A NOTE ON CONTINUOUS RESTRICTIONS OF LINEAR MAPS BETWEEN BANACH SPACES

M. I. OSTROVSKII

ABSTRACT. This note is devoted to the answers to the following questions asked by V. I. Bogachev, B. Kirchheim and W. Schachermayer:

1. Let $T: l_1 \to X$ be a linear map into the infinite dimensional Banach space X. Can one find a closed infinite dimensional subspace $Z \subset l_1$ such that $T|_Z$ is continuous? 2. Let $X = c_0$ or $X = l_p$ $(1 and let <math>T: X \to X$ be a linear map. Can one find a dense subspace Z of X such that $T|_Z$ is continuous?

This paper continues investigations of [2]. In [2] the following proposition was proved:

Let X be a separable Banach space not containing l_1 isomorphically. If Y is an arbitrary infinite dimensional Banach space then there exists a linear map $T: X \to Y$ such that there does not exist any closed infinite dimensional subspace Z of X such that the restriction of T to Z is continuous.

At the end of [2] the following question was proposed:

Let $T: l_1 \to X$ be a linear map into the infinite dimensional Banach space X. Can one find a closed infinite dimensional subspace $Z \subset l_1$ such that $T|_Z$ is continuous?

We answer this question in Proposition 1.

It was shown in [2] that if $X = l_p$ $(1 \le p < \infty)$ or $X = c_0$ then for every linear map $T: X \to X$ there is an infinite dimensional subspace Z of X such that $T|_Z$ is continuous. If $X = l_1$ then there is a dense subspace Z of X such that the restriction $T|_Z$ is continuous. The authors of [2] asked: can one find a dense subspace Z of X such that $T|_Z$ is continuous in other cases? We answer this question for $p \ne 2$ in Proposition 4.

We use standard Banach space terminology and notation as may be found in [4].

Propositon 1. Let X and Y be infinite dimensional Banach spaces and let X be separable. Then there exists a linear map $T: X \to Y$ such that there does not exist any closed infinite dimensional subspace Z of X such that the restriction of T to Z is continuous.

Received June 8, 1992.

¹⁹⁸⁰ Mathematics Subject Classification (1991 Revision). Primary 47A05; Secondary 46B20, 46B45.

Proof. Let $\{x_{\alpha}\}_{\alpha\in[0,1]}$ be a Hamel basis of X. Let us denote by e_{α} ($\alpha\in[0,1]$) the unit vectors of the space $l_1([0,1])$. Let us introduce a linear map $A_1: X \to l_1([0,1])$ in the following way: we represent $x \in X$ as a finite linear combination $x = \sum_{\alpha} a_{\alpha} x_{\alpha}$ and set $A_1(x) = \sum_{\alpha} a_{\alpha} e_{\alpha}$.

It is well-known that $l_1([0,1])$ embeds isometrically into l_{∞} . Let $A_2 : l_1([0,1]) \to l_{\infty}$ be one of the isometric embeddings.

Let $\{y_i\}_{i=1}^{\infty}$ be a minimal sequence in Y. We define the map $A_3: l_{\infty} \to Y$ by the equality

$$A_3(\{a_i\}_{i=1}^{\infty}) = \sum_{i=1}^{\infty} \frac{a_i y_i}{2^i \|y_i\|}$$

It is clear that A_3 is a linear continuous injective map. Let us define $T: X \to Y$ by the equality $T = A_3 A_2 A_1$.

Assume that $T|_Z$ is continuous, where Z is an infinite dimensional closed subspace of X. Let B be an infinite dimensional convex compact in Z. Then the set T(B) is also closed. By the continuity of A_2 and A_3 the set $(A_3A_2)^{-1}T(B)$ is also closed. Since A_2 and A_3 are injective we have $(A_3A_2)^{-1}T(B) = A_1(B)$.

Our construction is such that $A_1(B)$ consists of finite linear combinations of the unit vectors of $l_1([0,1])$. On the other hand, $A_1(B)$ is a closed convex set. It is easy to see that such subset is contained in some finite dimensional subspace of $l_1([0,1])$. This contradicts with injectivity of A_1 .

Proposition 2. The restriction of A_1 (introduced in Proposition 1) to every subspace Z of X with uncountable Hamel basis is discontinuous.

Proof. Let $\{z_{\lambda}\}_{\lambda \in \Lambda}$ be a Hamel basis of Z. Let us prove the following claim: the set of those e_{α} ($\alpha \in [0, 1]$) which enter into the decompositions of vectors $\{A_1 z_{\lambda}\}_{\lambda \in \Lambda}$ is uncountable.

Suppose that it is not the case. Since the set of finite subsets of a countable set is countable there exists an infinite (even uncountable) subset $\Omega \subset \Lambda$ and a finite set $D = \{e_{\alpha(1)}, \ldots, e_{\alpha(n)}\}$ such that the decompositions of $\{A_1 z_{\lambda}\}_{\lambda \in \Omega}$ use unit vectors of D only. This contradicts with injectivity of A_1 .

This claim implies that A_1Z is nonseparable. Since Z is separable then the restriction $A_1|_Z$ is discontinuous.

Remark 3. Using Proposition 2 we are able to finish the proof of Proposition 1 using the arguments from the proof of Proposition 10 in [2].

Proposition 4. Let $X = l_p$ $(1 or <math>X = c_0$. Then there exists a linear map $T: X \to X$ for which there does not exist a dense subspace Z of X such that the restriction of T to Z is continuous.

Proof. We shall give arguments only in the case when $X = l_p$ $(1 . The case <math>X = c_0$ can be considered similarly using the result of [3] instead of the results of [1] and [5].

It is known ([1], [5]) that for every p ($1) we can find an infinitely increasing sequence <math>\{c_n\}_{n=1}^{\infty}$ of positive reals and a positive real number $\alpha < \infty$ such that for some sequence $\{m(n)\}_{n=1}^{\infty}$ of positive integers there exist surjective linear operators $\psi_n : l_p^{m(n)} \to l_p^n$ ($n \in \mathbb{N}$) such that

(1)
$$(\forall x \in l_p^n)(\|x\| \leq \inf\{\|y\| : y \in l_p^{m(n)}, \psi_n y = x\} \leq \alpha \|x\|)$$

and we have $||S|| > c_n$ for every linear operator $S: l_p^n \to l_p^{m(n)}$ for which $\psi_n S$ is the identity map on l_n^n .

Let us define the operator

$$\psi \colon \big(\sum_{n=1}^\infty \oplus \, l_p^{m(n)} \big)_p \to \big(\sum_{n=1}^\infty \oplus \, l_p^n \big)_p$$

by the equality $\psi(\{x_n\}_{n=1}^{\infty}) = \{\psi_n x_n\}_{n=1}^{\infty}$. Let us note that both of the spaces in the definition of ψ are isometric to l_p . Inequality (1) implies that ψ is surjective.

Let $Y \subset X = l_p$ be an arbitrary algebraic complement of ker ψ . Then $\psi|_Y$ is a bijective map onto X. Hence the inverse T of $\psi|_Y$ maps X into X.

Let us show that $T|_Z$ is discontinuous for every dense subspace Z of X. Suppose the contrary. Let Z be a dense subspace of X such that $T|_Z$ is continuous. Let $n \in \mathbb{N}$ be such that $c_n > 2||T|_Z||$. Let us denote by $P_n: X \to X$ the projections corresponding to the decomposition $X = (\sum_{n=1}^{\infty} \oplus l_p^n)$ (i.e. $P_n(\{x_k\}_{k=1}^{\infty}) = \{0, \ldots, 0, x_n, 0, \ldots\}$), and by $Q_n: X \to X$ the projections corresponding to the decomposition $X = (\sum_{n=1}^{\infty} \oplus l_p^m)$ (i.e. $P_n(\{x_k\}_{k=1}^{\infty}) = \{0, \ldots, 0, x_n, 0, \ldots\}$), and by $Q_n: X \to X$ the projections corresponding to the decomposition $X = (\sum_{n=1}^{\infty} \oplus l_p^m)_p$.

Let $\{e_k^n\}_{k=1}^n$ be the unit vector basis of $P_n(X)$. Let $\{z_k\}_{k=1}^n \subset Z$ be such that $||z_k - e_k^n|| < 2^{-n}/n$ (k = 1, ..., n). It is easy to check that for every collection $\{a_k\}_{k=1}^n$ of scalars we have

$$\left\|\sum_{k} a_k z_k\right\| \le 2\left\|\sum_{k} a_k P_n z_k\right\|.$$

It is clear that $\{P_n z_k\}_{k=1}^n$ is a basis of $P_n(X)$. Let us introduce the operator $S: P_n(X) \to Q_n(X)$ by the equalities $SP_n z_k = Q_n T z_k$ (k = 1, ..., n). Since $\psi Q_n T z_k = P_n z_k$ then $\|S\| > c_n$, i.e. for some collection $\{a_k\}_{k=1}^n$ of scalars we have

$$\left\|\sum_{k=1}^{n} a_k Q_n T z_k\right\| > c_n \left\|\sum_{k=1}^{n} a_k P_n z_k\right\|.$$

Therefore

$$||T|_Z|| \left\|\sum_{k=1}^n a_k z_k\right\| \ge \left\|\sum_k a_k T z_k\right\| \ge \left\|\sum_k a_k Q_n T z_k\right\|$$
$$> c_n \left\|\sum_k a_k P_n z_k\right\| \ge \left(\frac{c_n}{2}\right) \left\|\sum_k a_k z_k\right\|$$

We obtain a contradiction. The proposition is proved.

Remark 5. Using the arguments from Proposition 5 of [2] it is easy to prove the following statement. If Banach spaces X and Y are such that there exists a surjective strictly singular continuous linear map $\psi: Y \to X$ then there exists a linear map $T: X \to Y$ such that there does not exist an infinite dimensional subspace Z of X such that the restriction of T to Z is continuous.

Added in proof. Recently the author learnt that the first question was also solved by G. Godefroy.

References

- Bennett G., Dor L. E., Goodman V., Johnson W. B. and Newman C. M., On uncomplemented subspaces of L_p, 1
- Bogachev V. I., Kirchheim B. and Schachermayer W., Continuous restrictions of linear maps between Banach spaces, Acta Univ. Carol. – Math. et Phys. 30 (1989), 31–35.
- Bourgain J., A counterexample to a complementation problem, Compositio Math. 43 (1981), 133–144.
- Lindenstrauss J. and Tzafriri L., Classical Banach Spaces I, Sequence Spaces, Ergebnisse der Math. 92, Springer, 1977.
- Rosenthal H. P., On the subspaces of L^p (p > 2) spanned by sequences of independent random variables, Israel J. Math. 8 (1970), 273–303.

M. I. Ostrovskii, Institute for Low Temperature Physics and Engineering, Ukrainian Academy of Sciences, 47 Lenin Avenue, Kharkov 310164, Ukraine