ON MARCZEWSKI SETS AND SOME IDEALS

M. BALCERZAK

ABSTRACT. Using the methods of Brown and Walsh, we get condition guaranteeing that, for an ideal \mathcal{I} of sets in a perfect Polish space some (s^0) sets are not in \mathcal{I} . A few examples and corollaries are given.

0. INTRODUCTION

Papers [**Br**], [**W1**], [**W2**] and [**C**] made a significant progress in the studying of (s^0) sets introduced by Marczewski in [**Sz**]. One of the main results states that there exists a nonmeasurable (s^0) set without the Baire property. That was proved in [**Br**] under CH and in [**W1**], [**W2**], [**C**] within ZFC. We analyse the schemes from [**Br**] and [**W1**], [**W2**] and get two criteria for an ideal \mathcal{I} (of sets in a perfect Polish space X) to satisfy $\mathcal{I}_0 \setminus \mathcal{I} \neq \emptyset$ where \mathcal{I}_0 denotes the ideal of all (s^0) sets (in X). The original proofs we base on need only a slight modification. However, we give new versions in full. We describe some applications.

Throughout the paper, we fix a perfect Polish space X. A set which has no perfect subset is called totally imperfect. A set $E \subseteq X$ is called an (s^0) set if each perfect set has a perfect subset disjoint from E (see [Sz]). Obviously, (s^0) sets are totally imperfect and, moreover, they form an ideal (see [Sz]) which will be written as \mathcal{I}_0 .

For any ideal $\mathcal{I} \subseteq \mathcal{P}(X)$, we always assume that $X \notin \mathcal{I}$ (here $\mathcal{P}(X)$ is the power set of X). The cardinality of continuum is denoted by c.

Further, the following lemma will be useful.

0.1. Lemma. Let $A \subseteq X$ be an uncountable analytic set and $E \subseteq X$. If $|A \cap E| < c$, then there exists a perfect set $P \subseteq A$ missing E.

Proof. Find a perfect $P \subseteq A$ (cf. [**Kr**, §39.I]) and c pairwise disjoint perfect subsets of P. At least one of them misses E.

Received August 16, 1991.

¹⁹⁸⁰ Mathematics Subject Classification (1991 Revision). Primary 04A15, 54H05. Key words and phrases. Perfect set, (s^0) set, ideal.

1. The First Criterion

A family $\tilde{\mathcal{I}}$ is called a base of an ideal $\mathcal{I} \subseteq \mathcal{P}(X)$ if $\tilde{\mathcal{I}} \subseteq \mathcal{I}$ and, for each $A \in \mathcal{I}$, there exists $B \in \tilde{\mathcal{I}}$ containing A. We denote

$$\operatorname{cof}(\mathcal{I}) = \min\{ |\mathcal{I}| : \mathcal{I} \text{is base of } \mathcal{I} \},\ \operatorname{cov}(\mathcal{I}) = \min\{ |\mathcal{H}| : \mathcal{H} \subseteq \mathcal{I} \text{ and } \cup \mathcal{H} = X \}.$$

It is evident that $\operatorname{cov}(\mathcal{I}) \leq \operatorname{cof}(\mathcal{I})$.

We say that \mathcal{I} has property (P) if each perfect set in X has a perfect set belonging to \mathcal{I} (cf. [Ba1]).

The following proposition generalizing the method from Example 3 in $[\mathbf{Br}]$ has been inspired by some comment contained in $[\mathbf{C}]$.

1.1. Proposition (Criterion 1). Let $\mathcal{I} \subseteq \mathcal{P}(X)$ be an ideal such that

- (a) $\operatorname{cov}(\mathcal{I}) = \operatorname{cof}(\mathcal{I}) = c$,
- (b) \mathcal{I} has property (P).

Then $\mathcal{I}_0 \setminus \mathcal{I} \neq \emptyset$.

Proof. Since $\operatorname{cof}(\mathcal{I}) = c$, there is a base $\tilde{\mathcal{I}}$ of \mathcal{I} with $|\tilde{\mathcal{I}}| = c$. Let $\{A_{\alpha} : \alpha < c\}$ be an enumeration of sets A such that $X \setminus A \in \tilde{\mathcal{I}}$. Let $\{P_{\alpha} : \alpha < c\}$ be an enumeration of all perfect subsets of X. By virtue of (b), choose a perfect $Q_0 \in \mathcal{I}$ contained in P_0 . Pick any x_0 in $A_0 \setminus Q_0$. If $0 < \alpha < c$ and if x_β , for $\beta < \alpha$, are defined, choose a perfect subset $Q_\alpha \in \mathcal{I}$ of P_α and let

$$\mathcal{F}_{\alpha} = \{Q_{\beta} : \beta \leq \alpha\} \cup \{x_{\beta} : \beta < \alpha\}.$$

Observe that $A_{\alpha} \setminus \cup \mathcal{F}_{\alpha} \notin \mathcal{I}$. Indeed, if it is not the case, then for

$$\mathcal{H} = \mathcal{F}_{\alpha} \cup \{A_{\alpha} \setminus \cup \mathcal{F}_{\alpha}\} \cup \{X \setminus A_{\alpha}\},\$$

we would get $|\mathcal{H}| < c, \cup \mathcal{H} = X$, which contradicts $\operatorname{cov}(\mathcal{I}) = c$. Now, pick any x_{α} in $A_{\alpha} \setminus \cup \mathcal{F}_{\alpha}$. If the induction is finished, set $E = \{x_{\alpha} : \alpha < c\}$.

To show that E is an (s^0) set, consider any P_{α} . By the construction, $Q_{\alpha} \cap E \subseteq \{x_{\beta} : \beta < \alpha\}$. So, by Lemma 0.1, there is a perfect subset of Q_{α} (thus of P_{α}) which misses E.

To show $E \notin \mathcal{I}$, suppose that $E \in \mathcal{I}$ and choose $\tilde{E} \in \tilde{\mathcal{I}}$ containing E. Then $X \setminus \tilde{E} = A_{\alpha}$ for some $\alpha < c$. We have $A_{\alpha} \subseteq X \setminus E$, which implies $x_{\alpha} \notin E$, a contradiction.

Since $\operatorname{cov}(\mathcal{I}) \leq \operatorname{cof}(\mathcal{I})$, it is suffices to assume in (a) that $c \leq \operatorname{cov}(\mathcal{I})$ and $\operatorname{cof}(\mathcal{I}) \leq c$. Property (P) seems rather strong. Note that it is not necessary for $\mathcal{I}_0 \setminus \mathcal{I} \neq \emptyset$. Indeed, if \mathcal{I} is an ideal with property (P) and $\mathcal{I}_0 \setminus \mathcal{I} \neq \emptyset$, then throwing out all perfect subsets of a fixed perfect set from \mathcal{I} , we get the ideal \mathcal{I}^* for which

(P) fails to hold and $\mathcal{I}_0 \setminus \mathcal{I}^* \neq \emptyset$. In Section 2 we give examples of quite large and regular ideals without property (P) which do not contain all (s^0) sets.

Coming back to the sources of Criterion 1; i.e. to Example 3 from $[\mathbf{Br}]$, consider the case when \mathcal{I} is the ideal \mathcal{L} of the Lebesgue null sets in the real line \mathbb{R} . It is obvious that $\operatorname{cof}(\mathcal{L}) \leq c$, and that \mathcal{L} has property (P). The statement $\operatorname{cov}(\mathcal{L}) = c$ is implied by CH (or by MA) but is not equivalent. By Criterion 1, we get $\mathcal{I}_0 \setminus \mathcal{L} \neq \emptyset$. This easily implies the existence of an (s^0) set which is nonmeasurable (cf. Corollary 3.2). That was obtained in $[\mathbf{W2}]$ within ZFC. The first step of the proof is Theorem 2.2 from $[\mathbf{W1}]$ (for a generalization, see Section 2 of our paper). The second step uses the Fubini theorem. The same technique repeats when the measure is replaced by category (for other cases, see $[\mathbf{Ba2}]$. However, if we have no analogues of the Fubini theorem, it can be unclear how to continue the first step. Thus Criterion 1 may help.

1.2. Example. Consider an infinite $K \subseteq \omega = \{0, 1, 2, ...\}$ and a set $E \subseteq 2^{\omega}$ where 2^{ω} is the Cantor space of all infinite sequences with terms from $\{0, 1\}$. Let $\Gamma(E, K)$ be the following game between two players I and II. They choose consecutive terms of a sequence $x = \langle x(0), x(1), \ldots \rangle \in 2^{\omega}$. Player I picks x(i) if $i \notin K$ and Player II — if $i \in K$. Player I wins if $x \in E$ and Player II — if $x \notin E$. Let $V_{II}(K)$ be the set of all $E \subseteq 2^{\omega}$ such that Player II has a winning strategy in $\Gamma(E, K)$. Now, consider a system $\{K_s : s \in 2^{<\omega}\}$ (where $2^{<\omega}$ denotes the set of all finite sequences with terms from $\{0, 1\}$) fulfilling the conditions

$$K_{s0} \cup K_{s1} \subseteq K_s$$
 and $K_{s0} \cap K_{s1} = \emptyset$

for all $s \in 2^{<\omega}$ where $si \ (i \in \{0,1\})$ extends s by the (last) term i. The family

$$\mathcal{M} = \cap \{ V_{II}(K_s) : s \in 2^{<\omega} \}$$

is an ideal defined by Mycielski in $[\mathbf{My}]$. It is interesting that there exists a set E in \mathcal{M} such that $2^{\omega} \setminus E$ is of the first category and of measure zero (in 2^{ω} we consider the usual product measure which is isomorphic to the Lebesgue measure on [0, 1]). The ideal \mathcal{M} has a base consisting of G_{δ} sets. The above facts are observed in $[\mathbf{My}]$. Thus we have $\operatorname{cof}(\mathcal{M}) \leq c$. It was proved in $[\mathbf{Ba1}]$ that \mathcal{M} has property (P). Rosłanoski showed that $\operatorname{cov}(\mathcal{M}) = \omega_1$ (see $[\mathbf{R}, \operatorname{Th}. 2.3(a)]$). Hence, if we assume CH, Criterion 1 yields $\mathcal{I}_0 \setminus \mathcal{M} \neq \emptyset$. (Can it be proved within ZFC?)

Now we give an example of an ideal for which Criterion 1 works in ZFC.

1.3. Example. Let \mathcal{F} be a disjoint family of perfect sets with the union equal to $X = 2^{\omega}$, we shall define sets Q_{α} , $\alpha < c$. Let \mathcal{R} be the family of all sets $Q \subseteq X$ such that $Q \cap P$ is countable for any $P \in \mathcal{F}$. If $\mathcal{R} = \emptyset$, put $Q_{\alpha} = \emptyset$ for all $\alpha < c$. If $\mathcal{R} \neq \emptyset$; pick any $Q_0 \in \mathcal{R}$. Assume that $\alpha < c$ and Q_{γ} for $\gamma < \alpha$ are defined. If there is a $Q \in \mathcal{R}$ such that $Q \cap Q_{\gamma}$ is countable for all $\gamma < \alpha$, put

 $Q_{\alpha} = Q$, and let $Q_{\alpha} = \emptyset$ in the opposite case. Next, put $\mathcal{F}^+ = \mathcal{F} \cup \{Q_{\alpha} : \alpha < c\}$ and $\mathcal{I} = \{E \subseteq X : E \subseteq \cup \tilde{\mathcal{F}} \text{ for some finite } \tilde{\mathcal{F}} \subseteq \mathcal{F}^+\}$. Then $\operatorname{cof}(\mathcal{I}) \leq c$ since $|\{\tilde{\mathcal{F}} \subseteq \mathcal{F}^+ : \tilde{\mathcal{F}} \text{ is finite}\}| = c$. Now, observe that $\operatorname{cov}(\mathcal{I}) = c$. Indeed, if $\operatorname{cov}(\mathcal{I}) = \kappa < c$, there is an $\mathcal{F}_0 \subseteq \mathcal{F}^+$ such that $|\mathcal{F}_0| = \kappa$ and $\cup \mathcal{F}_0 = X$. Let $\mathcal{F}_0 = \{P_{\alpha} : \alpha < \kappa\}$. Consider a fixed $P \in \mathcal{F} \setminus \mathcal{F}_0$. $P \cap P_{\alpha}$ is countable for all $\alpha < \kappa$, therefore $c = |P| = |P \cap \cup F_0| = |\cup_{\alpha < \kappa} P \cap P_{\alpha}| \leq \kappa \cdot \omega = \kappa < c$, a contradiction. The ideal \mathcal{I} has property (P) since, by the construction, each perfect set P either belongs to \mathcal{F}^+ , thus is in \mathcal{I} , or $P \cap Q$ is uncountable for some $Q \in \mathcal{F}^+$, thus a perfect part of $P \cap Q$ belongs to \mathcal{I} .

2. The Second Criterion

For a family $\{D_{\alpha} : \alpha < c\} \subseteq \mathcal{P}(X)$, we denote

$$D_0^* = D_0 \quad ext{and} \quad D_{\alpha}^* = D_{\alpha} \setminus \cup_{\alpha < \gamma} D_{\gamma} ext{ if } 0 < \alpha < c \,.$$

The following proposition generalizes Theorem 2.2 from [W1].

2.1. Proposition. Let $\mathcal{D} = \{D_{\alpha} : \alpha < c\}$ be a family of analytic subsets of X such that $|D_{\alpha}^*| = c$ for all $\alpha < c$. Then there exists a selector E of $\{D_{\alpha}^* : \alpha < c\}$ being an (s^0) set.

Proof. Let \mathcal{P} be the family of all perfect subsets of X. If there exists $P \in \mathcal{P}$ meeting each member of D_{α} at < c points (consequently, in a countable set of points), then let $\{Q_{\alpha} : \alpha < c\}$ consists of all such sets P. In the opposite case, let $Q_{\alpha} = \emptyset$ for all $\alpha < c$. Pick $x_0 \in D_0$ and choose inductively

$$x_{\alpha} \in D^*_{\alpha} \setminus \bigcup_{\gamma < \alpha} (Q_{\gamma} \cup \{x_{\gamma}\}) \text{ for } 0 < \alpha < c.$$

This can be done since $|D_{\alpha}^{*}| = c$ and $|D_{\alpha}^{*} \cap (\bigcup_{\gamma < \alpha} (Q_{\gamma} \cup \{x_{\gamma}\})| < c$. Define $E = \{x_{\alpha} : \alpha < c\}$. Certainly, $E \cap D_{\alpha}^{*} = \{x_{\alpha}\}$ for each $\alpha < c$. Now, consider any perfect P. If $P = Q_{\alpha}$ for some $\alpha < c$, then $E \cap P \subseteq \{x_{\beta} : \beta \leq \alpha\}$. So, by Lemma 0.1, there is a perfect subset of P which misses E. If $P \neq Q_{\alpha}$ for all $\alpha < c$, then $|P \cap D_{\alpha}| = c$ for some $\alpha < c$. For this α , we have

$$P \cap D_{\alpha} \cap E \subseteq \{x_{\beta} : \beta \le \alpha\}.$$

So, by Lemma 0.1, there is a perfect subset of $P \cap D_{\alpha}$ (consequently, of P) disjoint from E. Hence E is an (s^0) set.

Let $\mathcal{D} \subseteq \mathcal{P}(X)$, $|\mathcal{D}| = c$ and $\cup \mathcal{D} = X$. We say that an ideal $\mathcal{I} \subseteq \mathcal{P}(X)$ is (< c)-generated by \mathcal{D} if

$$\mathcal{I} = \{ E \subseteq X : E \subseteq \cup \tilde{\mathcal{D}} \text{ for some } \tilde{\mathcal{D}} \subseteq \mathcal{D}, |\tilde{\mathcal{D}}| < c \}.$$

2.2. Corollary (Criterion 2). If $\mathcal{D} = \{D_{\alpha} : \alpha < c\}$ is a family of analytic subsets of X such that $\cup \mathcal{D} = X$ and $|D_{\alpha}^*| = c$ for all $\alpha < c$, then $\mathcal{I}_0 \setminus \mathcal{I} \neq \emptyset$ where \mathcal{I} is the ideal (< c)-generated by \mathcal{D} .

Proof. Consider the set E from Proposition 2.1. Then $E \in \mathcal{I}_0$ and, since E is a selector of $\{D^*_{\alpha} : \alpha < c\}$, we get $E \notin \mathcal{I}$.

We say that a family \mathcal{F} of perfect subsets of X is almost disjoint if $P \cap Q$ is countable for any distinct $P, Q \in \mathcal{F}$. By Zorn's lemma, each almost disjoint family of perfect sets can be extended to a maximal one. From Criterion 2 we get

2.3. Corollary. If \mathcal{D} is an almost disjoint family of perfect subsets of X, such that $|\mathcal{D}| = c$ and $\cup \mathcal{D} = X$, then $\mathcal{I}_0 \setminus \mathcal{I} \neq \emptyset$ where \mathcal{I} is the ideal (< c)-generated by \mathcal{D} .

2.4. Examples. (a) Let I = [0, 1] and $X = I^2$. Put

$$\mathcal{D} = \{I \times \{x\} : x \in I\} \cup \{\{x\} \times I : x \in I\}.$$

Then \mathcal{D} is an almost disjoint family of perfect sets fulfilling the assumptions of 2.3. Note that \mathcal{D} is not maximal since, for instance, the diagonal meets each set from \mathcal{D} at exactly one point. By that reason, property (P) fails to hold for the ideal \mathcal{I} (< c)-generate by \mathcal{D} since the diagonal has no perfect subset in \mathcal{I} . So, Criterion 1 cannot be applied to \mathcal{I} .

(b) Let P be a perfect subset on \mathbb{R} such that $|P \cap (P+x)| \leq 1$ for all $x \neq 0$ (here P+x denotes the set of all sums t+x for $t \in P$); see [**Ru-S**]. Then, for any perfect $Q \subseteq P$, the collection $\mathcal{D} = \{Q + x : x \in \mathbb{R}\}$ is an almost disjoint family of perfect sets fulfilling all the assumptions of 2.3. If there exists a perfect $S \subseteq P \setminus Q$, it is clear that \mathcal{D} is not maximal since $\mathcal{D} \cup \{S\}$ extends \mathcal{D} . Hence again, the respective ideal \mathcal{I} has not property (P). Note that \mathcal{I} is translation invariant.

(c) Observe that \mathcal{F}^+ from Example 1.3 can form a maximal almost disjoint family of perfect sets. By 2.3, there is an (s^0) set outside the ideal (< c)-generated by \mathcal{F}^+ . That ideal contains \mathcal{I} considered in 1.3. Thus, now we get more that $\mathcal{I}_0 \setminus \mathcal{I} \neq \emptyset$.

(d) Let X be the set of all infinite subsets of ω . Then X can be embedded into the Cantor set 2^{ω} via the characteristic functions. Thus X inherits the product topology from 2^{ω} and forms a dense-in-itself space which is Polish since it is embedded into 2^{ω} as a G_{δ} set (apply the Alexandrov theorem, see [**Kr**, §33.VI]). Let $A \subseteq X$ be a family of c sets which meet pairwise on finite sets (see [**Kn**, Th. 1.2(b), p. 48]). Let $\mathcal{A} = \{A_{\alpha} : \alpha < c\}$ and $D_{\alpha} = \{K \in X : K \cap A_{\alpha} \in X\}, \alpha < c$. It is easy to verify that $\mathcal{D} = \{D_{\alpha} : \alpha < c\}$ consists of perfect sets and $\cup \mathcal{D} = X$. This is not an almost disjoint family since $|D_{\alpha} \cap D_{\beta}| = c$ for any distinct $\alpha, \beta < c$. Indeed, there exist c distinct subsets of ω meeting either of the sets A_{α} and A_{β} in infinite sets. On the other hand, Criterion 2 can be applied to \mathcal{D} since $|D_{\alpha}^*| = c$ for $\alpha < c$. This follows from the fact that A_{α} has c infinite subsets and each of them is in D_{α}^* .

Finally, note that, for any ideal \mathcal{I} fulfilling the conditions of Criterion 2, it is consistent with ZFC that cf $(\mathcal{I}) > c$. Indeed, we have cf $(\mathcal{I}) \ge 2^{\omega_1}$ hence cf $(\mathcal{I}) > c$ holds in the model in which $\omega_1 < c$ and $2^{\omega_1} > c$ are true (see [**Kn**, Th. 6.18(c), p. 216]). So, in this case, Criterion 1 is not useful.

3. Further Remarks

In Sections 1 and 2 we have concentrated on the problem "When $\mathcal{I}_0 \setminus \mathcal{I} \neq \emptyset$?", while the results for Brown and Walsh which we try to generalize deal mainly with the question "When $\mathcal{I}_0 \setminus S_{\mathcal{I}} \neq \emptyset$?" where $S_{\mathcal{I}}$ is a respective σ -field associated with \mathcal{I} . Now, we shall show that, in some cases, these two problems are equivalent.

For a family $\mathcal{F} \subseteq \mathcal{P}(X)$ and an ideal $\mathcal{I} \subseteq \mathcal{P}(X)$, by $\mathcal{F}(\mathcal{I})$ we denote the collection of all sets $E \subseteq X$ expressible as the symmetric differences $B \triangle C$ where $B \in \mathcal{F}$ and $A \in \mathcal{I}$. In particular, one can consider as \mathcal{F} the σ -field \mathcal{B} of all Borel sets in X; then $\mathcal{B}(\mathcal{I})$ is the smallest σ -field containing $\mathcal{B} \cup \mathcal{I}$. We shall also consider projective pointclasses Σ_n^1 and Π_n^1 for $n \ge 1$ (see [**Mo**], for the definitions); here we restrict them to the space X. We say that a pointclass Λ fulfils Perfect Set Theorem (abbr. PST) if each uncountable set from Λ contains a perfect set. It is known that Σ_1^1 fulfils PST and, for $n \ge 2$, the statement " Σ_n^1 fulfils PST", is not provable in ZFC; however, it can be treated as a strong axiom of set theory (cf. [**Mo**]).

For $\mathcal{F} \subseteq \mathcal{P}(X)$, we denote $\neg \mathcal{F} = \{X \setminus A : A \in \mathcal{F}\}.$

3.1. Proposition. Assume that $\mathcal{F} \subseteq \mathcal{P}(X)$ is closed under finite intersections and $\mathcal{I} \subseteq \mathcal{P}(X)$ is an ideal with a base $\tilde{\mathcal{I}} \subseteq \neg \mathcal{F}$ such that each set from $\mathcal{F} \setminus \mathcal{I}$ contains a perfect set. Let $E \subseteq X$ be totally imperfect. Then $E \notin \mathcal{I}$ and $E \notin \mathcal{F}(\mathcal{I})$ are equivalent.

Proof. Obviously, $E \notin \mathcal{F}(\mathcal{I})$ implies $E \notin \mathcal{I}$. Now, assume that we have a totally imperfect $E \in \mathcal{I}$. Suppose that $E \in \mathcal{F}(\mathcal{I})$. Then $E = B \triangle A$ where $B \in \mathcal{F}$ and $A \in \mathcal{I}$. Of course, $B \notin \mathcal{I}$. Choose $\tilde{A} \in \tilde{\mathcal{I}}$ containing A. Then, for $\tilde{B} = B \setminus \tilde{A}$, we get $E = \tilde{B} \cup D$ where $D = (B \cap (\tilde{A} \setminus A)) \cup (A \setminus B) \in \mathcal{I}$. Observe that \tilde{B} is in $\mathcal{F} \setminus \mathcal{I}$ and thus, by the assumption, it contains a perfect set. Hence E has a perfect subset, a contradiction.

If an ideal $\mathcal{I} \subseteq \mathcal{P}(X)$ has a base $\tilde{\mathcal{I}}$ contained in a pointclass Λ , then $\tilde{\mathcal{I}}$ is called a Λ -base.

3.2. Corollary. Let $\mathcal{I} \subseteq \mathcal{P}(X)$ be an ideal having a Π_1^1 -base and containing all countable subsets of X. For any totally imperfect set E, the conditions $E \notin \mathcal{I}$ and $E \notin \Sigma_1^1(\mathcal{I})$ are equivalent.

The same result holds when Π_1^1 and Σ_1^1 are replaced by \mathcal{B} .

3.3. Corollary. For $n \geq 2$, assume that Σ_n^1 fulfils PST. Let $\mathcal{I} \subseteq \mathcal{P}(X)$ be an ideal having a \prod_n^1 -base and containing all countable subsets of X. For any totally imperfect set, the conditions $E \notin \mathcal{I}$ and $E \notin \Sigma_n^1(\mathcal{I})$ are equivalent.

Applying the results of this section together with Criterion 1 or 2 to the respective ideals \mathcal{I} and pointclasses Λ , we get conditions guaranteeing $\mathcal{I}_0 \setminus \Lambda(\mathcal{I}) \neq \emptyset$.

References

- [Ba1] Balcerzak M., On σ -ideals having perfect members in all perfect sets, Demonstratio Math. 22 (1989), 1159–1168.
- [**Ba2**] _____, Another nonmeasurable set with property (s^0) , preprint.
- [Br] Brown J., The Ramsey sets and related sigma algebras and ideals, Fund. Math. 136 (1990), 179–183.
- $[\mathbf{C}]$ Corazza P., Ramsey sets, the Ramsey ideal and other classes over \mathbb{R} , preprint.
- [Kn] Kunen K., Set Theory. An introduction to Independence Proofs, North Holland, 1980.
- [Kr] Kuratowski K., Topology I, Academic Press, 1966.
- [Mo] Moschovakis Y., Descriptive Set Theory, North Holland, 1980.
- [My] Mycielski J., Some new ideals of sets on the real line, Colloq. Math. 20 (1969), 71–76.
- [R] Rosłanowaki, On game ideals, Colloq. Math. 59 (1990), 159–168.
- [Ru-S] Ruziewicz and Sierpiński W., Sur un ensemble parfait qui a avec toute sa translation au plus un point commun, Fund. Math. 19 (1932), 17–21.
- [Sz] Szpilrajn (Marczewski) E., Sur une classe de fonctions de M. Sierpiński et la classe correspondante d'ensembles, Fund. Math. 24 (1935), 17–34.
- [W1] Walsh J. T., Marczewski sets, measure and the Baire property, Fund. Math. 129 (1988), 83–89.
- [W2] _____, Marczewski sets, measure and the Baire property II, Proc. Amer. Math. Soc. 106 (1989), 1027–1030.

M. Balcerzak, Institute of Mathematics, Łódź University, ul. S. Banacha 22, 90-238 Łódź, Poland