ON MARCZEWSKI SETS AND SOME IDEALS

M. BALCERZAK

Abstract

Using the methods of Brown and Walsh, we get condition guaranteeing that, for an ideal \mathcal{I} of sets in a perfect Polish space some $\left(s^{0}\right)$ sets are not in \mathcal{I}. A few examples and corollaries are given.

0. Introduction

Papers $[\mathbf{B r}],[\mathbf{W} 1],[\mathbf{W} 2]$ and $[\mathbf{C}]$ made a significant progress in the studying of $\left(s^{0}\right)$ sets introduced by Marczewski in $[\mathbf{S z}]$. One of the main results states that there exists a nonmeasurable $\left(s^{0}\right)$ set without the Baire property. That was proved in $[\mathbf{B r}]$ under CH and in $[\mathbf{W} 1]$, $[\mathbf{W} 2]$, $[\mathbf{C}]$ within ZFC. We analyse the schemes from $[\mathbf{B r}]$ and $[\mathbf{W} 1],[\mathbf{W} 2]$ and get two criteria for an ideal \mathcal{I} (of sets in a perfect Polish space $X)$ to satisfy $\mathcal{I}_{0} \backslash \mathcal{I} \neq \emptyset$ where \mathcal{I}_{0} denotes the ideal of all $\left(s^{0}\right)$ sets (in X). The original proofs we base on need only a slight modification. However, we give new versions in full. We describe some applications.

Throughout the paper, we fix a perfect Polish space X. A set which has no perfect subset is called totally imperfect. A set $E \subseteq X$ is called an $\left(s^{0}\right)$ set if each perfect set has a perfect subset disjoint from E (see $[\mathbf{S z}])$. Obviously, $\left(s^{0}\right)$ sets are totally imperfect and, moreover, they form an ideal (see $[\mathbf{S z}]$) which will be written as \mathcal{I}_{0}.

For any ideal $\mathcal{I} \subseteq \mathcal{P}(X)$, we always assume that $X \notin \mathcal{I}$ (here $\mathcal{P}(X)$ is the power set of $X)$. The cardinality of continuum is denoted by c.

Further, the following lemma will be useful.
0.1. Lemma. Let $A \subseteq X$ be an uncountable analytic set and $E \subseteq X$. If $|A \cap E|<c$, then there exists a perfect set $P \subseteq A$ missing E.

Proof. Find a perfect $P \subseteq A(c f .[\mathbf{K r}, \S 39 . \mathrm{I}])$ and c pairwise disjoint perfect subsets of P. At least one of them misses E.

[^0]
1. The First Criterion

A family $\tilde{\mathcal{I}}$ is called a base of an ideal $\mathcal{I} \subseteq \mathcal{P}(X)$ if $\tilde{\mathcal{I}} \subseteq \mathcal{I}$ and, for each $A \in \mathcal{I}$, there exists $B \in \tilde{\mathcal{I}}$ containing A. We denote

$$
\begin{aligned}
\operatorname{cof}(\mathcal{I}) & =\min \{|\tilde{\mathcal{I}}|: \tilde{\mathcal{I}} \text { is base of } \mathcal{I}\} \\
\operatorname{cov}(\mathcal{I}) & =\min \{|\mathcal{H}|: \mathcal{H} \subseteq \mathcal{I} \text { and } \cup \mathcal{H}=X\}
\end{aligned}
$$

It is evident that $\operatorname{cov}(\mathcal{I}) \leq \operatorname{cof}(\mathcal{I})$.
We say that \mathcal{I} has property (P) if each perfect set in X has a perfect set belonging to \mathcal{I} (cf. [Ba1]).

The following proposition generalizing the method from Example 3 in $[\mathbf{B r}]$ has been inspired by some comment contained in [C].
1.1. Proposition (Criterion 1). Let $\mathcal{I} \subseteq \mathcal{P}(X)$ be an ideal such that
(a) $\operatorname{cov}(\mathcal{I})=\operatorname{cof}(\mathcal{I})=c$,
(b) \mathcal{I} has property (P).

Then $\mathcal{I}_{0} \backslash \mathcal{I} \neq \emptyset$.
Proof. Since $\operatorname{cof}(\mathcal{I})=c$, there is a base $\tilde{\mathcal{I}}$ of \mathcal{I} with $|\tilde{\mathcal{I}}|=c$. Let $\left\{A_{\alpha}: \alpha<c\right\}$ be an enumeration of sets A such that $X \backslash A \in \tilde{\mathcal{I}}$. Let $\left\{P_{\alpha}: \alpha<c\right\}$ be an enumeration of all perfect subsets of X. By virtue of (b), choose a perfect $Q_{0} \in \mathcal{I}$ contained in P_{0}. Pick any x_{0} in $A_{0} \backslash Q_{0}$. If $0<\alpha<c$ and if x_{β}, for $\beta<\alpha$, are defined, choose a perfect subset $Q_{\alpha} \in \mathcal{I}$ of P_{α} and let

$$
\mathcal{F}_{\alpha}=\left\{Q_{\beta}: \beta \leq \alpha\right\} \cup\left\{x_{\beta}: \beta<\alpha\right\}
$$

Observe that $A_{\alpha} \backslash \cup \mathcal{F}_{\alpha} \notin \mathcal{I}$. Indeed, if it is not the case, then for

$$
\mathcal{H}=\mathcal{F}_{\alpha} \cup\left\{A_{\alpha} \backslash \cup \mathcal{F}_{\alpha}\right\} \cup\left\{X \backslash A_{\alpha}\right\}
$$

we would get $|\mathcal{H}|<c, \cup \mathcal{H}=X$, which contradicts $\operatorname{cov}(\mathcal{I})=c$. Now, pick any x_{α} in $A_{\alpha} \backslash \cup \mathcal{F}_{\alpha}$. If the induction is finished, set $E=\left\{x_{\alpha}: \alpha<c\right\}$.

To show that E is an $\left(s^{0}\right)$ set, consider any P_{α}. By the construction, $Q_{\alpha} \cap E \subseteq$ $\left\{x_{\beta}: \beta<\alpha\right\}$. So, by Lemma 0.1, there is a perfect subset of Q_{α} (thus of P_{α}) which misses E.

To show $E \notin \mathcal{I}$, suppose that $E \in \mathcal{I}$ and choose $\tilde{E} \in \tilde{\mathcal{I}}$ containing E. Then $X \backslash \tilde{E}=A_{\alpha}$ for some $\alpha<c$. We have $A_{\alpha} \subseteq X \backslash E$, which implies $x_{\alpha} \notin E$, a contradiction.

Since $\operatorname{cov}(\mathcal{I}) \leq \operatorname{cof}(\mathcal{I})$, it is suffices to assume in (a) that $c \leq \operatorname{cov}(\mathcal{I})$ and $\operatorname{cof}(\mathcal{I}) \leq c$. Property (P) seems rather strong. Note that it is not necessary for $\mathcal{I}_{0} \backslash \mathcal{I} \neq \emptyset$. Indeed, if \mathcal{I} is an ideal with property (P) and $\mathcal{I}_{0} \backslash \mathcal{I} \neq \emptyset$, then throwing out all perfect subsets of a fixed perfect set from \mathcal{I}, we get the ideal \mathcal{I}^{*} for which
(P) fails to hold and $\mathcal{I}_{0} \backslash \mathcal{I}^{*} \neq \emptyset$. In Section 2 we give examples of quite large and regular ideals without property (P) which do not contain all $\left(s^{0}\right)$ sets.

Coming back to the sources of Criterion 1; i.e. to Example 3 from $[\mathbf{B r}]$, consider the case when \mathcal{I} is the ideal \mathcal{L} of the Lebesgue null sets in the real line \mathbb{R}. It is obvious that $\operatorname{cof}(\mathcal{L}) \leq c$, and that \mathcal{L} has property (P). The statement $\operatorname{cov}(\mathcal{L})=$ c is implied by CH (or by MA) but is not equivalent. By Criterion 1, we get $\mathcal{I}_{0} \backslash \mathcal{L} \neq \emptyset$. This easily implies the existence of an $\left(s^{0}\right)$ set which is nonmeasurable (cf. Corollary 3.2). That was obtained in [W2] within ZFC. The first step of the proof is Theorem 2.2 from [W1] (for a generalization, see Section 2 of our paper). The second step uses the Fubini theorem. The same technique repeats when the measure is replaced by category (for other cases, see [Ba2]. However, if we have no analogues of the Fubini theorem, it can be unclear how to continue the first step. Thus Criterion 1 may help.
1.2. Example. Consider an infinite $K \subseteq \omega=\{0,1,2, \ldots\}$ and a set $E \subseteq 2^{\omega}$ where 2^{ω} is the Cantor space of all infinite sequences with terms from $\{0,1\}$. Let $\Gamma(E, K)$ be the following game between two players I and II. They choose consecutive terms of a sequence $x=\langle x(0), x(1), \ldots\rangle \in 2^{\omega}$. Player I picks $x(i)$ if $i \notin K$ and Player II - if $i \in K$. Player I wins if $x \in E$ and Player II - if $x \notin E$. Let $V_{I I}(K)$ be the set of all $E \subseteq 2^{\omega}$ such that Player II has a winning strategy in $\Gamma(E, K)$. Now, consider a system $\left\{K_{s}: s \in 2^{<\omega}\right\}$ (where $2^{<\omega}$ denotes the set of all finite sequences with terms from $\{0,1\}$) fulfilling the conditions

$$
K_{s 0} \cup K_{s 1} \subseteq K_{s} \quad \text { and } \quad K_{s 0} \cap K_{s 1}=\emptyset
$$

for all $s \in 2^{<\omega}$ where si $(i \in\{0,1\})$ extends s by the (last) term i. The family

$$
\mathcal{M}=\cap\left\{V_{I I}\left(K_{s}\right): s \in 2^{<\omega}\right\}
$$

is an ideal defined by Mycielski in $[\mathbf{M y}]$. It is interesting that there exists a set E in \mathcal{M} such that $2^{\omega} \backslash E$ is of the first category and of measure zero (in 2^{ω} we consider the usual product measure which is isomorphic to the Lebesgue measure on $[0,1]$). The ideal \mathcal{M} has a base consisting of G_{δ} sets. The above facts are observed in $[\mathbf{M y}]$. Thus we have $\operatorname{cof}(\mathcal{M}) \leq c$. It was proved in $[\mathbf{B a 1}]$ that \mathcal{M} has property (P). Rosłanoski showed that $\operatorname{cov}(\mathcal{M})=\omega_{1}$ (see $[\mathbf{R}$, Th. 2.3(a)]). Hence, if we assume CH , Criterion 1 yields $\mathcal{I}_{0} \backslash \mathcal{M} \neq \emptyset$. (Can it be proved within ZFC?)

Now we give an example of an ideal for which Criterion 1 works in ZFC.
1.3. Example. Let \mathcal{F} be a disjoint family of perfect sets with the union equal to $X=2^{\omega}$, we shall define sets $Q_{\alpha}, \alpha<c$. Let \mathcal{R} be the family of all sets $Q \subseteq X$ such that $Q \cap P$ is countable for any $P \in \mathcal{F}$. If $\mathcal{R}=\emptyset$, put $Q_{\alpha}=\emptyset$ for all $\alpha<c$. If $\mathcal{R} \neq \emptyset$; pick any $Q_{0} \in \mathcal{R}$. Assume that $\alpha<c$ and Q_{γ} for $\gamma<\alpha$ are defined. If there is a $Q \in \mathcal{R}$ such that $Q \cap Q_{\gamma}$ is countable for all $\gamma<\alpha$, put
$Q_{\alpha}=Q$, and let $Q_{\alpha}=\emptyset$ in the opposite case. Next, put $\mathcal{F}^{+}=\mathcal{F} \cup\left\{Q_{\alpha}: \alpha<c\right\}$ and $\mathcal{I}=\left\{E \subseteq X: E \subseteq \cup \tilde{\mathcal{F}}\right.$ for some finite $\left.\tilde{\mathcal{F}} \subseteq \mathcal{F}^{+}\right\}$. Then $\operatorname{cof}(\mathcal{I}) \leq c$ since $\mid\left\{\tilde{\mathcal{F}} \subseteq \mathcal{F}^{+}: \tilde{\mathcal{F}}\right.$ is finite $\} \mid=c$. Now, observe that $\operatorname{cov}(\mathcal{I})=c$. Indeed, if $\operatorname{cov}(\mathcal{I})=\kappa<c$, there is an $\mathcal{F}_{0} \subseteq \mathcal{F}^{+}$such that $\left|\mathcal{F}_{0}\right|=\kappa$ and $\cup \mathcal{F}_{0}=X$. Let $\mathcal{F}_{0}=\left\{P_{\alpha}: \alpha<\kappa\right\}$. Consider a fixed $P \in \mathcal{F} \backslash \mathcal{F}_{0} . P \cap P_{\alpha}$ is countable for all $\alpha<\kappa$, therefore $c=|P|=\left|P \cap \cup F_{0}\right|=\left|\cup_{\alpha<\kappa} P \cap P_{\alpha}\right| \leq \kappa \cdot \omega=\kappa<c$, a contradiction. The ideal \mathcal{I} has property (P) since, by the construction, each perfect set P either belongs to \mathcal{F}^{+}, thus is in \mathcal{I}, or $P \cap Q$ is uncountable for some $Q \in \mathcal{F}^{+}$, thus a perfect part of $P \cap Q$ belongs to \mathcal{I}.

2. The Second Criterion

For a family $\left\{D_{\alpha}: \alpha<c\right\} \subseteq \mathcal{P}(X)$, we denote

$$
D_{0}^{*}=D_{0} \quad \text { and } \quad D_{\alpha}^{*}=D_{\alpha} \backslash \cup_{\alpha<\gamma} D_{\gamma} \text { if } 0<\alpha<c
$$

The following proposition generalizes Theorem 2.2 from $[\mathbf{W} 1]$.
2.1. Proposition. Let $\mathcal{D}=\left\{D_{\alpha}: \alpha<c\right\}$ be a family of analytic subsets of X such that $\left|D_{\alpha}^{*}\right|=c$ for all $\alpha<c$. Then there exists a selector E of $\left\{D_{\alpha}^{*}: \alpha<c\right\}$ being an $\left(s^{0}\right)$ set.

Proof. Let \mathcal{P} be the family of all perfect subsets of X. If there exists $P \in \mathcal{P}$ meeting each member of D_{α} at $<c$ points (consequently, in a countable set of points), then let $\left\{Q_{\alpha}: \alpha<c\right\}$ consists of all such sets P. In the opposite case, let $Q_{\alpha}=\emptyset$ for all $\alpha<c$. Pick $x_{0} \in D_{0}$ and choose inductively

$$
x_{\alpha} \in D_{\alpha}^{*} \backslash \cup_{\gamma<\alpha}\left(Q_{\gamma} \cup\left\{x_{\gamma}\right\}\right) \quad \text { for } 0<\alpha<c
$$

This can be done since $\left|D_{\alpha}^{*}\right|=c$ and $\mid D_{\alpha}^{*} \cap\left(\cup_{\gamma<\alpha}\left(Q_{\gamma} \cup\left\{x_{\gamma}\right\}\right) \mid<c\right.$. Define $E=\left\{x_{\alpha}: \alpha<c\right\}$. Certainly, $E \cap D_{\alpha}^{*}=\left\{x_{\alpha}\right\}$ for each $\alpha<c$. Now, consider any perfect P. If $P=Q_{\alpha}$ for some $\alpha<c$, then $E \cap P \subseteq\left\{x_{\beta}: \beta \leq \alpha\right\}$. So, by Lemma 0.1 , there is a perfect subset of P which misses E. If $P \neq Q_{\alpha}$ for all $\alpha<c$, then $\left|P \cap D_{\alpha}\right|=c$ for some $\alpha<c$. For this α, we have

$$
P \cap D_{\alpha} \cap E \subseteq\left\{x_{\beta}: \beta \leq \alpha\right\}
$$

So, by Lemma 0.1, there is a perfect subset of $P \cap D_{\alpha}$ (consequently, of P) disjoint from E. Hence E is an $\left(s^{0}\right)$ set.

Let $\mathcal{D} \subseteq \mathcal{P}(X),|\mathcal{D}|=c$ and $\cup \mathcal{D}=X$. We say that an ideal $\mathcal{I} \subseteq \mathcal{P}(X)$ is $(<c)$-generated by \mathcal{D} if

$$
\mathcal{I}=\{E \subseteq X: E \subseteq \cup \tilde{\mathcal{D}} \text { for some } \tilde{\mathcal{D}} \subseteq \mathcal{D},|\tilde{\mathcal{D}}|<c\}
$$

2.2. Corollary (Criterion 2). If $\mathcal{D}=\left\{D_{\alpha}: \alpha<c\right\}$ is a family of analytic subsets of X such that $\cup \mathcal{D}=X$ and $\left|D_{\alpha}^{*}\right|=c$ for all $\alpha<c$, then $\mathcal{I}_{0} \backslash \mathcal{I} \neq \emptyset$ where \mathcal{I} is the ideal $(<c)$-generated by \mathcal{D}.

Proof. Consider the set E from Proposition 2.1. Then $E \in \mathcal{I}_{0}$ and, since E is a selector of $\left\{D_{\alpha}^{*}: \alpha<c\right\}$, we get $E \notin \mathcal{I}$.

We say that a family \mathcal{F} of perfect subsets of X is almost disjoint if $P \cap Q$ is countable for any distinct $P, Q \in \mathcal{F}$. By Zorn's lemma, each almost disjoint family of perfect sets can be extended to a maximal one. From Criterion 2 we get
2.3. Corollary. If \mathcal{D} is an almost disjoint family of perfect subsets of X, such that $|\mathcal{D}|=c$ and $\cup \mathcal{D}=X$, then $\mathcal{I}_{0} \backslash \mathcal{I} \neq \emptyset$ where \mathcal{I} is the ideal $(<c)$-generated by \mathcal{D}.
2.4. Examples. (a) Let $I=[0,1]$ and $X=I^{2}$. Put

$$
\mathcal{D}=\{I \times\{x\}: x \in I\} \cup\{\{x\} \times I: x \in I\} .
$$

Then \mathcal{D} is an almost disjoint family of perfect sets fulfilling the assumptions of 2.3. Note that \mathcal{D} is not maximal since, for instance, the diagonal meets each set from \mathcal{D} at exactly one point. By that reason, property (P) fails to hold for the ideal \mathcal{I} $(<c)$-generate by \mathcal{D} since the diagonal has no perfect subset in \mathcal{I}. So, Criterion 1 cannot be applied to \mathcal{I}.
(b) Let P be a perfect subset on \mathbb{R} such that $|P \cap(P+x)| \leq 1$ for all $x \neq 0$ (here $P+x$ denotes the set of all sums $t+x$ for $t \in P)$; see $[\mathbf{R u} \mathbf{- S}]$. Then, for any perfect $Q \subseteq P$, the collection $\mathcal{D}=\{Q+x: x \in \mathbb{R}\}$ is an almost disjoint family of perfect sets fulfilling all the assumptions of 2.3 . If there exists a perfect $S \subseteq P \backslash Q$, it is clear that \mathcal{D} is not maximal since $\mathcal{D} \cup\{S\}$ extends \mathcal{D}. Hence again, the respective ideal \mathcal{I} has not property (P). Note that \mathcal{I} is translation invariant.
(c) Observe that \mathcal{F}^{+}from Example 1.3 can form a maximal almost disjoint family of perfect sets. By 2.3 , there is an $\left(s^{0}\right)$ set outside the ideal $(<c)$-generated by \mathcal{F}^{+}. That ideal contains \mathcal{I} considered in 1.3. Thus, now we get more that $\mathcal{I}_{0} \backslash \mathcal{I} \neq \emptyset$.
(d) Let X be the set of all infinite subsets of ω. Then X can be embedded into the Cantor set 2^{ω} via the characteristic functions. Thus X inherits the product topology from 2^{ω} and forms a dense-in-itself space which is Polish since it is embedded into 2^{ω} as a G_{δ} set (apply the Alexandrov theorem, see $[\mathbf{K r}, \S 33 . \mathrm{VI}]$). Let $A \subseteq X$ be a family of c sets which meet pairwise on finite sets (see $[\mathbf{K n}$, Th. 1.2(b), p. 48]). Let $\mathcal{A}=\left\{A_{\alpha}: \alpha<c\right\}$ and $D_{\alpha}=\left\{K \in X: K \cap A_{\alpha} \in X\right\}, \alpha<c$. It is easy to verify that $\mathcal{D}=\left\{D_{\alpha}: \alpha<c\right\}$ consists of perfect sets and $\cup \mathcal{D}=X$. This is not an almost disjoint family since $\left|D_{\alpha} \cap D_{\beta}\right|=c$ for any distinct $\alpha, \beta<c$. Indeed, there exist c distinct subsets of ω meeting either of the sets A_{α} and A_{β} in
infinite sets. On the other hand, Criterion 2 can be applied to \mathcal{D} since $\left|D_{\alpha}^{*}\right|=c$ for $\alpha<c$. This follows from the fact that A_{α} has c infinite subsets and each of them is in D_{α}^{*}.

Finally, note that, for any ideal \mathcal{I} fulfilling the conditions of Criterion 2, it is consistent with ZFC that $\operatorname{cf}(\mathcal{I})>c$. Indeed, we have $\operatorname{cf}(\mathcal{I}) \geq 2^{\omega_{1}}$ hence $\mathrm{cf}(\mathcal{I})>c$ holds in the model in which $\omega_{1}<c$ and $2^{\omega_{1}}>c$ are true (see [Kn, Th. 6.18(c), p. 216]). So, in this case, Criterion 1 is not useful.

3. Further Remarks

In Sections 1 and 2 we have concentrated on the problem "When $\mathcal{I}_{0} \backslash \mathcal{I} \neq \emptyset$?", while the results for Brown and Walsh which we try to generalize deal mainly with the question "When $\mathcal{I}_{0} \backslash S_{\mathcal{I}} \neq \emptyset$?" where $S_{\mathcal{I}}$ is a respective σ-field associated with \mathcal{I}. Now, we shall show that, in some cases, these two problems are equivalent.

For a family $\mathcal{F} \subseteq \mathcal{P}(X)$ and an ideal $\mathcal{I} \subseteq \mathcal{P}(X)$, by $\mathcal{F}(\mathcal{I})$ we denote the collection of all sets $E \subseteq X$ expressible as the symmetric differences $B \triangle C$ where $B \in \mathcal{F}$ and $A \in \mathcal{I}$. In particular, one can consider as \mathcal{F} the σ-field \mathcal{B} of all Borel sets in X; then $\mathcal{B}(\mathcal{I})$ is the smallest σ-field containing $\mathcal{B} \cup \mathcal{I}$. We shall also consider projective pointclasses Σ_{n}^{1} and Π_{n}^{1} for $n \geq 1$ (see [Mo], for the definitions); here we restrict them to the space X. We say that a pointclass Λ fulfils Perfect Set Theorem (abbr. PST) if each uncountable set from Λ contains a perfect set. It is known that Σ_{1}^{1} fulfils PST and, for $n \geq 2$, the statement " Σ_{n}^{1} fulfils PST", is not provable in ZFC; however, it can be treated as a strong axiom of set theory (cf. $[\mathrm{Mo}]$).

For $\mathcal{F} \subseteq \mathcal{P}(X)$, we denote $\neg \mathcal{F}=\{X \backslash A: A \in \mathcal{F}\}$.
3.1. Proposition. Assume that $\mathcal{F} \subseteq \mathcal{P}(X)$ is closed under finite intersections and $\mathcal{I} \subseteq \mathcal{P}(X)$ is an ideal with a base $\tilde{\mathcal{I}} \subseteq \neg \mathcal{F}$ such that each set from $\mathcal{F} \backslash \mathcal{I}$ contains a perfect set. Let $E \subseteq X$ be totally imperfect. Then $E \notin \mathcal{I}$ and $E \notin \mathcal{F}(\mathcal{I})$ are equivalent.

Proof. Obviously, $E \notin \mathcal{F}(\mathcal{I})$ implies $E \notin \mathcal{I}$. Now, assume that we have a totally imperfect $E \in \mathcal{I}$. Suppose that $E \in \mathcal{F}(\mathcal{I})$. Then $E=B \triangle A$ where $B \in \mathcal{F}$ and $A \in \mathcal{I}$. Of course, $B \notin \mathcal{I}$. Choose $\tilde{A} \in \tilde{\mathcal{I}}$ containing A. Then, for $\tilde{B}=B \backslash \tilde{A}$, we get $E=\tilde{B} \cup D$ where $D=(B \cap(\tilde{A} \backslash A)) \cup(A \backslash B) \in \mathcal{I}$. Observe that \tilde{B} is in $\mathcal{F} \backslash \mathcal{I}$ and thus, by the assumption, it contains a perfect set. Hence E has a perfect subset, a contradiction.

If an ideal $\mathcal{I} \subseteq \mathcal{P}(X)$ has a base $\tilde{\mathcal{I}}$ contained in a pointclass Λ, then $\tilde{\mathcal{I}}$ is called a Λ-base.
3.2. Corollary. Let $\mathcal{I} \subseteq \mathcal{P}(X)$ be an ideal having a Π_{1}^{1}-base and containing all countable subsets of X. For any totally imperfect set E, the conditions $E \notin \mathcal{I}$ and $E \notin \Sigma_{1}^{1}(\mathcal{I})$ are equivalent.

The same result holds when Π_{1}^{1} and Σ_{1}^{1} are replaced by \mathcal{B}.
3.3. Corollary. For $n \geq 2$, assume that Σ_{n}^{1} fulfils PST. Let $\mathcal{I} \subseteq \mathcal{P}(X)$ be an ideal having a Π_{n}^{1}-base and containing all countable subsets of X. For any totally imperfect set, the conditions $E \notin \mathcal{I}$ and $E \notin \Sigma_{n}^{1}(\mathcal{I})$ are equivalent.

Applying the results of this section together with Criterion 1 or 2 to the respective ideals \mathcal{I} and pointclasses Λ, we get conditions guaranteeing $\mathcal{I}_{0} \backslash \Lambda(\mathcal{I}) \neq \emptyset$.

References

[Ba1] Balcerzak M., On σ-ideals having perfect members in all perfect sets, Demonstratio Math. 22 (1989), 1159-1168.
[Ba2] , Another nonmeasurable set with property (s^{0}), preprint.
$[\mathbf{B r}] \quad$ Brown J., The Ramsey sets and related sigma algebras and ideals, Fund. Math. 136 (1990), 179-183.
[C] Corazza P., Ramsey sets, the Ramsey ideal and other classes over \mathbb{R}, preprint.
[Kn] Kunen K., Set Theory. An introduction to Independence Proofs, North Holland, 1980.
[Kr] Kuratowski K., Topology I, Academic Press, 1966.
[Mo] Moschovakis Y., Descriptive Set Theory, North Holland, 1980.
[My] Mycielski J., Some new ideals of sets on the real line, Colloq. Math. 20 (1969), 71-76.
[R] Rosłanowaki, On game ideals, Colloq. Math. 59 (1990), 159-168.
[Ru-S] Ruziewicz and Sierpiński W., Sur un ensemble parfait qui a avec toute sa translation au plus un point commun, Fund. Math. 19 (1932), 17-21.
[Sz] Szpilrajn (Marczewski) E., Sur une classe de fonctions de M. Sierpiński et la classe correspondante d'ensembles, Fund. Math. 24 (1935), 17-34.
[W1] Walsh J. T., Marczewski sets, measure and the Baire property, Fund. Math. 129 (1988), 83-89.
[W2] , Marczewski sets, measure and the Baire property II, Proc. Amer. Math. Soc. 106 (1989), 1027-1030.
M. Balcerzak, Institute of Mathematics, Łódź University, ul. S. Banacha 22, 90-238 Łódź, Poland

[^0]: Received August 16, 1991.
 1980 Mathematics Subject Classification (1991 Revision). Primary 04A15, 54H05.
 Key words and phrases. Perfect set, $\left(s^{0}\right)$ set, ideal.

