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MINIMAL SIZE OF A GRAPH WITH DIAMETER 2

AND GIVEN MAXIMAL DEGREE, II

Š. ZNÁM

Abstract. Let F2(n, bpnc) be the minimal size of a graph on n vertices with
diameter 2 and maximal degree bpnc. The asymptotic behaviour of F2(n, bpnc) is
considered for 2/5 < p < 5/12.

1. Introduction

Denote by H2(n, bpnc) the family of undirected graphs of order n, diameter 2

and maximal degree bpnc (0 < p < 1) and put

F2(n, bpnc) = min
G∈H2(n,bpnc)

e(G)

where e(G) is the size of G. Denote further by

f(p) = lim
n→∞

F2(n, bpnc) .

The function f(p) was introduced in [1] and in [5] the existence of the limit

(conjectured in [2]) was proved for all values of p except of a sequence tending

to 0. It is also showed in [5] that for a given p, f(p) can be determined using

linear programming. However, this procedure is too slow to enable us to solve the

problem even for relatively large values of p.

In [2] the values of f(p) for p > 1/2 were determined. Further, in [4] it was

shown that if a projective plane of order t exists, then f(p) = t+1 for (t+1)/(t2 +

t + 1) < p < 1/t, hence putting t = 2 we get f(p) = 3 if 3/7 < p < 1/2. In [6]

f(p) is determined for 5/12 < p < 3/7. Thus for all p > 5/12 the values of f(p)

are known.

In this paper we determine f(p) for smaller p. In fact, we prove here the

following result conjectured in [5].

Theorem.

(1) f(p) = 8− 11p for 2/5 < p < 5/12 .

Received May 16, 1991.
1980 Mathematics Subject Classification (1991 Revision). Primary 05C35.



210 Š. ZNÁM

We shall use here very often methods and results of [5]. In those cases when

our assertions can be proved by a slight modification of those in [5], the proofs will

be omitted here. On the other hand, the following lemma is used here in exactly

the same way as in [5].

Lemma 1 ([5]). Let a set U with |U | ≥ 8 be given. Let Z be a system of triples

of distinct elements of U . If every element of U is contained in some triple of Z

and any two triples of Z intersect then there exist x, y ∈ U such that every triple

of Z contains at least one of x, y (we say that x, y cover Z).

2. The Main Inequality

We prove now that if p fulfils (1) and n is sufficiently large then for every

G ∈ H2(n, bpnc) we have

(2) e(G) ≥ 8n− 11bpnc − 8

{
4

(
192

3

)
+ 128

}
√
n .

Let I = 4
(

192
3

)
+ 128. We shall proceed indirectly: suppose there exists a graph

G0 ∈ H2(n, bpnc) with

(3) e(G0) < 8n− 11bpnc − 8I
√
n .

Denote by V the set of all vertices of G0, and by A the set of vertices of degree

at least
√
n. According to (3) we have

(4) |A| < 16
√
n .

Denote further by B the set of vertices of degree at most 7 adjacent to 3 vertices

of A (due to (1), no vertex of degree less than 3 exists in G0), and by C the set of

such vertices adjacent to at least 4 vertices of A, and finally, let D = V −A−B−C.

If x ∈ D then 8 ≤ deg x ≤
√
n.

The proof of the following lemma is straightforward (and very similar to that

of Lemma 2 in [5]).

Lemma 2.

2e(G0) ≥ 8n− 2|B| − 128
√
n .

Let now E be the set of vertices of degree at least n/12. By (3) we have

(5) |E| < 192 .

According to (1) every vertex of B is adjacent to 3 vertices of E. Let abc be the

set of vertices of B adjacent to vertices a, b, c ∈ E (a set of the form abc will be

called a triple-set). B consists of at most
(

192
3

)
triple-sets. Let F be the union of

triple-sets from B with cardinalities at least 4
√
n. Then

(6) |B| < |F |+ 4

(
192

3

)
√
n .

Denote by T the system of neighbours of triple-sets in F and by W the set of

vertices occurring in T . Now we shall state some lemmas.
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Lemma 3. Any two triples of T have a common element.

The proof is straightforward and very similar to that of Lemma 3 in [5].

Lemma 4. Let J be the set of vertices x having the following property: there

is some triple-set abc in F such that x is not adjacent to any of the vertices a, b,

c. Then |J | ≤ 4
(

192
3

)√
n.

The proof follows from the obvious fact that to any triple-set abc there exist at

most 4
√
n vertices adjacent to neither a, b, c (see also the proof of Lemma 4 in

[5]).

Lemma 5. T is covered by two vertices.

Proof. Assume the opposite. Then by Lemma 4 each of at least n− 4
(

192
3

)√
n

vertices must be adjacent to at least 3 vertices of W . However, by Lemma 1 and

Lemma 2 we get |W | ≤ 7, a contradiction with (1). �

In what follows we shall use the notation bpnc = k.

First of all, from (3), (6) and Lemma 2 follows

(7) 8n− 2|F | − 2I
√
n ≤ 16n− 22k − 16I

√
n, thus |F | ≥ 11k − 4n+ 7I

√
n .

Let now M = V −A−J−H where H is a set of cardinality less than
√
n which

will be specified later. From (4) and Lemma 4 we have

(8) m = |M | > n− I
√
n .

Thus (7) can be rewritten in the form

(9) |F | ≥ 11k − 4m+ 3I
√
n .

Further considerations will be restricted to the vertices of M . The following

two lemmas will be of some use later.

Lemma 6. If a, b, c1, . . . , cr are distinct vertices of W , and there exist p

vertices of M adjacent to both a and b then

|abc1 ∪ · · · ∪ abcr|+ rp ≤ r(3k −m) .

Proof. For every i ∈ {1, . . . , r} the number of edges incident to vertices a, b, ci
is at least m+ p+ abci (≤ 3k), and thus the assertion follows. �

From the obvious inequality |abc1| ≤ p we get, by taking r = 1:

Corollary.

|abci| ≤ (3k −m)/2 .
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Lemma 7. There exist less than (5m− 11k)/2 vertices of M having at least 5

neighbours in V −M .

Proof. If it is not the case then e(G0) ≥ 3m + 2(5m − 11k)/2 = 8m − 11k, a

contradiction with (3). �
Now we shall prove that (3) leads to a contradiction. First of all, if all triples

of T contain a fixed vertex then we have |F | ≤ k, a contradiction with (9) for

k ≥ 2n/5 (see (1)). Assume now that T is covered by two vertices x, y (see

Lemma 5). Denote by X, Y and Z, respectively, the union of all triple-sets of F

adjacent only to x, only to y, and to both x and y, respectively.

We have to distinguish several cases depending on the form of the sets X, Y

and Z.

Case 1. xuv, xwt ⊂ X and yuw, yvt ⊂ Y (or yuv, ywt ⊂ Y , or yut, yvw ⊂ Y )

where all included vertices are distinct.

Let K = {x, y}, L = {u, v, w, t}. Further let S, Q, and R, respectively, be the

set of vertices of M adjacent to exactly one vertex, exactly two vertices, and no

vertex, respectively, of K. We can easily derive the following inequalities:

2m+ |S| ≤ 6k, i.e. |S| ≤ 6k − 2m;(10)

2|Q|+ |S| ≤ 2k, i.e. |Q| ≤ m− 2k;(11)

|R| = m− |S| − |Q| ≥ 2m− 4k .(12)

Suppose Z = xyz1 ∪ · · · ∪ xyzi and let (xyx1) [(xyx2)] be the set of all vertices

of M adjacent to x, y, x1 (to x, y, x2, respectively). The vertices of R are adjacent

to every zj , hence by (12) we get

(13) (xyzj) + 2m− 4k ≤ k, i.e. (xyzj) ≤ 5k − 2m.

Now we need to consider several subcases.

Case 1a. If there exist at least 3 vertices zj /∈ L then a vertex of R is adjacent

to 2 vertices of L, to at least three vertices zj but this is by (12) a contradiction

to Lemma 7.

Case 1b. There exists at most one zj /∈ L. Because all the remaining triple-

sets of F contain 3 vertices of L ∪K, we have |F − xyzi| ≤ 6k − 2m, and by (13)

we get a contradiction with (9). (In this case for |F | = 11k− 4n− 3 we obtain the

extremal graph – see Section 3.)

Case 1c. Now we have the most complicated case when Z contains exactly

2 triple-sets xyz1 and xyz2 such that z1, z2 /∈ K ∪ L. Denote by N , O, and P ,

respectively, the set of all vertices of M adjacent to at least two vertices, to one

vertex, and to no vertex, respectively, of L. Then

2|N |+ |O| ≤ 4k ,

|O| + |P | ≤ |Q| ,

−2(|N |+ |O|+ |P |) = −2m.
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Adding these inequalities, and taking into account (11), we have

|P | ≥ 2m− 4k − |Q| ≥ m− 2k .

Hence, by (13)

|P | − |(xyz1)| − |(xyz2)| ≥ 5m− 12k .

Now put p = 5/12 − ε, 0 < ε < 1/60 (see (1)). Then, from (8), 5m − 12k ≥
5(n− I

√
n)−12(5/12−ε)n = 12εn−5I

√
n which for sufficiently large n is greater

than 10εn. Hence there exist at least 10εn vertices of M not adjacent to any vertex

of L, thus adjacent to both x and y, but not adjacent to z1, z2. By (3), among

these vertices there exists a vertex b of degree less than 16/(10ε). Let N(b) be the

set of neighbours of b, and put H = N(b) (H is the above-mentioned set.) Now,

each vertex of R is adjacent to at least two vertices of L, to the vertices z1, z2 and

to some vertex of H. Thus each vertex of R is adjacent to at least 5 vertices of

V −M which by (1) and (12) contradicts Lemma 7.

Thus if the conditions xuv, xwt ⊂ X, yuw, yvt ⊂ Y (or yuv, ywt ⊂ Y , or yut,

yvw ⊂ Y ) are satisfied, then we always get a contradiction. Assume now that

these conditions are not satisfied. Say, X does not contain triple-sets of the form

xuv, xwt. Then the following cases can occur:

(a) X = xuv ∪ xuw ∪ xvw,

(b) all the triple-sets of X are adjacent to a further fixed vertex of W ,

(c) X = xuv.

Now consider these cases.

Case 2. Suppose X = xuv∪xuw∪xvw. The vertices of M not adjacent to x are

adjacent to at least two vertices of the set {u, v, w}. Hence 2(m− k) + 2|X| ≤ 3k,

i.e. |X| ≤ (5k−2m)/2, a contradiction with (9), because all the remaining vertices

of F are adjacent to y.

Case 3. Suppose X = xtx1 ∪ · · · ∪ xtxq , q ≥ 2. Again we have to distinguish

several subcases.

Case 3a. yxixj ⊂ Y for some i, j ∈ {1, . . . , q}. Then obviously q = 2. Let

U = xtx1 ∪ xtx2 ∪ yx1x2. Then every vertex of M is adjacent to at least two

vertices of the set {x, t, y, x1, x2} = W0 and every vertex of U is adjacent to 3

vertices of W0. Thus 2m+ |U | ≤ 5k, i.e. |U | ≤ 5k − 2m which is a contradiction

to (9) because all remaining vertices of F are adjacent to Y .

Case 3b. Suppose Y = yty1∪· · ·∪ytyr and put Z = xyz1∪· · ·∪xyzs. Assume

that among the vertices x1, . . . , xp, y1, . . . , yr, z1, . . . , zs there exist u distinct ver-

tices w1, . . . , wu different from x, y, t, and put W1 = {x, y, t, w1, . . . , wu}. Since

F is not covered by a single vertex, every vertex of M is adjacent to at least two

vertices of W1 and the vertices of F to 3 vertices of W1. Thus 2m+ |F | ≤ (3 +u)k

which contradicts (9) if u ≤ 3. Hence assume u > 3.
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Denote by L the set of all vertices of M not adjacent to any vertex of the set

{x, y, t}. Every vertex of F is adjacent to two vertices of this set, hence by (9) we

have

(14) 3k + |L| ≥ m+ |F |, i.e. |L| ≥ m− 3k + |F | ≥ 8k − 3m.

The vertices of L are adjacent to all vertices wi, thus for u = 4 we have

2m+ |F |+ 2(m− 3k + |F |) ≤ 7k, i.e. |F | ≤ (13k − 4m)/3

which is, by (1), a contradiction to (9).

For u ≥ 5 all vertices of L are adjacent to at least 5 vertices of W1 which by

(14) contradicts Lemma 7.

Case 4. The last case is X = xuv. If Z = ∅ then F is covered also by y and u,

and we may proceed as in the case 3a. Similarly, if all vertices of F are adjacent

to u (or v) then we get again the case 3b. Hence we may assume

F = xuv ∪ xyx1 ∪ · · · ∪ xyxi ∪ uyu1 ∪ · · · ∪ uyuj ∪ vyv1 ∪ · · · ∪ vyvq

where i, j, q are different from 0. Now we show that all the vertices xa, ub, vc
are distinct. Indeed, suppose, for example, that x1 = u1 and consider U = xuv ∪
xyx1 ∪uyx1. Every vertex of M is adjacent to two vertices of W3 = {x, y, u, v, x1}
and every vertex of U is adjacent to 3 vertices of W3, thus |U | ≤ 5k−2m. However,

all remaining vertices of F are adjacent to y, and so we get a contradiction with

(9). Now, if i = j = q = 1 then by Corollary of Lemma 6 we get a contradiction

to (9). Hence suppose i > 1 (as F is covered also by the couples u, y and v, y, we

may proceed in the remaining cases similarly). Distinguish now two subcases.

Case 4a. Suppose j = q = 1. Consider first the case i ≥ 3. By (9) and by

Corollary to Lemma 6 we have

|xyx1 ∪ · · · ∪ xyxi| ≥ 11k − 4m− (9k − 3m)/2 .

Thus the number of vertices adjacent neither to x nor to y is at least m − 2k +

[11k − 4m− (9k − 3m)/2] = (9k − 3m)/2. However, each such vertex is adjacent

to at least 5 vertices of V −M , a contradiction to Lemma 7 (see (1)).

Assume now i = 2. Let s be the number of vertices adjacent to y but not to

x1 nor to x2. Each such vertex is adjacent to at least one of vertices x, u, v. So

let s1, s2, and s3, respectively, be the number of such vertices adjacent to x, u, v,

respectively. Obviously,

(15) s1 + s2 + s3 ≥ s .

Now according to Lemma 6 we have

(16) |uyu1| ≤ (3k −m− s2)/2, |vyv1| ≤ (3k −m− s3)/2 .
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Consider now the number of vertices adjacent to x. By (16),

(17) |xuv|+ |xyx1|+ |xyx2| ≥ |F | − 3k +m+ (s2 + s3)/2 .

Each vertex of M−F must be adjacent to at least one of vertices x, y, x1. However,

there exist at most k−|xyx1| such vertices adjacent to x1 and s− s1 such vertices

adjacent to y but not to x. So, by (17), the total number of vertices adjacent to

x is at least

[|F | − 3k +m+ (s2 + s3)/2] + [m− |F | − k + |xyx1| − s+ s1] ≤ k .

Thus by (15) we get

|xyx1| ≤ 5k − 2m+ (s1 + s2)/2 .

Hence, according to (16), we get

|uyu1|+ |vyv1|+ |xyx1| ≤ 8k − 3m,

thus, by Corollary of Lemma 6, |F | ≤ 11k − 4m, a contradiction to (9).

Case 4b. Assume that at least two of the numbers i, j, q are greater than 1,

say, i ≥ 2, j ≥ 2 (in the remaining cases we may proceed similarly). Now we

introduce some notation. Let W3 = {x, u, v, y}, and let X1, U1, and V1 be the set

of all vertices of M adjacent only to x, only to u, and only to v (and to no other

vertices of W3), respectively. Let further XU , XV , and UV be the set of vertices

adjacent only to x and u, only to x and v, and only to u and v (and to no other

vertices of W3), respectively. Finally, let XUV be the set of vertices adjacent to

x, u, and v but not to y. Then

(18) |X1|+ |U1|+ |V1|+ |XU |+ |XV |+ |UV |+ |XUV | ≥ m− k .

The number of vertices adjacent to x is

(19) k ≥ |XUV |+ |XU |+ |XV |+ |X1|+ |xyx1|+ · · ·+ |xyxi| .

The number of vertices adjacent to u is

(20) k ≥ |XUV |+ |XU |+ |UV |+ |U1|+ |uyu1|+ · · ·+ |uyuj| .

Adding (18), (19) and (20) and using Lemma 6 gives

|V1| ≥ m− 3k + |XU |+ |F | − (|vyv1|+ · · ·+ |vyvp|)

≥ m− 3k + |F | − (3k −m) = 2m− 6k + |F | .

However, all vertices of V1 are adjacent to vertices v, x1, x2, u1, u2, thus e(G) ≥
4m− |F |+ (2m− 6k + |F |) = 6m− 6k which, by (1), contradicts (3).

We have seen that (3) leads to a contradiction in all cases, and so for any graph

G ∈ H2(n, bpnc) we have

(21) e(G) ≥ 8n− 11bpnc − 8I
√
n .
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3. Proof of the Theorem

Consider the graph G1 consisting of

(a) nine vertices a, b, c, d, e, f, g, h, i of high degrees;

(b) the edges ab, ag, af, bg, bd, ce, cg, ch, df, di, eg, eh, fi, gi, gh;

(c) triple-sets acd, aef, abg, bcf, bed;

(d) groups abih, dfgh, ceig of vertices of degree 4 adjacent to vertices involved

in these 4-tuples.

In case 3k − n is even, the cardinalities of these triple-sets and groups are (in

other case proceed similarly):

|acd| = |aef | = |bcf | = |bed| = (3k − n)/2,

|abg| = 5k − 2n− 3,

|abih| = 3n− 7k,

|ceig| = |dfgh| = n− 2k − 3 .

Then the vertices a, b, c, d, e, f are of degree k, g is of degree k − 3 and deg h =

deg i = 4n − 9k which is less than k for p > 2/5 and n sufficiently large. It is

easy to check that G1 ∈ H2(n, bpnc) for such p and n and e(G1) = 8n− 11k− 18.

Hence, by (21), if G ∈ H2(n, bpnc) where p satisfies (1) and n is sufficiently large,

we get

8n− 11bpnc − 8I
√
n ≤ F2(n, bpnc) ≤ 8n− 11bpnc − 18 ,

and the assertion of Theorem follows.

Remark. The structure of extremal graphs in a similar problem for graphs of

diameter 3 was determined in [3]. The author hopes to find a characterization of

extremal graphs in general for our case in a future paper. The “kernel system” of

the extremal graph is a uniquely determined hypergraph in general.
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