)$. By Theorem 2.4, \boldsymbol{B} must contain a copy of A_{2}, i.e. two lines, say 123 and 145. Let $X=V \backslash\{1,2,3,4,5\}$. Assume \boldsymbol{B} does not contain B_{5}; then \boldsymbol{B} does not contain lines $24 x, 25 x, 34 x, 35 x$ with $x \in X$. Let now $x \in X$ be arbitrary. Let the multiplicity of lines $12 x, 13 x$, $14 x, 15 x, 23 x$, and $45 x$ in \boldsymbol{B} be a, b, c, d, e, and f, respectively. Assuming one of a, b, c, d, e, f equal to 0 leads quickly to a contradiction, thus all of a, b, c, d, e, f are >0. Thus in turn implies that \boldsymbol{B} does not contain lines $234,235,245,345$. The pairs 24 and 25 can now only occur in lines 124 and 125 , respectively, both of which must have multiplicity λ giving a contradiction.

Before proceeding further, we note that any $\operatorname{STS}(v)$ avoids every configuration containing repeated pairs.

Theorem 3.8.

(i) If $\lambda \not \equiv 0(\bmod 6)$ then

$$
\Omega\left(B_{6}, \lambda\right)= \begin{cases}B(1) & \text { if } \lambda \equiv 1,5(\bmod 6), \\ B(2) \backslash\{4\} & \text { if } \lambda \equiv 2,4(\bmod 6), \\ B(3) \backslash\{5\} & \text { if } \lambda \equiv 3(\bmod 6) .\end{cases}
$$

(ii) If $\lambda \equiv 0(\bmod 6)$ then

$$
B(6) \backslash\{4,5,8,14,20\} \subseteq \Omega\left(B_{6}, \lambda\right) \subseteq B(6) \backslash\{4,5\}
$$

Proof. Clearly, every TS $(4, \lambda)$ or $\operatorname{TS}(5, \lambda)$ must contain B_{6}. In view of Lemma 3.1 , in order to prove (i) it suffices to show that (i) holds for $\lambda=1,2,3$. In view of the remark preceding Theorem 3.8, $\Omega\left(B_{6}, 1\right)=B(1)$. In order to prove $\Omega\left(B_{6}, 2\right)=B(2) \backslash\{4\}$, it obviously suffices to show $v \in \Omega\left(B_{6}, 2\right)$ for all $v \equiv 0,4$ $(\bmod 6), v \geq 6$. We proceed by establishing a sequence of claims.
I. $v \in \Omega\left(B_{6}, 2\right) \Longrightarrow 2 v+4 \in \Omega\left(B_{6}, 2\right)$.

Let (X, \boldsymbol{B}) be a $\operatorname{TTS}(v)$ avoiding B_{6}, with $X=\left\{x_{1}, \ldots, x_{v}\right\}$. Take $V=$ $X \cup Z_{v+4}$, and let \boldsymbol{C} be the following set of triples:

$$
\begin{aligned}
\boldsymbol{C}= & \left\{\left\{x_{j}, i, i+j\right\}: i \in Z_{v+4}, j=1,2, \ldots\lfloor(v+4) / 2\rfloor\right\} \\
& \cup\left\{\left\{x_{j+\lfloor(v-2) / 2\rfloor}, i, i+j\right\}: i \in Z_{v+4}, j=4,5, \ldots,\lfloor(v+3) / 2\rfloor\right\} \\
& \cup\left\{\{i, i+1, i+3\}: i \in Z_{v+4}\right\} .
\end{aligned}
$$

Then it is easily verified that $(V, \boldsymbol{B} \cup \boldsymbol{C})$ is a $\operatorname{TTS}(2 v+4)$. Suppose $(V, \boldsymbol{B} \cup \boldsymbol{C})$ contains a copy of B_{6}, say, $a b c, a b d, a c d$. Clearly, at most one of a, b, c, d is in X since (X, \boldsymbol{B}) avoids B_{6}. If $a \in X$ then $|b-c|=|b-d|=|c-d|=(v+4) / 3$ which is impossible since $v \equiv 0,1(\bmod 3)$. If one of $b, c d \in X$, say, $b \in X$ then $a, c, d \in Z_{v+4},|a-c|=|a-d|$ but then $a c d$ cannot be a triple of \boldsymbol{C} since if $u, v, w \in Z_{v+4}$ and $u v w$ is a triple then $\{|u-v|,|u-w|,|v-w|\}=\{1,2,3\}$.
II. $\{6,10,12\} \subset \Omega\left(B_{6}, 2\right)$.

The case $v=6$ is settled by inspection of the unique $\operatorname{TTS}(6)$. Since $3 \in \Omega\left(B_{6}, 2\right)$, by applying I. we get $10 \in \Omega\left(B_{6}, 2\right)$. The following is a $\operatorname{TTS}(12)$ avoiding B_{6} : $V=Z_{4} \times Z_{3}$, base triples are $0_{0} 1_{0} 2_{1}, 0_{0} 1_{0} 3_{1}, 0_{0} 2_{0} 1_{2}, 0_{0} 2_{0} 3_{2}, 0_{0} 0_{1} 0_{2}, 0_{0} 0_{1} 0_{2}$ $(\bmod 4,3)$; the verification that this $\operatorname{TTS}(12)$ avoids B_{6} is straightforward.
III. $\Omega\left(B_{6}, 2\right)=B(2) \backslash\{4\}$.

Assume now that $v \equiv 0,4(\bmod 6), v \geq 16$, and that $u \in \Omega\left(B_{6}, 2\right)$ for all $u<v$, $u \in B(2) \backslash\{4\}$. Then $w=(v-4) / 2 \equiv 0,1(\bmod 3)$ and $w<v$. Applying I. to w then yields $v \in \Omega\left(B_{6}, 2\right)$.

Next we establish $\Omega\left(B_{6}, 3\right)=B(3) \backslash\{5\}$, again through a sequence of claims.
IV. Consider the well-known $\operatorname{TS}(v, 3)$, with $V=Z_{v}$, and base triples $0 i 2 i$, $i=1,2, \ldots,(v-1) / 2(c f$. $[\mathbf{S S}])$. In order to avoid B_{6} say, $a b c, a b d, a c d($ or $b c d)$, it is necessary that $a, b \notin\{5 b-4 a, 5 a-4 b,(5 a-b) / 4,(5 b-a) / 4,(7 a-5 b) / 2,(7 b-5 a) / 2\}$; this is so if and only if $5 \nmid v$ and $7 \nmid v$.
V. $v \in \Omega\left(B_{6}, 3\right) \Longrightarrow 2 v+1 \in \Omega\left(B_{6}, 3\right)$.

Let (V, \boldsymbol{B}) be a $\operatorname{TS}(v, 3)$ on elements $\{1,2, \ldots, v\}$ avoiding B_{6}. Let $\boldsymbol{F}=$ $\left\{F_{1}, F_{2}, \ldots, F_{v}\right\}$ be a 3 -factorization of $3 K_{v+1}$ on a set $X=\left\{x_{1}, \ldots, x_{v+1}\right\}$ disjoint from V obtained by triplicating each edge of a 1-factorization of K_{v+1}. Let $\boldsymbol{C}=\left\{\left\{i, x_{i}, y_{i}\right\}: i \in\{1,2, \ldots, v\},\left\{x_{i}, y_{i}\right\} \in F_{i}\right\}$. Then $(V \cup X, \boldsymbol{B} \cup \boldsymbol{C})$ is a $\mathrm{TS}(2 v+1,3)$ avoiding B_{6}.
VI. $v \in \Omega\left(B_{6}, 3\right) \Longrightarrow 2 v+7 \in \Omega\left(B_{6}, 3\right)$.

Let (V, \boldsymbol{B}) be a $\operatorname{TS}(v, 3)$ on elements $\{1,2, \ldots, v\}$ avoiding B_{6}, and let $X=$ $\left\{x_{1}, \ldots, x_{v+7}\right\}$ be a set disjoint from V. Let $\boldsymbol{D}=\left\{\left\{x_{i}, x_{i+1}, x_{i+3}\right\}: i \in Z_{v+7}\right\}$, and let G be the graph obtained from K_{v+7} on X by deleting all edges contained in triples of \boldsymbol{D}. Let $\boldsymbol{F}=\left\{F_{1}, \ldots, F_{v}\right\}$ be a 3 -factorization of $3 G$ obtained by triplicating each edge of a 1 -factorization of G; the latter exists by [SL]. Let $\boldsymbol{E}=\left\{\left\{i, x_{i}, y_{i}\right\}: i \in\{1,2, \ldots, v\},\left\{x_{i}, y_{i}\right\} \in F_{i}\right\}$. Then $(V \cup X, \boldsymbol{B} \cup 3 \boldsymbol{D} \cup \boldsymbol{E})$ is a $\mathrm{TS}(2 v+7,3)$ avoiding B_{6}.
VII. $\Omega\left(B_{6}, 3\right)=B(3) \backslash\{5\}$.

Obviously, it suffices to consider $v \equiv 5(\bmod 6)$. Clearly, each $\operatorname{TS}(5, \lambda)$ contains B_{6}. Since none of $11,17,23,29$ is divisible by either 5 or $7,\{11,17,23,29\} \subset$ $\Omega\left(B_{6}, 3\right)$. Assume now $v \geq 35$ and $u \in \Omega\left(B_{6}, 3\right)$ for all $u: 5<u<v, u \equiv 5$ $(\bmod 6)$. Then either $(v-1) / 2$ or $(v-7) / 2$ is $\equiv 5(\bmod 6)$, and so $v \in \Omega\left(B_{6}, 3\right)$ by V. or VI., as the case may be.

This completes the proof of part (i) of Theorem 3.8.
In order to prove (ii), it clearly suffices to consider the case $\lambda=6$. We show first that if $v \equiv 0(\bmod 3), v \geq 12$, and there exists a $\operatorname{TS}(v, 6)$ avoiding B_{6} then there exists a $\operatorname{TS}(2 v+2,6)$ avoiding B_{6}. Indeed, let (X, \boldsymbol{B}) be a $\operatorname{TS}(v, 6)$ avoiding B_{6} where $X=\left\{x_{1}, \ldots, x_{v}\right\}$, and let $V=X \cup Z_{v+2}$. Denote by $\left\langle p^{\alpha}, q^{\beta}, r^{\gamma}, \ldots\right\rangle$ the multigraph on Z_{v+2} in which two vertices i, j are joined by exactly α edges if $|i-j|=p$, by exactly β edges if $|i-j|=q$ etc. Let $F_{0}=\left\langle 1^{2}, 5\right\rangle, F_{1}=\left\langle 2^{2}, 5\right\rangle$, $F_{2}=\left\langle 3^{2}, 5\right\rangle, F_{3}=\left\langle 1^{3}\right\rangle, F_{4}=\left\langle 2^{3}\right\rangle, F_{5}=\left\langle 3^{3}\right\rangle, F_{6}=F_{7}=\left\langle 4^{3}\right\rangle, F_{8}=\left\langle 5^{3}\right\rangle$, $F_{9}=F_{10}=\left\langle 6^{3}\right\rangle, \ldots, F_{v}=\left\langle\lceil(v+2) / 2\rceil^{3}\right\rangle$. Each F_{i} is a regular graph of degree 6. Let $\boldsymbol{C}=\left\{\{i, i+1, i+3\}: i \in Z_{v+2}\right\}$, and for $x_{k} \in X$, let $\boldsymbol{D}_{k}=\left\{\left\{x_{k}, i, j\right\}\right.$: $\left.\{i, j\} \in F_{k}\right\}$. Then $\left(V, \boldsymbol{B} \cup \boldsymbol{C} \cup \bigcup \boldsymbol{D}_{k}\right)$ is a $\operatorname{TS}(v, 6)$ avoiding B_{6}. Indeed, suppose that this $\operatorname{TS}(v, 6)$ contains a copy of B_{6}, say, $a b c, a b d, a c d$. Then X can contain at most one of a, b, c, d. If X contains none of a, b, c, d then $\{|a-b|,|a-c|,|b-c|\}=$ $\{|a-b|,|a-d|,|b-d|\}=\{|a-c|,|a-d|,|c-d|\}=\{1,2,3\}$ which is clearly impossible since the triples of \boldsymbol{C} are the only triples entirely on Z_{v+2}. If X contains exactly one of a, b, c, d, say d, then there are two possibilities. Either one of the triples of our B_{6}, say $a b c$, is in \boldsymbol{C} in which case $\{|a-b|,|a-c|,|b-c|\}=\{1,2,3\}$ and then the pairs $a b, a c, b c$ have mutually distinct third elements in X; or none of the triples of B_{6} is in \boldsymbol{C} which implies that $a b, a c, b c \in \boldsymbol{D}_{d}$, and at the same time, if $\{|a-b|,|a-c|,|b-c|\}=\{p, q, r\}$ then either $p+q+r \equiv 0(\bmod v+2)$ or the sum of two of p, q, r equals the third; by our definition of the F_{i} 's, this is impossible if $v \geq 26$.

Since $v \in \Omega\left(B_{6}, 6\right)$ for all $v \equiv 0(\bmod 3), v \geq 12$, by part (i) and Lemma 3.1, it follows that $v \in \Omega\left(B_{6}, 6\right)$ for all $v \equiv 2(\bmod 6), v \geq 26$. This completes the proof of Theorem 3.8.

A 3-GDD of type $g_{1}^{u_{1}} g_{2}^{u_{2}} \ldots g_{n}^{u_{n}}$ is a group divisible design (cf. [H] or [SS]) which has u_{i} groups of cardinality $g_{i} i=1,2, \ldots, n$ and whose all blocks have cardinality 3 .

Theorem 3.9.

$$
\Omega\left(B_{7}, \lambda\right)=\Omega\left(B_{8}, \lambda\right)= \begin{cases}B(1) & \text { if } \lambda \equiv 1(\bmod 2), \\ B(2) \backslash\{6\} & \text { if } \lambda \equiv 0(\bmod 2)\end{cases}
$$

Proof. For $v \equiv 1,3(\bmod 6)$, a λ-multiple of any $\operatorname{STS}(v)$ avoids $B_{7}\left(B_{8}\right.$, respectively) by Lemma 3.1. For $v \equiv 0,4(\bmod 6)$, it obviously suffices to show $v \in \Omega\left(B_{i}, 2\right), i \in\{7,8\}$.

So let $v \equiv 0,4(\bmod 12)$, and consider a 3 -GDD of type $4^{v / 4}$ which always exists $[\mathbf{H}]$. Form a $\operatorname{TTS}(v)$ by replacing each group with a $\operatorname{TTS}(4)$ and "doubling" each block (i.e. replacing each block with two identical triples). The resulting $\operatorname{TTS}(v)$ avoids B_{7} : if $a b c$, $a b d$, ace were the 3 triples of B_{7} then $a b c$, $a b d$ would have to belong to a $\operatorname{TTS}(4)$; but then acd is also a triple, thus ace cannot be a triple. Similarly, this $\operatorname{TTS}(v)$ avoids B_{8}.

Let now $v \equiv 6,10(\bmod 12)$. Obviously, no $\operatorname{TS}(6, \lambda)$ can avoid B_{7} or B_{8}. We note next that $10 \in \Omega\left(B_{7}, 2\right)$; the corresponding $\operatorname{TTS}(10)$ avoiding B_{7} is obtained from a 3 -GDD of type 3^{3} in which the 3 groups are extended by (common) point, and the resulting 4 -sets are replaced with a $\operatorname{TTS}(4)$. Similarly, $22 \in \Omega\left(B_{7}\right)$: take a 3 -GDD of type 3^{7}, and proceed as above extending this time the 7 groups. For $v \equiv 6,10(\bmod 12), v \geq 30$, consider a $3-G D D$ of type $4^{(v-10) / 4} 10^{1}$ which exists whenever $v \geq 30[\mathbf{R H}]$. Form a $\operatorname{TTS}(v)$ by replacing each group of size 4 by a TTS(4), the group of size 10 by the above $\operatorname{TTS}(10)$, and doubling each block. Again, this $\operatorname{TTS}(v)$ clearly avoids B_{7}. The proof that it avoids B_{8} is identical.

Consider now the case $v \equiv 5(\bmod 6), \lambda \equiv 3(\bmod 6)$. We treat here in detail the case $\lambda=3$, with the cases of larger such λ being similar. By [CMS], in any such $\mathrm{TS}(v, 3)$ there exists a pair, say $a b$, not appearing in a doubly or triply repeated triple. (i) Let $a b c, a b d$ be two of the three triples containing $a b$. There are further two triples containing the pair $a c$, and two triples containing the pair $b c$. The element d can be the third element of at most 3 of these 4 triples, and so one of these triples must be ace or bce which together with $a b c, a b d$ form B_{7}. (ii) Let $a b c, a b d$, abe be the triples containing the pair $a b$. If $c d e$ is a triple then $a b c, a b d, c d e$ form B_{8}. Otherwise there are 3 triples containing $c d$, and 3 triples containing $c e$. At most two of these 6 triples can contain a as its third element, and at most two can contain b. Thus we must have a triple $c d f$ or $c e f$ where f is another element, and, in any case, we have a B_{8}.

The considerations in the only remaining case $v \equiv 2(\bmod 6), \lambda \equiv 0(\bmod 6)$ showing that B_{7} or B_{8} cannot be avoided are similar, and are left to the reader. \square

Theorem 3.10.

$$
\Omega\left(B_{9}, \lambda\right)= \begin{cases}B(1) & \text { if } \lambda \equiv 1,5(\bmod 6), \\ B(1) \cup\{4\} & \text { if } \lambda \equiv 2,4(\bmod 6), \\ B(1) \cup\{5\} & \text { if } \lambda \equiv 3(\bmod 6), \\ B(1) \cup\{4,5\} & \text { if } \lambda \equiv 0(\bmod 6) .\end{cases}
$$

Proof. Any $\operatorname{STS}(v)$ avoids B_{9}, thus by Lemma 3.1, the statement of the theorem holds for any $v \in B(1)$. Also, any $\operatorname{TS}(v, \lambda)$ trivially avoids B_{9} if $v \in\{4,5\}$. Let now $v \notin B(1)$, i.e. $v \equiv 0(\bmod 2)$ or $v \equiv 5(\bmod 6)$. Then any $\operatorname{TS}(v, \lambda)$ contains two triples (say) $a b c, a b d$. If \boldsymbol{B}_{a} is the set of triples containing a, then the number of triples of \boldsymbol{B}_{a} containing b is λ, those containing c but not b is at most $\lambda-1$, and those containing d but not b or c is at most $\lambda-1$. It follows that our $\operatorname{TS}(v, \lambda)$ must contain a triple aef whenever $3 \lambda-2<\lambda(v-1) / 2$, i.e. $v>1+(6 \lambda-4) / \lambda$, i.e. $v \geq 7$. When $v=6, \lambda$ must be even, say, $\lambda=2 \mu$. If the elements are $\{a, b, c, d, e, f\}$, then the number of blocks of \boldsymbol{B}_{a} containing b is 2μ. If c, d are two elements which occur most times with b in the triples of \boldsymbol{B}_{a}, then the number of triples of \boldsymbol{B}_{a} containing c or d but not b is less than or equal to 3μ. Since the number of triples of \boldsymbol{B}_{a} is 5μ, it follows that there must exist a triple aef. The triples $a b c, a b d, a e f$ form a copy of B_{9}.

Theorem 3.11.

$$
\Omega\left(B_{10}, \lambda\right)=\Omega\left(B_{11}, \lambda\right)= \begin{cases}B(1) & \text { if } \lambda \equiv 1,5(\bmod 6) \\ B(1) \cup\{4,6\} & \text { if } \lambda \equiv 2,4(\bmod 6) \\ B(1) \cup\{5\} & \text { if } \lambda \equiv 3(\bmod 6) \\ B(1) \cup\{4,5,6\} & \text { if } \lambda \equiv 0(\bmod 6)\end{cases}
$$

Proof. Any $\operatorname{STS}(v)$ avoids B_{10} and B_{11} which by Lemma 3.1 implies the statement for any $v \in B(1)$. Any $\operatorname{TS}(v, \lambda)$ trivially avoids B_{10} if $v \in\{4,5\}$, and B_{11} if $v \in\{4,5,6\}$. An inspection of the unique $\operatorname{TTS}(6)$ reveals that it avoids B_{10}.

Let now $v \notin B(1), v \geq 8$. For any such v, any $\operatorname{TS}(v, \lambda)$ contains A_{3} by Theorem 2.4. Let the two lines of this A_{3} be, say, $a b c, a b d$. Let X be the set of remaining $v-4$ elements, and consider the pairs $c x, d x$ where $x \in X$. There are $2(v-4) \lambda$ such pairs. If any triple containing such a pair has as its third element $y \in X$ then this triple together with $a b c, a b d$ form a B_{10}. Assume therefore that this does not happen, i.e. all pairs $c x, d x$ occur in triples where the third element is one of a, b, c, d. But there are at most λ triples $c d x$ with $x \in X$, and therefore at most 4λ further such triples $a c x, a d x, b c x, b d x$ which requires $5 \lambda \geq 2(v-4) \lambda$ which is impossible if $v \geq 8$. Thus B_{10} cannot be avoided.

Let us show now that B_{11} cannot be avoided, either, if $v \notin B(1)$ and $v \geq 8$. Consider the case of $v=8$. Let the elements of $\operatorname{TS}(8, \lambda)$ be $\{a, b\} \cup X \cup Y$ where
$X=\{1,2,3\}, Y=\{4,5,6\}$, and let 123 and 456 be two disjoint lines which exist by Theorem 2.4. Then there is a total of λ triples $a b z, z \in X \cup Y$. Assume that our $\operatorname{TS}(8, \lambda)$ avoids B_{11}. Then there are no triples of type $a x x$, ayy, bxx or byy, and consequently there are $5 \lambda / 2$ triples $a x y$ and $5 \lambda / 2$ triples $b x y$ with $x \in X$, $y \in Y$. Thus there are 2λ triples of type $x x y$ or $x y y$, and consequently, $4 \lambda / 3$ triples $\{1,2,3\},\{4,5,6\}$. Further $\lambda / 2$ of the triples $a b z$ must be of type $a b x$ and the other $\lambda / 2$ of type $a b y$. Choose one of each type, say, $a b 1$ and $a b 4$, then the only triples of type $x x y$ or $x y y$ that can occur are $124,134,234,145,146,156$; otherwise, we would have a B_{11}. At most λ of the 2λ triples of type $x x y$ and $x y y$ can contain the pair 14 , so at least λ of these must be the triples 234 and 156 . But since there are $4 \lambda / 3$ triples 123 and 456 , there are at most $2 \lambda / 3$ triples 234 and 156 (since $\{2,3\} \subset X,\{5,6\} \subset Y$) which is a contradiction.

Now assume $v>8$. The proof is similar. Let $X=\left\{x_{1}, x_{2}, x_{3}\right\}$ be any line. Then there exists a disjoint line $Y=\left\{y_{1}, y_{2}, y_{3}\right\}$. Let $W=V \backslash(X \cup Y)$ and the multiplicities of triples of type $x x x, x x y, x y y, y y y$, and $x y w$ be a, b, c, d, and e, respectively. As above there can be no triples of type $x x w$ or $y y w$. Counting pairs of elements of type $x x, x y$, and $y y$ then leads to $3(a+b+c+d)+e=15 \lambda$. Further counting of elements x and y gives that the total number of triples of type $x w w$ and $y w w$ is $3 \lambda(v-6)-e$. Continuing, the total number of triples of type $w w w$, i.e. disjoint from both X and Y is $(\lambda(v-6)(v-13)+2 e) / 6$ and is positive for $v>13$. In this case to avoid B_{11} we must have $b=c=0$ and thus $a=d=\lambda$ which could only occur if $v \in B(1)$ by choosing the $\operatorname{TS}(v, \lambda)$ to be λ copies of an $\operatorname{STS}(v)$. We are just left with the cases $v \in\{10,11,12\}$. In these cases too if the number of triples of type $w w w$ is positive then the above argument applies. Otherwise they can be disposed of in a manner similar to the case $v=8$, and are left as exercises for the reader. This completes the proof.

Theorem 3.12. $\Omega\left(B_{12}, \lambda\right)=(B(\lambda) \cap\{v: v \geq \lambda+2\}) \cup N(3,7)$.
Proof. Every $\operatorname{TS}(v, \lambda)$ with $v \in\{3,4,5\}$ trivially avoids B_{12}. Both the unique $\operatorname{TTS}(6)$ and the unique $\operatorname{STS}(7)$ avoid B_{12}, thus $\{6,7\} \in \Omega\left(B_{12}, \lambda\right)$ for any λ. It suffices now to observe that B_{12} contains A_{4}, and the rest follows from Lemma 2.2 and Theorem 2.4.

Theorem 3.13. $\Omega\left(B_{13}, \lambda\right)=(B(\lambda) \cap\{v: v \geq \lambda+2\}) \cup\{3,4\}$.
Proof. The proof is almost identical to the proof of Theorem 3.12.
Theorem 3.14. $\Omega\left(B_{14}, \lambda\right)=(B(\lambda) \cap\{v: v \geq \lambda+2\}) \cup\{3\}$.
Proof. The proof is identical to that of Theorem 3.13.
Theorem 3.15.

$$
\Omega\left(B_{15}, \lambda\right)= \begin{cases}B(1) & \text { if } \lambda \equiv 1(\bmod 2) \\ B(2) & \text { if } \lambda \equiv 0(\bmod 2)\end{cases}
$$

Proof. If $v \in B(1) \cup B(2)$, take an appropriate multiple of an $\operatorname{STS}(v)$ or of a $\operatorname{TTS}(v)$; these surely avoid B_{15}. Let now (V, \boldsymbol{B}) be a $\operatorname{TS}(v, \lambda)$ with $v \equiv 5$ $(\bmod 6) ;$ then $\lambda \equiv 0(\bmod 3)$. For any $\{a, b\} \subset V$, let $\boldsymbol{N}_{a, b}=\{x:\{x, a, b\} \in \boldsymbol{B}\}$. If $\left|\boldsymbol{N}_{a, b}\right|>2$ for some $\{a, b\} \subset \boldsymbol{B}$, there is nothing to prove. Otherwise, consider the complete graph with vertex-set V, and assign colours red and blue to its edges as follows. Start with an arbitrary edge $a b$. If $\left|\boldsymbol{N}_{a, b}\right|=1$, assign the edge $a b$ both red and blue colours. If $\left|\boldsymbol{N}_{a, b}\right|=2$, say, $\boldsymbol{N}_{a, b}=\{x, y\}$ then the triple $a b x$ occurs in $\boldsymbol{B} i$ times, and the triple aby occurs in $\boldsymbol{B} \lambda-i$ times where, without loss of generality, $i \leq \lambda-i$. Colour all three edges $a b, a x, b x$ of the triangle $a b x$ red, and all three edges of the triangle $a b y$ blue. The edge $a b$ has been coloured both red and blue but the edges $a x, b x, a y, b y$ have so far only one of the colours. If, say, $\boldsymbol{N}_{b, x}=\{a, u\}, \boldsymbol{N}_{b, y}=\{a, v\}$, colour the edges $b x, b u, x u$ of the triangle $b x u$ blue, and the edges $b y, b v, y v$ of the triangle $b y v$ red. Continue assigning the colours red and blue until there is no edge left with just one colour assigned. Two cases may occur:

Case 1. There are no uncoloured edges. Each pair of elements $a b$ occurs in a triple $a b c$ which is repeated i times, and in a triple $a b d$ which is repeated $\lambda-i$ times, as indicated by the red and blue triangles, respectively. Then the set of red triangles, each taken as a triple just once, forms a $\operatorname{TS}(v, 1)$, a contradiction, as $v \equiv 5(\bmod 6)$.

Case 2. There remain uncoloured edges. If $c d$ is an uncoloured edge and $\boldsymbol{N}_{c, d}=\{p, q\}$, say, then the triple $c d p$ occurs in $\boldsymbol{B} j$ times and the triple $c d q$ occurs in $\boldsymbol{B} \lambda-j$ times. Colour the edges of the triangle $c d p$ red, and those of the triangle $c d q$ blue, and continue assigning colours to the edges in the above manner while possible, i.e. until there is no edge with only one colour assigned. After this stage is completed, if there still remain uncoloured edges, continue the process until no uncoloured edges remain. The set of red triangles, each taken as a triple just once, is a $\operatorname{TS}(v, 1)$, again a contradiction. Thus any $\operatorname{TS}(v, \lambda)$ with $v \equiv 5(\bmod 6)$ must contain B_{15}.

Let us observe that for $\lambda=3$ this follows form [CMS] where it is shown that in any $\operatorname{TS}(v, 3)$ with $v \equiv 5(\bmod 6)$ there must exist a pair of elements not appearing in a doubly or triply repeated triple. The same follows by $[\mathbf{C M}]$ for any $\operatorname{TS}(v, 6)$ with $v \equiv 2(\bmod 6)$. The argument for $\operatorname{TS}(v, \lambda)$ with $\lambda \equiv 0(\bmod 6), \lambda>6$, is similar to the one given above, and is therefore omitted.

Theorem 3.16. $\Omega\left(B_{16}, \lambda\right)=B(\lambda) \cap\{v: \lambda \leq 2 v-4\}$.
Proof. For $\lambda \leq v-2$ the statement follows from Lemma 2.3. For $v-2<\lambda \leq$ $2 v-4$, the $\operatorname{TS}(v, \lambda)$ whose set of triples consists of the union of the set of triples of a simple $\operatorname{TS}(v, \lambda-v+2)$ (which exists by Lemma 2.3) and the set of all triples on the same v-set clearly avoids B_{16}. On the other hand, every $\operatorname{TS}(v, \lambda)$ with $\lambda \geq 2 v-4$ must contain a triple repeated at least three times.

4. Configurations with Four or More Lines

The number of nonisomorphic configurations increases very rapidly with the number of lines. For example, even when restricted to configurations without a repeated pair, the number for four lines is 16 (see [GRR]). It follows from [GRR] but is also easily seen directly that the avoidance set $\Omega\left(C_{i}, 1\right)$ for all but two of the 16 configurations $C_{i}, i=1,2, \ldots, 16$, namely C_{14} and C_{16} (the Pasch configuration), is finite. While it is conjectured that $\Omega\left(C_{16}, 1\right)=B(1) \backslash\{7,13\}$ (cf. $[\mathbf{B}],[\mathbf{G M P}],[\mathbf{S W}])$ this remains far from proved. On the other hand, $\Omega\left(C_{14}, 1\right)=$ $\left\{2^{n}-1: n>1\right\}$, and the only $\operatorname{STS}\left(2^{n}-1\right)$ avoiding C_{14} is the projective space $P G(n-1,2)$. But to determine the avoidance sets $\Omega\left(C_{i}, \lambda\right)$ for all $i \in N(1,16)$ and all λ appears to be a formidable task (the same holds, for that matter, for the simultaneous avoidance sets, even in the case of three lines).

Acknowledgements. Thanks to Charlie Colbourn for many valuable comments and discussions. This paper was written while the first author was visiting Department of Mathematics and Statistics, McMaster University; he would like to thank the department for the hospitality. The second author's research was supported by NSERC of Canada Grant No. A7268.

References

[B] Brouwer A. E., Steiner triple systems without forbidden subconfigurations, Math. Centrum Amsterdam, ZW 104/77.
[CCHR] Colbourn C. J., Colbourn M. J., Harms J. J. and Rosa A., A complete census of (10,3,2)-block designs and of Mendelsohn triple systems of order ten. III. (10, 3, 2)-block designs without repeated blocks, Congr. Numer. 37 (1983), 211-234.
[CM] Colbourn C. J. and Mahmoodian E. M., Support sizes of sixfold triple systems, Discrete Math. 115 (1993), 103-131.
[CMS] Colbourn C. J., Mathon R. A. and Shalaby N., The finite structure of threefold triple systems: $v \equiv 5(\bmod 6)$, Australasian J. Combinat. 3 (1991), 75-92.
[CR] Colbourn C. J. and Rosa A., Leaves, excesses and neighbourhoods in triple systems, Australasian J. Combinat. 4 (1991), 143-178.
[D] Dehon M., On the existence of 3-designs $S_{\lambda}(2,3, v)$ without repeated blocks, Discrete Math. 43 (1983), 155-171.
[GGMR] Ganter B., Gülzow A., Mathon R. A. and Rosa A., A complete census of (10, 3, 2)-block designs and of Mendelsohn triple systems of order ten. IV. (10,3,2)-designs with repeated blocks, Math. Schriften Kassel 5/78 5 (1978), 41.
[GMP] Griggs T. S., Murphy J. P. and Phelan J. S., Anti-Pasch Steiner triple systems, J. Combin. Inf. Syst. Sci. 15 (1990), 79-84.
[GRR] Griggs T. S., de Resmini M. J. and Rosa A., Decomposing Steiner triple systems into four-line configurations, Ann. Discrete Math. 52 (1992), 215-226.
[H] Hanani H., The existsnce and construction of balenced incomplete block designs, Ann. Math. Statist. 32 (1961), 361-386.
[ML] Mathon R. and Lomas D., A census of 2-(9, 3, 3) designs, Australas. J. Combinat. 5 (1992), 145-158.
[MR] Mathon R. A. and Rosa A., A census of Mendelsohn triple systems of order nine, Ars Combinat. 4 (1977), 309-315.
[RH] Rosa A. and Hoffman D. G., The number of repeated blocks in twofold triple systems, J. Combinat. Theory (A) 41 (1986), 61-88.
[SL] Stern G. and Lenz H., Steiner triple systems with given subspaces; another proof of the Doyen-Wilson theorem, Bollet. Un. Mat. Ital. A (5) 17 (1980), 109-114.
[SS] Street A. P. and Street D. J., Combinatorics of Experimental Design, Clarendon, Oxford, 1987.
[SW] Stinson D. R. and Wei Y. J., Some results on quadrilaterals in Steiner triple systems, Discrete Math. 105 (1992), 207-219.
T. S. Griggs, Department of Mathematics and Statistics, University of Central Lancashire, Preston PR1 2HE, England
A. Rosa, Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada L8S4K1

[^0]: Received November 10, 1992; revised July 20, 1993.
 1980 Mathematics Subject Classification (1991 Revision). Primary 05B07.

