
Acta Math. Univ. Comenianae
Vol. LXIII, 1(1994), pp. 141–153

141

ON THE CHARACTERIZATION OF PRIMAL PARTIAL

ALGEBRAS BY STRONG REGULAR HYPERIDENTITIES

K. DENECKE

1. Introduction

An identity w ≈ w′ is called a hyperidentity in a total algebra A = (A; (fAi )i∈I)

iff w = w′ holds identically in A for every choice of term functions of A to rep-

resent the operation symbols of the corresponding arities appearing in w and w′.

Hyperidentities of the algebra A correspond to the identities of the clone of term

functions T (A) of A. A clone is a superposition closed set of finitary operations

on a fixed set A containing all projections. Maximal clones of total operations

are very important for primality (completeness) and are fully known ([Ros; 65],

[Ros; 70]). In [De-Pö; 88] primality criteria were given by using hyperidentities

satisfied in the maximal clones. Clones of partial operations also play an important

role in the theory of partial algebras and in computer science (cf. e.g. [Bur; 86]).

Recently maximal partial clones were completely described by combinatorial

properties ([Had-Ros]).

In this paper we introduce the concept of a strong regular hyperidentity for

partial algebras. Then this concept will be used to get primality criteria for partial

algebras. We give some strong regular hyperidentities satisfied by maximal partial

clones. Further, two-element primal partial algebras are characterized by strong

regular hyperidentities.

2. Preliminaries

Let A be a finite non-empty set. For every positive integer n, an n-ary partial

operation on A is a map f : Df → A where Df ⊆ An. Denote by P
(n)
A the set of

all n-ary partial operations on A and put PA :=
⋃
n≥1

P
(n)
A . Let OA ⊂ PA be the set

of all total operations defined on A.
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For n,m ≥ 1, f ∈ P (n)
A and g1, . . . , gn ∈ P

(m)
A , we define the superposition of f

and g1, . . . , gn, denoted by f(g1, . . . , gn) ∈ P (m)
A , by setting

Df(g1,... ,gn) := {(a1, . . . , am) ∈ Am : (a1, . . . , am) ∈
n⋂
i=1

Dgi

∧ (g1(a1, . . . , am), . . . , gn(a1, . . . , am)) ∈ Df};

and

f(g1, . . . , gn)(a1, . . . , am) := f(g1(a1, . . . , am), . . . , gn(a1, . . . , am))

for all (a1, . . . , am) ∈ Df(g1,... ,gn).

Let JA := {eni : 1 ≤ i ≤ n < ω} be the set of all total projections.

Definition 2.1. A partial clone C on A is a superposition closed subset of PA
containing JA. If a partial clone C contains an n-ary operation f with Df 6= An

then it is called proper partial. A clone C is called total if C ⊆ OA.

Equivalently, partial clones can be regarded as subalgebras of the algebra

(PA; ∗, ξ, τ,∆, e2
1) of the type (2, 1, 1, 1, 0) where the operations ∗, ξ, τ,∆ are de-

fined in the following manner:

For n,m ≥ 1, f ∈ P
(n)
A , g ∈ P

(m)
A , t = m + n − 1, Dh = {(a1, . . . , at) ∈ At :

(a1, . . . , am) ∈ Dg ∧ (g(a1, . . . , am), am+1, . . . , at) ∈ Df} h = f ∗ g is defined by

h(a1, . . . , at) := f(g(a1, . . . , am), am+1, . . . , at)

for all (a1, . . . , at) ∈ Dh.

ξ(f) ∈ P (n)
A , τ(f) ∈ P (n)

A , ∆(f) ∈ P (n−1)
A are defined by

Dξ(f) ={(a1, . . . , an) : (a2, . . . , an, a1) ∈ Df},

ξ(f)(a1, . . . , an) = f(a2, . . . , an, a1),

Dτ(f) ={(a1, . . . , an) : (a2, a1, . . . , an) ∈ Df},

τ(f)(a1, . . . , an) = f(a2, a1, . . . , an),

D∆(f) ={(a1, . . . , an−1) : (a1, a1, a2, . . . , an−1) ∈ Df},

∆(f)(a1, . . . , an−1) = f(a1, a1, a2, . . . , an−1) if n > 1,

and ∆(f)(x) = ξ(f)(x) = τ(f)(x) = f(x) for n = 1. e2
1 is the binary projection

on the first component.

The set of all partial clones on A, ordered by inclusion, forms an algebraic lattice

LA in which arbitrary infimum is the set-theoretical intersection. For F ⊆ PA the

partial clone 〈F 〉 generated by F is the least partial clone containing F .



STRONG REGULAR HYPERIDENTITIES 143

Definition 2.2. A set (fAi )i∈I of partial operations is complete (or the partial

algebra A = (A; (fAi )i∈I) is primal) if 〈(fAi )i∈I〉 = PA.

Let A = (A; (fAi )i∈I) be a partial algebra of a given type τ , i.e. a pair consisting

of the set A and an indexed set of partial operations defined on A. The set (fAi )i∈I
of partial operations corresponds to a set (fi)i∈I of operation symbols of the type τ .

To every partial algebra A = (A; (fAi )i∈I) we can assign the partial clone generated

by (fAi )i∈I denoted by T (A). T (A) is called clone of the algebra A.

One of the striking differences between the total and the partial case is the fact

that T (A) does not agree with the set of all partial functions induced by terms

constructed from the operation symbols (fi)i∈I and variables.

Let Wτ (X) be the set of all terms constructed from variables X = {x0, . . . }
and operation symbols of the type τ .

Every n-ary term w induces an n-ary term function wA of the partial algebra

A such that wA(x1, . . . , xn) is defined exactly by the following rules:

(i) If w = xi then wA is everywhere defined and wA(x1, . . . , xn) = eni (x1, . . . ,

xn) = xi for all x1, . . . , xn ∈ A, n ≥ i ,

(ii) If w = f(w1, . . . , wm) where f is an m-ary operation symbol and wA1 , . . . ,

wAm are the n-ary term functions induced by w1, . . . , wm and wAi (x1, . . . ,

xn) are defined and wAi (x1, . . . , xn) = bi (1 ≤ i ≤ m) and fA(b1, . . . , bm)

is defined then wA(x1, . . . , xn) = fA(b1, . . . , bm).

Remark that in general in the partial case the set of all functions induced by

terms is a proper subset of the clone of the partial algebra.

Some partial clones can be defined by relations.

Definition 2.3. Let h and n be positive integers, let ρ be an h-ary relation

on A (i.e. ρ ⊆ Ah) and let f be an n-ary partial operation. We say that f

preserves ρ if from (a11, . . . , a1h) ∈ ρ, . . . , (an1, . . . , anh) ∈ ρ and (a11, . . . , an1) ∈
Df , . . . , (a1h, . . . , anh) ∈ Df it follows (f(a11, . . . , anh), . . . , f(a1h, . . . , anh)) ∈ ρ.

Let POL ρ denote the set of all f ∈ PA preserving ρ. (Clearly POL ρ is a

partial clone).

Example. Let 0 ∈ A and let

POL {0} :=
⋃
n≥1

{ f ∈ P (n)
A : (0, . . . , 0) ∈ Df ⇒ f(0, . . . , 0) = 0 },

then POL {0} is a proper partial clone on A. (Remark that in the total case we

write Pol ρ.)

Definition 2.4. A maximal partial clone is a coatom (dual atom) of the lattice

LA of all partial clones on A.

The knowledge of all maximal partial clones is basic for finding a general com-

pleteness criterion. For |A| = 2 all maximal partial clones are determined by



144 K. DENECKE

Freivald ([Frei; 66]) and for |A| = 3 by Romov ([Rom; 80]) and Lau ([Lau; 77]).

For an arbitrary |A| ≥ 2 Haddad and Rosenberg ([Had-Ros; 87], [Had-Ros])

determined all maximal partial clones.

Let f, g ∈ P
(n)
A . Then g is called a subfunction of f , symbolically g ≤ f if

Dg ⊆ Df and if f |Dg = g. A partial clone C ⊆ PA is strong if it is closed under

taking subfunctions. Clearly, the set POL ρ is a strong partial clone for a h-ary

relation ρ. Let M be a maximal partial clone on A. Then there are the following

cases:

(1) If M is not strong then M = OA ∪{on |n ∈ N∗}, where on is the nowhere

defined n-ary operation (the n-ary partial function with empty domain,

N∗ is the set of all positive integers).

(2) If M is strong then M = POL ρ where ρ is a relation from one of the

classes described in [Had-Ros; 87] or in [Had-Ros].

For A = {0, 1} there are exactly the following maximal partial clones.

Theorem 2.5 ([Frei; 66]). L{0,1} =: L2 is co-atomic and has exactly 8 co-

atoms:

(1) M = OA ∪ {on |n ∈ N∗}
(2) POL {0}
(3) POL {1}
(4) POL {(0, 1)}
(5) POL {(0, 0), (0, 1), (1, 1)}
(6) POL {(0, 1), (1, 0)}
(7) POL R1 with R1 = {(x, x, y, y) : x, y ∈ {0, 1}} ∪ {(x, y, y, x) : x, y ∈
{0, 1}},

(8) POL R2 with R2 = R1 ∪ {(x, y, x, y) : x, y ∈ {0, 1}}.

A subset F of P2 := P{0,1} is complete iff F is not contained in one of the maximal

partial clones listed in (1)–(8).

3. Strong Regular Hyperidentities of Partial Algebras

Let A = (A; (fAi )i∈I) be a partial algebra of a given type τ and let w,w′ be

terms of this type. Assume that in w and in w′ the same variables occur.

Definition 3.1. w ≈ w′ is called a strong regular identity of A if the partial

functions wA and w′A induced by w and w′ agree (and if w and w′ contain the same

variables). That means: w ≈ w′ is a strong identity of A if the right hand side is

defined whenever the left hand side is defined and if both sides agree (A |=
s

w ≈ w′).

Definiton 3.2. The strong regular identity w ≈ w′ of A is called a strong

regular hyperidentity of the partial algebra A if for every substitution of n-ary
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functions from T (A) for n-ary operation symbols of w, w′ the result is a strong

regular identity of A: A |=
s hyp

w ≈ w′ or T (A) |=
s hyp

w ≈ w′.

4. One-point Extension

At first we will investigate hyperidentities built up from unary operation sym-

bols only (unary hyperidentities). In the total case such hyperidentities are studied

in [De-Pö; 88]. To use these results we need a method to come from the partial

to the total case.

Let f ∈ P
(n)
A and ∞ 6∈ A. Then we define a total function (the one-point-

extension of f) f+ : Bn → B with B = A ∪ {∞} by

f+(a1, . . . , an) =

{
f(a1, . . . , an), if (a1, . . . , an) ∈ Df

∞, otherwise.

f+ is a function defined on B with the property f+(∞, . . . ,∞) = ∞, i.e. f+ ∈
POL {∞} ⊂ OB.

Every strong (regular) hyperidentity of a partial algebra A which contains only

unary operation symbols corresponds to an identity of the monoid of all unary

operations of the clone of the partial algebra A ; i.e. of T (1)(A) = (T (1)(A); ◦; idA)

where ◦ is the composition of unary functions and idA is the identity function

defined on A (clearly, identities and hyperidentities built up from unary operation

symbols only are regular).

Remark that the mapping +: PA −→ OB defined by f 7→ f+ is no clone

embedding since for a 6= ∞ we have e2
1(a,∞) = ∞ 6= e2,B

1 (a,∞) = a. Let A =

(A; (fAi )i∈I) be a partial algebra and let T (1)(A) be the set of all unary operations

of the clone of the algebra A. Consider (T (1)(A))+ = {f+ | f ∈ T (1)(A)}; i.e. the

set of all one-point-extensions of unary operations of the clone of the algebra A.

Proposition 4.1. (T (1)(A))+ is closed with respect to the composition of total

functions.

Proof. Let f+
1 ∈ (T (1)(A))+ and f+

2 ∈ (T (1)(A))+, i.e. f1 ∈ T (1)(A) and f2 ∈
T (1)(A). Since T (A) is a clone we get f1◦f2 ∈ T (1)(A) and (f1◦f2)+ ∈ (T (1)(A))+.

(f1 ◦ f2)+ is defined by

(f1 ◦ f2)+(a) =

{
(f1 ◦ f2)(a), if a ∈ Df1◦f2

∞, otherwise
=

{
f1(f2(a)), if a ∈ Df1◦f2

∞, otherwise.

Clearly, a ∈ Df1◦f2 iff a ∈ Df2 and f2(a) ∈ Df1 . a ∈ Df2 means f2(a) = f+
2 (a).

Consequently,

(f1 ◦ f2)+(a) =

{
f1(f+

2 (a)), if a ∈ Df2 and f2(a) ∈ Df1

∞, otherwise

=

{
f1(f+

2 (a)), if f+
2 (a) ∈ Df1

∞, otherwise.
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Further, if f+
2 (a) ∈ Df1 then f1(f+

2 (a)) = f+
1 (f+

2 (a)) and (f1 ◦ f2)+(a) = (f+
1 ◦

f+
2 )(a) =∞ if f+

2 (a) 6∈ Df1 . It follows that (f1 ◦ f2)+ = f+
1 ◦ f

+
2 ∈ (T (1)(A))+.�

Proposition 4.2. (T (1)(A))
(+)

= ((T (1)(A))+; ◦, idA) is isomorphic to

T (1)(A) = (T (1)(A); ◦, idA).

Proof. Because of (f ◦ g)+ = f+ ◦ g+ we have only to show that the mapping

+: T (1)(A) → (T (1)(A))+ defined by f 7→ f+ is one-to-one. By the definition of

(T (1)(A))+ the mapping + is surjective.

Let f+ = g+, i.e. f+(a) = g+(a) for all a ∈ B = A∪{∞}. If a ∈ Dg ∩Df then

f(a) = f+(a) = g+(a) = g(a). a ∈ Dg and a 6∈ Df is impossible since otherwise

g(a) = g+(a) 6= ∞, but f+(a) = ∞. Similarly a ∈ Df , a 6∈ Dg is impossible. If

a 6∈ Df and g 6∈ Dg then f+(a) = g+(a) = ∞ and g and f are not defined. This

means that f = g. �

This isomorphism shows that to every unary hyperidentity satisfied in A there

corresponds a unary hyperidentity satisfied in A+.

5. Unary Hyperidentities Satisfied in Maximal Partial Clones

We mention some definitions and results of [De-Pö; 88] concerning unary

hyperidentities of total algebras.

Definition 5.1. Let A = {1, . . . , n}, n > 1, and let f be a total unary function

defined on A. fm is defined as the m-fold composition of f with fo := id. Put

κ(n) = lcm {1, . . . , n}. We set Im f := {f(a) : a ∈ A} (image of f). Let λ(f)

denote the least non-negative integer m such that Im fm = Im fm+1 and put

o(f) = ordn (f |Im fλ(f)) where f |Im fλ(f) is a permutation and ordn (g) is the

order of a permutation.

Proposition 5.2. Let |A| = n and f ∈ O(1)
A . Then

(i) o(f)|κ(n),

(ii) 0 ≤ λ(f) ≤ |Im f | and λ(f) ≤ n− 1,

(iii) λ(f) = 0⇔ f is a permutation,

(iv) λ(f) = n− 1⇔ there exists an element d ∈ A such that

A = {d, f(d), f2(d), . . . , fn−1(d), fn(d) = fn−1(d)},

(v) If m′ ≥ m and p|p′ then fm = fm+p implies fm
′

= fm
′+p′ ,

(vi) fm = fm
′
⇔ m,m′ ≥ λ(f) and m ≡ m′ mod o(f),

(vii) fλ(f) = fλ(f)+o(f) = fλ(f)+κ(n).

Further in [De-Pö; 88] the following was proved.
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Lemma 5.3.

(i) OA |=
hyp

ϕn−1(x) ≈ ϕn−1+κ(n)(x).

OA 6|=
hyp

ϕn−2(x) ≈ ϕn−2+κ(n)(x).

OA 6|=
hyp

ϕn−1(x) ≈ ϕn−1+κ(n−1)(x), if κ(n) 6= κ(n−1), i.e. if n is a prime

power.

(ii) Pol B |=
hyp

ϕn−1(x) ≈ ϕn−1+κ(n−1)(x) (∅ 6= B ⊂ A),

(iii) Pol ρs |=
hyp

ϕn−2(x) ≈ ϕn−2+κ(n)(x) with ρs = {(a, s(a)) : a ∈ A and s is

a permutation on A}.

Remark that if M is a total maximal clone containing not all unary functions

then

M |=
hyp

ϕn−1(x) ≈ ϕn−1+κ(n−1)(x) or M |=
hyp

ϕn−2(x) ≈n−2+κ(n) (x).

Using Lemma 5.3 and Proposition 5.2 we get:

Theorem 5.4.

(i) PA |=
s hyp

ϕn(x) ≈ ϕn+κ(n)(x), PA 6|=
s hyp

ϕn(x) ≈ ϕn+κ(n−1)(x), (if κ(n) 6=

κ(n− 1), i.e. if n is a prime power), PA 6|=
s hyp

ϕn−1(x) ≈ ϕn−1+κ(n)(x),

(ii) If f is a proper partial function, i.e. ∅ 6= Df ⊂ A, then fn(x) =

fn+κ(n−1)(x),

(iii) For the non-strong maximal partial clone we get OA ∪ {on |n ∈ N∗} |=
s hyp

ϕn−1(x) ≈ ϕn−1+κ(n)(x),

(iv) Let M be a strong maximal partial clone and let Mt be the subclone of

all total operations of M . If Mt |=
s hyp

ϕn−1(x) ≈ ϕn−1+κ(n−1)(x) then

M |=
s hyp

ϕn(x) ≈ ϕn+κ(n−1)(x).

Proof.

(i) (P
(1)
A )+ is included in Pol{∞} ⊂ OB. Therefore, by Lemma 5.3(ii)

we have (P
(1)
A )+ |=

s hyp

ϕn(x) ≈ ϕn+κ(n)(x) and Proposition 4.2 shows

P
(1)
A |=

s hyp

ϕn(x) ≈ ϕn+κ(n)(x) and therefore PA |=
s hyp

ϕn(x) ≈ ϕn+κ(n)(x).

ϕn(x) ≈ ϕn+κ(n−1)(x) is not satisfied for certain permutations, therefore

PA 6|=
s hyp

ϕn(x) ≈ ϕn+κ(n−1)(x). By Proposition 5.2(iv) λ(f+) = n iff
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there exists an element d ∈ B such that B = {d, f+(d), . . . , fn+1(d) =

(f+)n(d)}. Then (f+)n(x) ≈ (f+)n+κ(n)(x) and fn(x) = fn+κ(n)(x) and

PA 6|=
s hyp

ϕn−1(x) ≈ ϕn−1+κ(n)(x).

(ii) If Df ⊂ A then there is an element i ∈ {1, . . . , n} with f+(i) = ∞,

therefore o(f+) ≤ κ(n− 1) and (f+)n(x) = (f+)n+κ(n−1)(x) and fn(x) =

fn+κ(n−1)(x).

(iii) follows from Lemma 5.3 (i).

(iv) Let Mp be the set of all proper partial operations then Mp ∪ {on |n ∈
N∗} |=

s hyp

ϕn(x) ≈ ϕn+κ(n−1)(x). Altogether we have M |=
s hyp

ϕn(x) ≈

ϕn+κ(n−1)(x).

Remark. If for the set of all total functions of a partial clone we have Mt |=
s hyp

ϕn−2(x) ≈ ϕn−2+κ(n)(x), then altogether we have M |=
s hyp

ϕn(x) ≈ ϕn+κ(n)(x)

and M cannot be “ separated ” from PA by unary hyperidentities with one oper-

ation symbol.

6. A Characterization of Two-Element Primal

Partial Algebras by Strong Regular Hyperidentities

For the maximal partial subclones (1)–(5) of Theorem 2.5 of P2 we get the

following strong regular hyperidentities (using Theorem 5.4)

M = O2 ∪ {o
n : n ∈ N∗} |=

s hyp

ϕ(x) ≈ ϕ3(x)

POL {0} |=
s hyp

ϕ2(x) ≈ ϕ3(x)

POL {1} |=
s hyp

ϕ2(x) ≈ ϕ3(x)

POL {(01)} |=
s hyp

ϕ2(x) ≈ ϕ3(x)

POL {(00), (01), (11)} |=
s hyp

ϕ2(x) ≈ ϕ3(x).

By Theorem 5.4(i) P2 6|=
s hyp

ϕ2(x) ≈ ϕ3(x) and P2 6|=
s hyp

ϕ(x) ≈ ϕ3(x), i.e. M ,

POL {0}, POL {1}, POL {(01)}, POL {(00), (01), (11)} can be “separated” from

P2 using these hyperidentities. The maximal clones POL R1 and POL R2 contain

all unary partial functions defined on {0, 1}. Consequently, these clones cannot be

separated from P2 by unary hyperidentities. But we show
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Lemma 6.1. Let ε be the following regular hyperidentity: ε : H1(x, y) ≈
H2(x, y) with

H1 = F (F (S1, F (S1, S1)), F (S1, S1)),

H2 = F (F (S2, S2), F (F (S2, S2), S2)),

S1 = F (F (T1, T1), F (F (T1, T1), T1)),

S2 = F (F (T2, T2), F (T2, T2)),

T1 = F (F (x, y), F (F (y, x), F (y, y))),

T2 = F (F (x, y), F (F (F (y, x), F (y, y)), F (x, y)))

and F is a binary operation symbol.

Then POL {(0, 1), (1, 0)} |=
s hyp

ε, POL R1 |=
s hyp

ε, POL R2 |=
s hyp

ε, but

P2 6|=
s hyp

ε.

Proof. We prove the following facts:

fact1: Every binary partial function on {0, 1} which is not everywhere defined

satisfies ε,

fact2: Every binary total function from POL {(0, 1), (1, 0)}, POL R1, and POL R2

satisfies ε,

fact3: There is a binary function from P2 which does not satisfy ε.

Proof of fact 1:

Consider two cases: case 1: x = a, y = b, a, b ∈ {0, 1}, a 6= b and case 2:

x = y = a ∈ {0, 1}.
Case 1: Let f be a binary partial function on {0, 1} which is not everywhere

defined. If f is not defined on one of the pairs (a, b), (b, a), (b, b) then T1 and T2

are not defined and H1 and H2 are not defined. If f is defined on (a, b), (b, a),

(b, b), then f is not defined on (a, a). For T1 and T2 we have:

T1 = f(f(a, b), f(f(b, a), f(b, b))) and

T2 = f(f(a, b), f(f(f(b, a), f(b, b)), f(a, b))).

Assume that f(a, b) = a. If f(f(b, a), f(b, b)) = a then T1 and T2 are not defined

and therefore H1 and H2 are not defined. If f(f(b, a), f(b, b)) = b, then T1 = a

and T2 = f(a, f(b, a)). If f(b, a) = a then T2 is not defined. If f(b, a) = b then

T2 = a. If T1 = a then S1 and H1 are not defined. If T2 = a or T2 is not defined

then S2 and H2 are not defined.

Now we assume that f(a, b) = b. If f(f(b, a), f(b, b)) = b then T1 = f(b, b)

and T2 = f(b, f(b, b)). If f(b, b) = b then T1 = T2 = S1 = S1 = b and thus

H1 = H2 = b. If f(b, b) = a then T1 = a, T2 = f(b, a). Then S1 and H1 are not

defined. If f(b, a) = a then S2 and H2 are not defined and if T2 = f(b, a) = b then
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S2 = f(f(b, b), f(b, b)) = f(a, a) is not defined and therefore H2 is not defined.

Let us assume that f(f(b, a), f(b, b)) = a. It follows that T1 = f(b, a) and

T2 = f(b, f(a, b)) = f(b, b). Now we discuss all possibilities for f(b, a) and f(b, b).

f(b, a) = f(b, b) = a is impossible since otherwise f(f(b, a), f(b, b)) = f(a, a)

would not be defined. f(b, a) = a, f(b, b) = b is also impossible since otherwise

f(f(b, a), f(b, b)) = f(a, b) = a in contradiction to the presumption f(a, b) = b.

f(b, a) = b, f(b, b) = a leads to a contradiction because of f(f(b, a), f(b, b)) =

f(b, a) = a = b. The last case is that f(b, a) = b, f(b, b) = b. Then we have

T1 = f(b, f(b, b)) = b,

T2 = f(b, f(f(b, b), b)) = f(b, f(b, b)) = b.

Further we get S1 = S2 = b and H1 = H2 = b. If f(f(b, a), f(b, b)) is not defined

then T1, T2, S1, S2, H1, H2 are not defined.

Case 2: If x = y = a then

T1 = f(f(a, a), f(f(a, a), f(a, a))),

T2 = f(f(a, a), f(f(f(a, a), f(a, a)), f(a, a))).

If f is not defined on (a, a) then T1, T2, S1, S2 and H1, H2 are not defined. Assume

f(a, a) is defined.

If f(a, a) = a then T1 = f(a, a) = a, T2 = f(a, f(f(a, a), a)) = a, S1 = S2 = a and

H1 = H2 = a.

If f(a, a) = b then T1 = f(b, f(b, b)) and T2 = f(b, f(f(b, b), b)).

Assume that f(b, b) is not defined. Then T1, S1, H1 and T2, S2, H2 are not defined.

If f(b, b) = b then T1 = b, T2 = b, S1 = S2 = b and H1 = H2 = b. If

f(b, b) = a then T1 = f(b, f(f(a, a), f(a, a))) = f(b, f(b, b)) = f(b, a) and T2 =

f(f(a, a), f(f(f(a, a), f(a, a)), f(a, a))) = f(b, f(f(b, b), b)) = f(b, f(a, b)).

If f(b, a) is defined then f(a, b) is not defined and therefore T2, S2 and H2 are not

defined.

Assume that f(b, a) = b. Then T1 = b, S1 = f(f(b, b), f(f(b, b), b)) = f(a, f(a, b))

and S1 is not defined. Consequently, H1 is not defined.

Now assume that f(b, a) = a. Then T1 = a and S1 = f(f(a, a), f(f(a, a), a)) =

f(b, f(b, a)) = f(b, a) = a and H1 = f(f(a, f(a, a)), f(a, a)) = f(f(a, b), b)) is not

defined.

If f(b, a) is not defined then T1, S1, H1 are not defined. If then f(a, b) is not

defined then T2, S2, H2 are not defined. If f(a, b) = a then T2 = f(b, a) is not

defined and thus H2 is not defined. If f(a, b) = b then T2 = f(b, b) = a. S2 =

f(f(a, a), f(a, a)) = f(b, b) = a and H2 = f(f(a, a), f(f(a, a), a)) = f(b, f(b, a)) is

not defined.

Proof of fact 2: e2
1, e2

2, Ne2
1, Ne2

2 are all total binary functions of POL {(0, 1), (1, 0)}
(N denotes the negation), i.e. O2 ∩ POL {(0, 1), (1, 0)} = {e2

1, e
2
2, Ne

2
1, Ne

2
2}. e

2
1,
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e2
2, Ne2

1, Ne2
2, c20, c21 belong to POL R1 and also to POL R2. These functions are

all binary functions not depending essentially on both variables.

Let f be a binary function defined on {0, 1}. If f ∈ POL R1 then from

(x1, y1, y1, x1) ∈ R1, (x2, x2, y2, y2) ∈ R1 for x1 6= y1, x2 6= y2 we obtain (f(x1, x2),

f(y1, x2), f(y1, y2), f(x1, y2)) ∈ R1, i.e. f(x1, x2) = f(y1, x2) and f(y1, y2) =

f(x1, y2) or f(x1, x2) = f(x1, y2) and f(y1, x2) = f(y1, y2). It follows f ∈
{e2

1, e
2
2, c

2
0, c

2
1, Ne

2
1, Ne

2
2}. Consequently O2 ∩ POL (2)R1 = {e2

1, e
2
2, c

2
0, c

2
1,

Ne2
1, Ne

2
2}. It is easy to check that x+ y, N(x+ y) ∈ POL R2.

If f is a binary function and f ∈ POL R2 then from (x1, x1, y1, y1) ∈ R2,

(x2, y2, y2, x2) ∈ R2, (x1, y1, x1, y1) ∈ R2, (x2, y2, y2, x2) ∈ R2 we get (f(x1, x2),

f(x1, y2), f(y1, y2), f(y1, x2)) ∈ R2 and f(x1, x2), f(y1, y2), f(x1, y2), f(y1, x2)) ∈
R2, i.e.

f(x1, x2) = f(x1, y2) and f(y1, y2) = f(y1, x2) or

f(x1, x2) = f(y1, x2) and f(x1, y2) = f(y1, y2) or

f(x1, x2) = f(y1, y2) and f(x1, y2) = f(y1, x2).

Similarly,

f(x1, x2) = f(y1, y2) and f(x1, y2) = f(y1, x2) or

f(x1, x2) = f(y1, y2) and f(y1, y2) = f(x1, y2) or

f(x1, x2) = f(x1, y2) and f(y1, y2) = f(y1, x2).

It follows f ∈ {e2
1, e

2
2, c

2
0, c

2
1, Ne

2
1, Ne

2
2, x + y,N(x + y)} and therefore O2 ∩

POL (2)R2 = {e2
1, e

2
2, c

2
0, c

2
1, Ne

2
1, Ne

2
2, x+ y,N(x+ y)}. It is easy to check that all

these functions fulfil ε.

Using fact 1 and fact 2 we have

POL {(01), (10)} |=
s hyp

ε, POL R1 |=
s hyp

ε, POL R2 |=
s hyp

ε.

Now we come to fact 3.

Proof of fact 3: Consider the total function g(x, y) = Nx∧Ny. For x = y = 1 we

have

T1 = f(f(1, 1), f(f(1, 1), f(1, 1))) = f(0, f(0, 0)) = f(0, 1) = 0,

S1 = f(f(0, 0), f(f(0, 0), 0)) = f(1, f(1, 0)) = f(1, 0) = 0,

H1 = f(f(0, f(0, 0)), f(0, 0)) = f(f(0, 1), 1) = 0,

T2 = f(f(1, 1), f(f(f(1, 1), f(1, 1)), f(1, 1))) = f(0, f(f(0, 0), 0)) = f(0, f(1, 0))

= f(0, 0) = 1,
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S2 = f(f(1, 1), f(1, 1)) = f(0, 0) = 1 and

H2 = f(f(1, 1), f(f(1, 1), 1)) = f(0, f(0, 1)) = f(0, 0) = 1,

i.e. H1 6= H2. This shows P2 6|=
hyp

ε. �

Now we can prove the following primality criterion:

Theorem 6.2. A two-element partial algebra A = ({0, 1}; (f
{0,1}
i )i∈I) is primal

if and only if A satisfies none of the following strong regular hyperidentities:

(i) ϕ(x) ≈ ϕ3(x),

(ii) ϕ2(x) ≈ ϕ3(x),

(iii) ε : H1(x, y) ≈ H2(x, y) with H1, H2 defined as in Lemma 6.1.

Proof. A = ({0, 1}; (f
{0,1}
i )i∈I) is primal iff (f

{0,1}
i )i∈I) is complete, i.e.

〈(f{0,1}i )i∈I〉 = P2. A subset of P2 is complete iff it is not contained in any

maximal subclone of P2.

Every clone contained in M = O2 ∪ {On : n ∈ N∗} satisfies ϕ(x) ≈ ϕ3(x). Ev-

ery clone contained in POL {0}, POL {1}, POL {(01)}, POL {(00), (01), (11)} sat-

isfies ϕ2(x) ≈ ϕ3(x) and every clone contained in POL {(00), (01), (11)}, POL R1,

POL R2 satisfies ε, i.e. if A is not primal then at least one of the three hyperi-

dentities is satisfied. If A is primal then (f
{0,1}
i )i∈I is not contained in one of the

maximal subclones of P2 and thus none of the hyperidentities is satisfied. �

Remark that it is easier to check a hyperidentity than to find it. The hyperi-

dentity ε was given by Welke ([Wel; 91]) using a computer program.
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