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ON MARCZEWSKI SETS AND SOME IDEALS

M. BALCERZAK

Abstract. Using the methods of Brown and Walsh, we get condition guaranteeing
that, for an ideal I of sets in a perfect Polish space some (s0) sets are not in I. A
few examples and corollaries are given.

0. Introduction

Papers [Br], [W1], [W2] and [C] made a significant progress in the studying

of (s0) sets introduced by Marczewski in [Sz]. One of the main results states that

there exists a nonmeasurable (s0) set without the Baire property. That was proved

in [Br] under CH and in [W1], [W2], [C] within ZFC. We analyse the schemes

from [Br] and [W1], [W2] and get two criteria for an ideal I (of sets in a perfect

Polish space X) to satisfy I0 \ I 6= ∅ where I0 denotes the ideal of all (s0) sets

(in X). The original proofs we base on need only a slight modification. However,

we give new versions in full. We describe some applications.

Throughout the paper, we fix a perfect Polish space X. A set which has no

perfect subset is called totally imperfect. A set E ⊆ X is called an (s0) set if each

perfect set has a perfect subset disjoint from E (see [Sz]). Obviously, (s0) sets

are totally imperfect and, moreover, they form an ideal (see [Sz]) which will be

written as I0.

For any ideal I ⊆ P(X), we always assume that X /∈ I (here P(X) is the power

set of X). The cardinality of continuum is denoted by c.

Further, the following lemma will be useful.

0.1. Lemma. Let A ⊆ X be an uncountable analytic set and E ⊆ X. If

|A ∩E| < c, then there exists a perfect set P ⊆ A missing E.

Proof. Find a perfect P ⊆ A (cf. [Kr, §39.I]) and c pairwise disjoint perfect

subsets of P . At least one of them misses E. �
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1. The First Criterion

A family Ĩ is called a base of an ideal I ⊆ P(X) if Ĩ ⊆ I and, for each A ∈ I,

there exists B ∈ Ĩ containing A. We denote

cof (I) = min{ |Ĩ| : Ĩis base of I } ,

cov (I) = min{ |H| : H ⊆ I and ∪H = X } .

It is evident that cov (I) ≤ cof (I).

We say that I has property (P) if each perfect set in X has a perfect set

belonging to I (cf. [Ba1]).

The following proposition generalizing the method from Example 3 in [Br] has

been inspired by some comment contained in [C].

1.1. Proposition (Criterion 1). Let I ⊆ P(X) be an ideal such that

(a) cov (I) = cof (I) = c,

(b) I has property (P).

Then I0 \ I 6= ∅.

Proof. Since cof (I) = c, there is a base Ĩ of I with |Ĩ| = c. Let {Aα : α < c}
be an enumeration of sets A such that X \ A ∈ Ĩ. Let {Pα : α < c} be an

enumeration of all perfect subsets of X. By virtue of (b), choose a perfect Q0 ∈ I
contained in P0. Pick any x0 in A0 \ Q0. If 0 < α < c and if xβ , for β < α, are

defined, choose a perfect subset Qα ∈ I of Pα and let

Fα = {Qβ : β ≤ α} ∪ {xβ : β < α} .

Observe that Aα \ ∪Fα /∈ I. Indeed, if it is not the case, then for

H = Fα ∪ {Aα \ ∪Fα} ∪ {X \Aα} ,

we would get |H| < c, ∪H = X, which contradicts cov (I) = c. Now, pick any xα
in Aα \ ∪Fα. If the induction is finished, set E = {xα : α < c}.

To show that E is an (s0) set, consider any Pα. By the construction, Qα∩E ⊆
{xβ : β < α}. So, by Lemma 0.1, there is a perfect subset of Qα (thus of Pα)

which misses E.

To show E /∈ I, suppose that E ∈ I and choose Ẽ ∈ Ĩ containing E. Then

X \ Ẽ = Aα for some α < c. We have Aα ⊆ X \ E, which implies xα /∈ E, a

contradiction. �

Since cov (I) ≤ cof (I), it is suffices to assume in (a) that c ≤ cov (I) and

cof (I) ≤ c. Property (P) seems rather strong. Note that it is not necessary for

I0 \I 6= ∅. Indeed, if I is an ideal with property (P) and I0 \I 6= ∅, then throwing

out all perfect subsets of a fixed perfect set from I, we get the ideal I∗ for which
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(P) fails to hold and I0 \ I
∗ 6= ∅. In Section 2 we give examples of quite large and

regular ideals without property (P) which do not contain all (s0) sets.

Coming back to the sources of Criterion 1; i.e. to Example 3 from [Br], consider

the case when I is the ideal L of the Lebesgue null sets in the real line R. It is

obvious that cof (L) ≤ c, and that L has property (P). The statement cov (L) =

c is implied by CH (or by MA) but is not equivalent. By Criterion 1, we get

I0 \L 6= ∅. This easily implies the existence of an (s0) set which is nonmeasurable

(cf. Corollary 3.2). That was obtained in [W2] within ZFC. The first step of the

proof is Theorem 2.2 from [W1] (for a generalization, see Section 2 of our paper).

The second step uses the Fubini theorem. The same technique repeats when the

measure is replaced by category (for other cases, see [Ba2]. However, if we have

no analogues of the Fubini theorem, it can be unclear how to continue the first

step. Thus Criterion 1 may help.

1.2. Example. Consider an infinite K ⊆ ω = {0, 1, 2, . . .} and a set E ⊆ 2ω

where 2ω is the Cantor space of all infinite sequences with terms from {0, 1}.
Let Γ(E,K) be the following game between two players I and II. They choose

consecutive terms of a sequence x = 〈x(0), x(1), . . . 〉 ∈ 2ω. Player I picks x(i) if

i /∈ K and Player II — if i ∈ K. Player I wins if x ∈ E and Player II — if x /∈ E.

Let VII(K) be the set of all E ⊆ 2ω such that Player II has a winning strategy in

Γ(E,K). Now, consider a system {Ks : s ∈ 2<ω} (where 2<ω denotes the set of

all finite sequences with terms from {0, 1}) fulfilling the conditions

Ks0 ∪Ks1 ⊆ Ks and Ks0 ∩Ks1 = ∅

for all s ∈ 2<ω where si (i ∈ {0, 1}) extends s by the (last) term i. The family

M = ∩{VII(Ks) : s ∈ 2<ω}

is an ideal defined by Mycielski in [My]. It is interesting that there exists a set

E in M such that 2ω \ E is of the first category and of measure zero (in 2ω we

consider the usual product measure which is isomorphic to the Lebesgue measure

on [0, 1]). The ideal M has a base consisting of Gδ sets. The above facts are

observed in [My]. Thus we have cof (M) ≤ c. It was proved in [Ba1] thatM has

property (P). Ros lanoski showed that cov (M) = ω1 (see [R, Th. 2.3(a)]). Hence,

if we assume CH, Criterion 1 yields I0 \M 6= ∅. (Can it be proved within ZFC?)

Now we give an example of an ideal for which Criterion 1 works in ZFC.

1.3. Example. Let F be a disjoint family of perfect sets with the union equal

to X = 2ω, we shall define sets Qα, α < c. Let R be the family of all sets Q ⊆ X
such that Q ∩ P is countable for any P ∈ F . If R = ∅, put Qα = ∅ for all

α < c. If R 6= ∅; pick any Q0 ∈ R. Assume that α < c and Qγ for γ < α are

defined. If there is a Q ∈ R such that Q ∩ Qγ is countable for all γ < α, put
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Qα = Q, and let Qα = ∅ in the opposite case. Next, put F+ = F ∪ {Qα : α < c}
and I = {E ⊆ X : E ⊆ ∪F̃ for some finite F̃ ⊆ F+}. Then cof (I) ≤ c

since |{F̃ ⊆ F+ : F̃ is finite}| = c. Now, observe that cov (I) = c. Indeed, if

cov (I) = κ < c, there is an F0 ⊆ F
+ such that |F0| = κ and ∪F0 = X. Let

F0 = {Pα : α < κ}. Consider a fixed P ∈ F\F0. P ∩Pα is countable for all α < κ,

therefore c = |P | = |P ∩ ∪F0| = | ∪α<κ P ∩ Pα| ≤ κ · ω = κ < c, a contradiction.

The ideal I has property (P) since, by the construction, each perfect set P either

belongs to F+, thus is in I, or P ∩ Q is uncountable for some Q ∈ F+, thus a

perfect part of P ∩Q belongs to I.

2. The Second Criterion

For a family {Dα : α < c} ⊆ P(X), we denote

D∗0 = D0 and D∗α = Dα \ ∪α<γDγ if 0 < α < c .

The following proposition generalizes Theorem 2.2 from [W1].

2.1. Proposition. Let D = {Dα : α < c} be a family of analytic subsets of X

such that |D∗α| = c for all α < c. Then there exists a selector E of {D∗α : α < c}
being an (s0) set.

Proof. Let P be the family of all perfect subsets of X. If there exists P ∈ P
meeting each member of Dα at < c points (consequently, in a countable set of

points), then let {Qα : α < c} consists of all such sets P . In the opposite case, let

Qα = ∅ for all α < c. Pick x0 ∈ D0 and choose inductively

xα ∈ D
∗
α \ ∪γ<α(Qγ ∪ {xγ}) for 0 < α < c .

This can be done since |D∗α| = c and |D∗α ∩ (∪γ<α(Qγ ∪ {xγ})| < c. Define

E = {xα : α < c}. Certainly, E ∩D∗α = {xα} for each α < c. Now, consider any

perfect P . If P = Qα for some α < c, then E ∩ P ⊆ {xβ : β ≤ α}. So, by Lemma

0.1, there is a perfect subset of P which misses E. If P 6= Qα for all α < c, then

|P ∩Dα| = c for some α < c. For this α, we have

P ∩Dα ∩E ⊆ {xβ : β ≤ α} .

So, by Lemma 0.1, there is a perfect subset of P ∩Dα (consequently, of P ) disjoint

from E. Hence E is an (s0) set. �

Let D ⊆ P(X), |D| = c and ∪D = X. We say that an ideal I ⊆ P(X) is

(< c)-generated by D if

I = {E ⊆ X : E ⊆ ∪D̃ for some D̃ ⊆ D, |D̃| < c} .
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2.2. Corollary (Criterion 2). If D = {Dα : α < c} is a family of analytic

subsets of X such that ∪D = X and |D∗α| = c for all α < c, then I0 \ I 6= ∅ where

I is the ideal (< c)-generated by D.

Proof. Consider the set E from Proposition 2.1. Then E ∈ I0 and, since E is

a selector of {D∗α : α < c}, we get E /∈ I. �

We say that a family F of perfect subsets of X is almost disjoint if P ∩ Q is

countable for any distinct P,Q ∈ F . By Zorn’s lemma, each almost disjoint family

of perfect sets can be extended to a maximal one. From Criterion 2 we get

2.3. Corollary. If D is an almost disjoint family of perfect subsets of X, such

that |D| = c and ∪D = X, then I0 \ I 6= ∅ where I is the ideal (< c)-generated

by D.

2.4. Examples. (a) Let I = [0, 1] and X = I2. Put

D = {I × {x} : x ∈ I} ∪ {{x} × I : x ∈ I} .

Then D is an almost disjoint family of perfect sets fulfilling the assumptions of 2.3.

Note that D is not maximal since, for instance, the diagonal meets each set from

D at exactly one point. By that reason, property (P) fails to hold for the ideal I
(< c)-generate by D since the diagonal has no perfect subset in I. So, Criterion 1

cannot be applied to I.

(b) Let P be a perfect subset on R such that |P ∩(P +x)| ≤ 1 for all x 6= 0 (here

P +x denotes the set of all sums t+x for t ∈ P ); see [Ru-S]. Then, for any perfect

Q ⊆ P , the collection D = {Q+ x : x ∈ R} is an almost disjoint family of perfect

sets fulfilling all the assumptions of 2.3. If there exists a perfect S ⊆ P \Q, it is

clear that D is not maximal since D∪{S} extends D. Hence again, the respective

ideal I has not property (P). Note that I is translation invariant.

(c) Observe that F+ from Example 1.3 can form a maximal almost disjoint

family of perfect sets. By 2.3, there is an (s0) set outside the ideal (< c)-generated

by F+. That ideal contains I considered in 1.3. Thus, now we get more that

I0 \ I 6= ∅.

(d) Let X be the set of all infinite subsets of ω. Then X can be embedded into

the Cantor set 2ω via the characteristic functions. Thus X inherits the product

topology from 2ω and forms a dense-in-itself space which is Polish since it is

embedded into 2ω as a Gδ set (apply the Alexandrov theorem, see [Kr, §33.VI]).

Let A ⊆ X be a family of c sets which meet pairwise on finite sets (see [Kn, Th.

1.2(b), p. 48]). Let A = {Aα : α < c} and Dα = {K ∈ X : K ∩Aα ∈ X}, α < c.

It is easy to verify that D = {Dα : α < c} consists of perfect sets and ∪D = X.

This is not an almost disjoint family since |Dα ∩Dβ | = c for any distinct α, β < c.

Indeed, there exist c distinct subsets of ω meeting either of the sets Aα and Aβ in
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infinite sets. On the other hand, Criterion 2 can be applied to D since |D∗α| = c

for α < c. This follows from the fact that Aα has c infinite subsets and each of

them is in D∗α.

Finally, note that, for any ideal I fulfilling the conditions of Criterion 2, it is

consistent with ZFC that cf (I) > c. Indeed, we have cf (I) ≥ 2ω1 hence cf (I) > c

holds in the model in which ω1 < c and 2ω1 > c are true (see [Kn, Th. 6.18(c),

p. 216]). So, in this case, Criterion 1 is not useful.

3. Further Remarks

In Sections 1 and 2 we have concentrated on the problem “When I0 \ I 6= ∅?”,

while the results for Brown and Walsh which we try to generalize deal mainly with

the question “When I0 \SI 6= ∅?” where SI is a respective σ-field associated with

I. Now, we shall show that, in some cases, these two problems are equivalent.

For a family F ⊆ P(X) and an ideal I ⊆ P(X), by F(I) we denote the

collection of all sets E ⊆ X expressible as the symmetric differences B4C where

B ∈ F and A ∈ I. In particular, one can consider as F the σ-field B of all Borel

sets in X; then B(I) is the smallest σ-field containing B∪I. We shall also consider

projective pointclasses Σ1
n and Π1

n for n ≥ 1 (see [Mo], for the definitions); here

we restrict them to the space X. We say that a pointclass Λ fulfils Perfect Set

Theorem (abbr. PST) if each uncountable set from Λ contains a perfect set. It

is known that Σ1
1 fulfils PST and, for n ≥ 2, the statement “Σ1

n fulfils PST”, is

not provable in ZFC; however, it can be treated as a strong axiom of set theory

(cf. [Mo]).

For F ⊆ P(X), we denote qF = {X \A : A ∈ F}.

3.1. Proposition. Assume that F ⊆ P(X) is closed under finite intersections

and I ⊆ P(X) is an ideal with a base Ĩ ⊆ qF such that each set from F \ I
contains a perfect set. Let E ⊆ X be totally imperfect. Then E /∈ I and E /∈ F(I)

are equivalent.

Proof. Obviously, E /∈ F(I) implies E /∈ I. Now, assume that we have a totally

imperfect E ∈ I. Suppose that E ∈ F(I). Then E = B4A where B ∈ F and

A ∈ I. Of course, B /∈ I. Choose Ã ∈ Ĩ containing A. Then, for B̃ = B \ Ã,

we get E = B̃ ∪D where D = (B ∩ (Ã \ A)) ∪ (A \ B) ∈ I. Observe that B̃ is

in F \ I and thus, by the assumption, it contains a perfect set. Hence E has a

perfect subset, a contradiction. �

If an ideal I ⊆ P(X) has a base Ĩ contained in a pointclass Λ, then Ĩ is called

a Λ-base.

3.2. Corollary. Let I ⊆ P(X) be an ideal having a Π1
1-base and containing

all countable subsets of X. For any totally imperfect set E, the conditions E /∈ I
and E /∈ Σ1

1(I) are equivalent.
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The same result holds when Π1
1 and Σ1

1 are replaced by B.

3.3. Corollary. For n ≥ 2, assume that Σ1
n fulfils PST. Let I ⊆ P(X) be an

ideal having a Π1
n-base and containing all countable subsets of X. For any totally

imperfect set, the conditions E /∈ I and E /∈ Σ1
n(I) are equivalent.

Applying the results of this section together with Criterion 1 or 2 to the respec-

tive ideals I and pointclasses Λ, we get conditions guaranteeing I0 \ Λ(I) 6= ∅.
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[Ru-S] Ruziewicz and Sierpiński W., Sur un ensemble parfait qui a avec toute sa translation

au plus un point commun, Fund. Math. 19 (1932), 17–21.
[Sz] Szpilrajn (Marczewski) E., Sur une classe de fonctions de M. Sierpiński et la classe
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