ON THE VOLUME OF THE

 DOUBLE STOCHASTIC MATRICESM. SCHMUCKENSCHLÄGER

1. Introduction and Notation

Let \prod_{n} be the group of permutation matrices in \mathbb{R}^{n}. Then

$$
D_{n}:=c o\left(\Pi: \Pi \in \prod_{n}\right)
$$

is a convex set in $\mathbb{R}^{n^{2}}$. It is well known that D_{n} is the set of all double stochastic matrices, i.e.

$$
D_{n}=\left\{T=\left(t_{i j}\right)_{i, j=1}^{n}: \sum_{i=1} t_{i j}=\sum_{j=1} t_{i j}=1 \forall i, j \in\{1, \ldots, n\}, t_{i j} \in[0,1]\right\}
$$

The volume of D_{n} is somehow related to a Kahane type inequality (cf. [S]) for the group of permutations, more precisely: let $\left(x_{j, k}\right)$ be a double sequence in some Banach space X, if

$$
\left(\frac{\operatorname{Vol}_{k}\left(D_{n}\right)}{\operatorname{Vol}_{k}\left(B_{k}^{2}\right)}\right)^{\frac{1}{k}} \geq c \sqrt{n}
$$

where k is the dimension of $D_{n} \subseteq \mathbb{R}^{n^{2}}$, then the L^{1}-norm and the norm associated with $\psi_{1}(t):=e^{t}-1$ of $\left\|\sum_{j, k} x_{j, k} \pi_{j, k}\right\|$ (the expectation being taken with respect to the normalized counting measure on the group of all signed permutation matrices $\left(\pi_{j, k}\right)$ i.e. $\left.\pi_{j, k} \in\{-1,0,1\}\right)$ are equivalent. Conversely, if the L^{1}-norm and the norm associated with $\psi_{2}(t):=e^{t^{2}}-1$ are equivalent, then the volume of D_{n} must satiesfy the above inequality up to some logarithmic factor. We prove that such an inequality can not hold. We also include a proof of an upper estimate for the volume of a convex polytope all of whose vertices are at a given distance from the origin. Though this result is known we could not find a reference.

[^0]It is easy to see that the subspace E of $\mathbb{R}^{n^{2}}$ defined by

$$
E=\bigcap_{j=1}^{2 n}\left\{x \in \mathbb{R}^{n^{2}}:\left\langle x, N_{j}\right\rangle=0\right\}
$$

where

$$
\begin{aligned}
N_{1} & =(\underbrace{1, \ldots, 1}_{n}, 0, \ldots, 0), \\
N_{2} & =(\underbrace{0, \ldots, 0}_{n}, \underbrace{1, \ldots, 1}_{n}, 0, \ldots, 0), \ldots \\
N_{n} & =(0, \ldots, 0, \underbrace{1, \ldots, 1}_{n}) \\
N_{n+1} & =(1, \underbrace{0, \ldots, 0}_{n-1}, 1, \underbrace{0, \ldots, 0}_{n-1}, 1, \ldots), \\
N_{n+2} & =(0,1, \underbrace{0, \ldots, 0}_{n-1}, 1, \underbrace{0, \ldots, 0}_{n-1}, 1, \ldots), \ldots \\
N_{2 n} & =(\underbrace{0, \ldots, 0}_{n-1}, 1, \underbrace{0, \ldots, 0}_{n-1}, 1, \ldots)
\end{aligned}
$$

has dimension $(n-1)^{2}$. Thus the dimension of D_{n} is $(n-1)^{2}$.

2. The Basic Estimates

In order to estimate the $(n-1)^{2}$-dimensional volume of D_{n} we need some results. The first one is due to Vaaler [\mathbf{V}] (a generalization of this result can be found in [M-P]).

Lemma 2.1. Let E be a k-dimensional subspace of \mathbb{R}^{n}. Then

$$
\operatorname{Vol}_{k}\left(B_{n}^{\infty} \cap E\right) \geq 2^{k}
$$

where B_{n}^{∞} is the cube $[-1,1]^{n}$.
The next result is a classical inequality of Urysohn (for an elementary proof we refer to $[\mathbf{P}]$).

Lemma 2.2. Let B be a convex symmetric body in \mathbb{R}^{n}. Then

$$
\left(\frac{\operatorname{Vol}_{n}(B)}{\operatorname{Vol}_{n}\left(B_{n}^{2}\right)}\right)^{\frac{1}{n}} \leq\left(\int_{S^{n-1}}\|x\|_{B^{*}}^{2} d \lambda(x)\right)^{\frac{1}{2}}
$$

where B_{n}^{2} is the unit ball of ℓ_{n}^{2}, B^{*} is the polar of B and λ is the normalized Lebesgue measure on S^{n-1}.

It is well known that the latter integral can be expressed as a gaussian integral, i.e.

$$
\left(\int_{S^{n-1}}\|x\|_{B^{*}}^{2} d \lambda(x)\right)^{\frac{1}{2}}=\frac{1}{\sqrt{n}}\left(\int_{\mathbb{R}^{n}}\|x\|_{B^{*}}^{2} d \gamma_{n}(x)\right)^{\frac{1}{2}}
$$

where γ_{n} is the canonical gaussian probability measure on \mathbb{R}^{n}.
Lemma 2.3. Let g_{1}, \ldots, g_{k} be not necessarily independent gaussian variables with mean zero. Then

$$
\left(\mathbf{E} \sup _{j \leq k}\left|g_{j}\right|^{2}\right)^{\frac{1}{2}} \leq c(1+\log k)^{\frac{1}{2}} \sup _{j \leq k}\left\|g_{j}\right\|_{2}
$$

For a proof we refer to $[\mathbf{P}]$.
Lemmas 2.2 and 2.3 immediately imply the following
Proposition 2.4. Let x_{1}, \ldots, x_{k} be unit vectors in \mathbb{R}^{n}. Then

$$
\left(\frac{\operatorname{Vol}_{n}\left(c o\left(x_{1}, \ldots, x_{k}\right)\right.}{\operatorname{Vol}_{n}\left(B_{n}^{2}\right)}\right)^{\frac{1}{n}} \leq c \sqrt{\frac{\log k}{n}}
$$

Proof. By Lemma 2.2 we have

$$
\left(\frac{\operatorname{Vol}_{n}(B)}{\operatorname{Vol}_{n}\left(B_{n}^{2}\right)}\right)^{\frac{1}{n}} \leq \frac{1}{\sqrt{n}}\left(\mathbf{E}\left\|\sum_{j=1} g_{j} e_{j}\right\|_{B^{*}}^{2}\right)^{\frac{1}{2}}
$$

where B is the absolutely convex hull of $\left\{x_{1}, \ldots, x_{n}\right\}$ and $\left(g_{j}\right)_{j=1}^{n}$ are independent standard gaussian variables. Since

$$
\|x\|_{B^{*}}=\sup _{i \leq k}\left|\left\langle x_{i}, x\right\rangle\right|
$$

we get from Lemma 2.3

$$
\begin{aligned}
\mathbf{E}\left\|\sum_{j=1} g_{j} e_{j}\right\|_{B^{*}}^{2} & =\mathbf{E} \sup _{i \leq k}\left|\sum_{j=1} g_{j}\left\langle x_{i}, e_{j}\right\rangle\right|^{2} \\
& \leq c(1+\log k)
\end{aligned}
$$

Theorem 2.5. There exists an absolute constant c such that the following inequalities hold.

$$
\frac{2}{n} \leq\left(\operatorname{Vol}_{(n-1)^{2}}\left(D_{n}\right)\right)^{\frac{1}{(n-1)^{2}}} \leq \frac{c}{n} \sqrt{\log n}
$$

Proof. Let P_{0} be the $n \times n$ matrix with the constant entry $\frac{1}{n}$ in each place. Then we conclude by Lemma 2.1

$$
\begin{aligned}
\operatorname{Vol}_{(n-1)^{2}}\left(D_{n}\right) & =\operatorname{Vol}_{(n-1)^{2}}\left([0,1]^{n^{2}} \cap\left(E+P_{0}\right)\right) \\
& =\operatorname{Vol}_{(n-1)^{2}}\left(\left[-\frac{1}{n}, 1-\frac{1}{n}\right]^{n^{2}} \cap E\right) \\
& \geq \operatorname{Vol}_{(n-1)^{2}}\left(\left[-\frac{1}{n}, \frac{1}{n}\right]^{n^{2}} \cap E\right) \\
& \geq\left(\frac{2}{n}\right)^{(n-1)^{2}}
\end{aligned}
$$

Thus the left hand side inequality is established. As for the right hand side observe that for any permutation matrix Π :

$$
\Pi-P_{0} \|_{H S}=\left(\left(n^{2}-n\right) \frac{1}{n^{2}}+n\left(1-\frac{1}{n}\right)^{2}\right)^{\frac{1}{2}}=\sqrt{n-1}
$$

Since the number of permutation matrices is n ! we deduce from the above proposition

$$
\left(\frac{\operatorname{Vol}_{(n-1)^{2}}\left(D_{n}\right)}{\operatorname{Vol}_{(n-1)^{2}}\left(B_{(n-1)^{2}}^{2}\right)}\right)^{\frac{1}{(n-1)^{2}}} \leq \sqrt{n-1} c \sqrt{\frac{\log n!}{(n-1)^{2}}} \leq c_{1} \sqrt{\log n}
$$

Hence

$$
\left(\operatorname{Vol} D_{n}\right)^{\frac{1}{(n-1)^{2}}} \leq \frac{c_{2}}{n} \sqrt{\log n}
$$

References

[M-P] Meyer M. and Pajor A., Section of the unit ball of ℓ_{n}^{p}, Journal of functional analysis 80 (1988).
[P] Pisier G., The volume of convex bodies and Banach space geometry, Cambridge, 1989.
[S] Schmuckenschläger M., Kahane type inequalities for subgroups of the orthogonal group, preprint.
[V] Vaaler D., A geometric inequality with applications to linear forms, Pacific J. Math. 83 (1979).
M. Schmuckenschläger, Johannes Kepler Universität, 4040 Linz, Austria

[^0]: Received December 11, 1991; revised October 1, 1992.
 1980 Mathematics Subject Classification (1991 Revision). Primary 15A51; Secondary 52A22.

