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ON PERTURBED ITERATIVE LINEAR

DIFFERENTIAL EQUATIONS OF ORDER n

J. MORAVČÍK

Abstract. Some sufficient conditions, under which all solutions of a perturbed
iterative linear differential equation of the n-th order tend to zero for x → ∞, are
established in this paper.

Consider a linear differential equation of second order

(p) u′′ + p(x)u = 0

on an interval I = (a, b), −∞ ≤ a < b ≤ ∞, p ∈ Cn−2(I), n ≥ 3.

Let u1, u2 be linearly independent solutions of (p) on I. Let functions yi : I →
R = (−∞,∞), i = 1, 2, . . . , n be determinated by an identity yi(x) = ui−1

1 (x)

un−i2 (x) for all x ∈ I. The fact uj ∈ Cn(I), j = 1, 2 implies yi ∈ Cn(I) for

all i = 1, 2, . . . , n. It is known (see e.g. [5]) that the Wronskian of functions

y1, y2, . . . , yn is non-vanishing on I. There exists a linear differential equation of

the n-th order such that these functions form its fundamental system of solutions.

We shall denote this equation

(pn) [p]n(y, x; I) = 0 .

According to [1], [3] or [4] the equation (pn) is called the iterative equation of the

n-th order. The differential equation (p) is called the accompanying equation of

the equation (pn).

Consider now a differential equation

(a) [p]n(y, x; I) + δ(x)y = 0

where δ : I → R, δ ∈ C(I), which is obtained by a perturbation of the iterative

equation (pn).
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Let

(b) [q]n(z, t;J) + r(t)z = 0

be a perturbation of the iterative differential equation

(qn) [q]n(z, t;J) = 0

with the accompanying equation

v̈ + q(t)v = 0

on an interval J .

Definition. We say, that the equation (a) is globally equivalent on I to the

differential equation (b) on J , if there exists an ordered pair {f, h} of functions

such that

a) f : I → R, f ∈ Cn(I), f(x) 6= 0 on I, h ∈ Cn+1(I), h′(x) 6= 0 on I, h(I) = J ;

b) the function y : I → R, y(x) = f(x)z[h(x)] is a solution of the equation (a)

on I whenever z is a solution of the equation (b) on J .

It is known that the relation of differential equations in our definition has pro-

perties of an equivalence. We shall denote this relation by

(1) (a)I ∼
g

(b)J{f(x), h(x)}.

We will need the following lemma.

Lemma 1 ([3] or [4]). The relation (1) is true if and only if for all x ∈ I

(2) f(x) = C|h′(x)|(1−n)/2

where C 6= 0 is a real constant, the function h is a solution of the next system of

the non-linear equations

{h(x), x}+ q[h(x)]h′
2
(x) = p(x), x ∈ I(3)

r[h(x)]h′
n
(x) = δ(x), x ∈ I(4)

where {h(x), x} = h′′′(x)/2h′(x) − 3/4[h′′(x)/h′(x)]2 is the Schwarzian derivative

of the function h in a number x.

Further we shall consider the case when the function q(t) = k ∈ R+ = (0,∞)

identically for all t ∈ J . First we shall prove the following lemma.
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Lemma 2. Let p ∈ Cn−2(I), δ ∈ Cn(I), δ(x) 6= 0 on I. Then (1) is true if

and only if (2) is true for all x ∈ I, r ∈ Cn(J), r(t) 6= 0 on J , sgn r(t) = sgn δ(x)

and the function h fulfills on I the system of equations

(5) |h′(x)| = |δ(x)|1/n|r[h(x)]|−1/n,

{
p(x) +

2n+ 1

4n2

[
δ′(x)

δ(x)

]2

−
1

2n

δ′′(x)

δ(x)

}
|δ(x)|−2/n =

=

{
k +

2n+ 1

4n2

[
ṙ[h(x)]

r[h(x)]

]2

−
1

2n

r̈[h(x)]

r[h(x)]

}
|r[h(x)]|−2/n,

(6)

where k is a positive constant, ′ = d
dx

, ˙ = d
dt

.

Proof. Let (1) be true. When is δ(x) 6= 0 on I, then it follows from (4) that

r[h(x)] 6= 0 on I, sgn r[h(x)] = sgn δ(x). Since h(I) = J , it implies that r(t) 6= 0

on J , sgn r(t) = sgn δ(x). The equations (4) and (5) are evidently equivalent on

I. From (5) we get by the derivation, step by step (in the case when sgn h′ =

sgn δ = sgn r = 1; in the another case we can proceed by analogy),

h′′(x) =
1

n
[δ(x)]−(n−1)/nδ′(x)[r(h(x)]−1/n

−
1

n
[δ(x)]2/n[r(h(x))]−(n+2)/n ṙ(h(x)),

(7)

h′′′(x) =
1− n

n2
[δ(x)](1−2n)/nδ′

2
(x)[r(h(x)]−1/n

+
1

n
[δ(x)](1−n)/nδ′′(x)[r(h(x))]−1/n

−
3

n2
[δ(x)]−(n−2)/nδ′(x)[r(h(x))]−(n+2)/n ṙ(h(x))

+
n+ 2

n2
[δ(x)]3/n[r(h(x))]−(2n+3)/n ṙ2(h(x))

−
1

n
[δ(x)]3/n[r(h(x))]−(n+3)/n r̈(h(x)) .

(8)

Substituting derivatives from (5), (7), (8) in the equation (3), where q[h(x)] ≡ k,

and making some transformations we obtain (6).

Let inversely r ∈ Cn(J), r(t) 6= 0 on J , sgn δ(x) = sgn r(t) and the function

h fulfills the system of equations (5) and (6) on I. In view of these assumptions

each solution h of the equation (5) has the next properties:

1) h ∈ Cn(I), h′(x) 6= 0 and h′ fulfills the equation (4) on I;
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2) when the function h fulfills the equation (6) on I, then this function fulfills

also the equation (3), because both equations are equivalent.

Hence all assumptions of the Lemma 1 are fulfilled. That means that the

relation (1) holds.

This completes the proof. �

We can now establish the main result.

Theorem. Let J = (α,∞), α ≥ −∞; and let r ∈ Cn(J) be a real function

with the next properties:

1) r(t) 6= 0 on J and limt→∞ r(t) = 0;

2)
∞∫
t0

|r(s)| ds <∞, t0 > α;

3)
∞∫
t0

|r(s)|1/n ds =∞ and

(9) R(t) =

∫ t

t0

|r(s)|1/n ds, t ∈ J .

In addition let the coefficients of differential equation (a) satisfy the following

conditions:

(i) p ∈ Cn−2(I), δ ∈ Cn(I), where I = (a,∞), a ≥ −∞, sgn δ(x) = sgn r(t)

and either

(ii) δ(x) > 0 on I and lim infx→∞ δ(x) > 0 or

(iii) δ(x) < 0 on I and lim supx→∞ δ(x) < 0.

If the function h : I → R,

(10) h(x) = R−1

(∫ x

x0

|δ(s)|1/n ds

)
, x0 ∈ I

where R−1 means the inverse function to R, fulfills the equation (6) on I, then all

solutions of the differential equation (a) tend to zero for x→∞.

Proof. The function R defined by (9) is obviously increasing on J and according

to the property 3) it transforms the interval 〈t0,∞) on the interval 〈x0,∞). The

function h given by (10) is therefore defined on I and transforms the interval

〈x0,∞) on the interval 〈t0,∞) because the condition (ii) or (iii) implies that the

integral
∫∞
x0
|δ(s)|1/n ds is divergent. Further for the function h we obtain:

h′(x) = R′−1

(∫ x

x0

|δ(s)|1/nds

)
|δ(x)|1/n =

= Ṙ(t)−1

∣∣∣∣
t=h(x)

|δ(x)|1/n = |δ(x)|1/n|r(h(x))|−1/n .
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This means, that h′(x) > 0 for all x ∈ I and the function h fulfills the equation

(5) on I. When we put for any x ∈ I

(11) f(x) = C|h′(x)|(1−n)/2 = C|δ(x)|(1−n)/2n|r[h(x)]|(n−1)/2n,

where C 6= 0 is a real constant; then f ∈ Cn(I), f(x) 6= 0 on I and the relation (2)

holds, because r ∈ Cn(J), r(t) 6= 0 on J , δ ∈ Cn(I), δ(x) 6= 0 on I and therefore

h ∈ Cn+1(I). Since according to the assumption the function h satisfies also (6)

on I, all assumptions of the Lemma 2 are fulfilled. It means that (1) holds.

Let y be now an arbitrary non-trivial solution of the differential equation (a)

on I. Then there exists the solution z of the differential equation (b), where

q(t) ≡ k on J , such that y(x) = f(x)z[h(x)] holds and according to (11) for all

x ∈ I is

(12) y(x) = C|δ(x)|(1−n)/2n|r[h(x)]|(n−1)/nz[h(x)],

where C 6= 0 is a real constant.

In this case the equation

(13) v̈ + kv = 0, k ∈ R+.

is the accompanying differential equation of the differential equation (qn). The

general solution of (13) is

v(t) = k1 cos
√
kt+ k2 sin

√
kt ,

where k1, k2 are real constants. Hence all non-trivial solutions of the differential

equation (13) are bounded and oscillatory on (−∞,∞) and also on any J . Accord-

ing to the property 2) of the function r and by the Theorem 1 of the paper [2] all

solutions of the differential equation (b) are bounded on the interval 〈t0,∞). With

regard to the property 1) it is limt→∞ |r(t)|1/n = 0 too. That means, of course,

that also limx→∞ |r(h(x))|1/n = 0. In view of assumption (ii) or (iii) the function

|δ(x)|(1−n)/2n is also bounded for sufficiently large x and therefore, according to

the mentioned above, from (12) we get

lim
x→∞

y(x) = 0 .

This completes the proof. �
We can further prove that this theorem implies the next corollary.

Corollary 1. Let δ : I → R, I = (a,∞), a ≥ −∞ be a function such that the

following conditions are fulfilled:

(i) δ ∈ Cn(I) and either

(ii) δ(x) > 0 for all x ∈ I and lim infx→∞ δ(x) > 0 or

(iii) δ(x) < 0 for all x ∈ I and lim supx→∞ δ(x) < 0.
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Let further p : I → R be a function such that for any x ∈ I

p(x) =
1

2n

δ′′(x)

δ(x)
−

2n+ 1

4n2

[
δ′(x)

δ(x)

]2

+

[
k exp(2

∫ x

x0

|δ(s)|1/nds)−
1

4

]
|δ(x)|2/n, x0 ∈ I,

(14)

where k is a positive constant.

Then all solutions of the differential equation (a) tend to zero for x→∞.

Proof. Consider the function r(t) = t−n or r(t) = −t−n. Obviously this func-

tion satisfies the assumptions of Theorem. Then from (9) we obtain

R(t) =

∫ t

t0

s−1 ds = ln
t

t0
.

The function u = R(t) = ln t
t0

transforms the interval 〈t0,∞) on the interval

〈0,∞) and t = R−1(u) = t0 expu. Then from (10) we get

(15) h(x) = t0 exp

(∫ x

x0

|δ(s)|1/n ds

)
, x ∈ 〈x0,∞)

and in view of r(t) = t−n or r(t) = −t−n we have

(16) |r(h(x))| = t−n0 exp

(
−n

∫ x

x0

|δ(s)|1/nds

)
.

When we put for any t ∈ 〈t0,∞)

V [r(t)] =

{
k +

2n+ 1

4n2

[
ṙ(t)

r(t)

]2

−
1

2n

r̈(t)

r(t)

}
|r(t)|−2/n,

then for r(t) = t−n or r(t) = −t−n we get

V [r(t)] = kt2 −
1

4
.

Hence for the function h defined by (15) we obtain

(17) V [r(h(x))] = kt20 exp

(
2

∫ x

x0

|δ(s)|1/n ds

)
−

1

4
.

Choosing in the special way t0 = 1 and substituting (17) in the second side of (6)

we get (14). This means that the function (15) satisfies the equation (6). With

regard to (15) and (16) we can easy find out that the function h fulfills the equation

(5) on I too. Because δ ∈ Cn(I), according to (14), the function p ∈ Cn−2(I).

Hence all assumptions of the Theorem are fulfilled. This completes the proof. �
Further we can deduce from the proof of Theorem and from the known criterion

of the global equivalence of the linear differential equations of the n-th order ([4,

Th. 5.2.1]) the following result for the equation (p).
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Corollary 2. Let n ≥ 3 be a integer and r : J → R, J = (α,∞), α ≥ −∞ be

a function with the next properties:

1) r(t) 6= 0 on J ; r ∈ Cn(J);

2)
∫∞
t0
|r(s)| ds <∞, t0 > α;

3)
∫∞
t0
|r(s)|1/n ds =∞.

Let R : J → R be the function defined by the relation (9).

Let further δ : I → R, I = (a,∞), a ≥ −∞ be a function with the following

properties:

(i) δ(x) 6= 0 on I, δ ∈ Cn(I), sgn δ(x) = sgn r(t) and either

(ii) δ(x) > 0 on I and lim infx→∞ δ(x) > 0 or

(iii) δ(x) < 0 on I and lim supx→∞ δ(x) < 0,

h : I → R be the function given by the relation (10) and p : I → R be defined by

this relation

p(x) =

{
1

2n

δ′′(x)

δ(x)
−

2n+ 1

4n2

[
δ′(x)

δ(x)

]2
}
|δ(x)|−2/n

+

{
k +

2n+ 1

4n2

[
ṙ(h(x))

r(h(x))

]2

−
1

2n

r̈(h(x))

r(h(x))

}
|r(h(x))|−2/n,

where k is a positive constant, ′ = d
dx

, ˙ = d
dt

.

Then the equation (p) is oscillatory on the interval I.

Proof. Let f : I → R be given by the relation (11). It follows from the proof

of Theorem that at our assumptions the relation (1) holds for the equation (b),

where q(t) ≡ k. By the Theorem 5.2.1 of the monograph [4] we obtain from this,

that for any non-trivial solution u of the equation (p) on I holds the relation

(18) u(x) = A[h′(x)]−1/2v[h(x)],

where A 6= 0 is constant, v is a non-trivial solution of the equation (13). But all

non-trivial solutions of the equation (13) are oscillatory on J . With regard to (18)

the equation (p) has the same property on I. This completes the proof. �
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