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CENTERS IN ITERATED LINE GRAPHS

M. KNOR, L’. NIEPEL and L’. ŠOLTÉS

Abstract. For a graph G such that L2(G) is not empty, we construct a supergraph
H such that C(Li(H)) = Li(G) for all i, 0≤i≤2. Here Li(G) denotes the i-iterated
line graph of G and C(G) denotes the subgraph of G induced by central nodes. This
result is, in a sense, best possible since we provide an infinite class of graphs G such
that Li(G) 6= C(Li(H)) for any graph H ⊇ G and all i ≥ 3.

In this paper we study centers in connected iterated line graphs. Since the

line graph transformation is very natural and some NP-complete problems are

polynomial for line graphs, the class of line graphs is of interest. A survey on

centers can be found in [1].

By dG(u, v) we denote the distance between the nodes u and v in G. Then

the eccentricity, eG(u), of the node u is the maximum dG(u, v) taken over all

the nodes of G. The center, C(G), of an arbitrary connected graph G is the

subgraph of G induced by its central nodes, i.e. the nodes having the minimal

eccentricity. It is known that each graph G can be the center of some graph

H, where |V (H)| ≤ |V (G)|+4 (see [1, p. 41]). Moreover, Buckley, Miller and

Slater [2] have shown that for each graph G with n ≥ 9 nodes and an integer

k ≥ n+1 there exist a k-regular graph H having G as a center. By now little

is known about centers of special graphs. Clearly, the center of a tree consists

of either a single node or a pair of adjacent nodes. All seven central subgraphs

admissible in maximal outerplanar graphs were listed by Proskurowski [6]. Laskar

and Shier [5] studied centers in chordal graphs. Further it was shown [3] that the

class of possible centers of line graphs is very rich, namely, for each graphG without

isolated nodes there is a graphH such that C(H) = G and C(L(H)) = L(G). Here

if G is a nontrivial graph then by its line graph L(G) we mean such a graph whose

nodes are the edges of G and two nodes in L(G) are adjacent if and only if the

corresponding edges are adjacent in G. By i-iterated line graph of G we mean

Li(G), where L0(G) = G and Li+1(G) = L(Li(G)), for an integer i ≥ 1.

Here we show that any i-iterated line graph is a center of some i-iterated line

graph if i ≤ 2.
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Theorem 1. Let G be a graph and L2(G) is not empty. Then there is a graph

H ⊇ G such that:

Li(G) = C(Li(H)) for i = 0, 1, 2.

L3(G) = C(L3(H)) if G is triangle-free and L3(G) is not empty.

Before proving Theorem 1, we recall some notations and results that can be

found in [4]. We will identify edges in a graph G with the corresponding nodes in

L(G). Hence if u and v are two adjacent nodes in G then by uv we mean an edge in

G as well as the node in L(G) corresponding to the edge uv. This notation enables

us to consider a node in Li(G) (i≥2) as a pair of adjacent nodes in Li−1(G), either

of these is a pair of adjacent nodes from Li−2(G), and so on. Furthermore, we can

define each node v in Li(G) using only edges of G, and such a definition will be

called the recursive definition of v in G.

If G is a graph and v is a node in Li(G), (i≥1), then by the k-butt Bk(v)

of the node v in Li(G) we mean the subgraph of Li−k(G) induced by the edges

involved into the recursive definition of the node v. The k-butts are characterized

in Lemma 2.

Lemma 2 ([4]). Let J be a subgraph of Li−k(G) and Li(G) is not empty (i≥1).

Then J is a k-butt for some node in Li(G) if and only if J is a connected graph

with at most k edges, that is not isomorphic to a path with less than k edges.

Further, the distance d(H,J) between two subgraphs H and J of a graph G

equals to the length of a shortest path in G joining a node from H to a node

from J . The following lemma enables us to compute distances between nodes in

iterated line graphs.

Lemma 3 ([4]). Let G be a connected graph, Li(G) is not empty for an integer

i≥1, and let u and v be distinct nodes in Li(G). Then

(S1) d(u, v) = i+ d(Bi(u), Bi(v)) if the i-butts of v and u are edge-disjoint.

(S2) d(u, v) = max{t; t-butts of u and v are edge-disjoint} if i-butts of u and v

have a common edge.

Now we prove Theorem 1:

Proof of Theorem 1. Let n = |V (G)|. We construct supergraph H from G by

adding some nodes and edges in three steps.

(i) For each node x of G, we add 2·n+ 14 nodes and 4·n+ 12 edges. Ten out

of the added nodes we denote by ax, bx, . . . , hx, ux, vx (see Fig. 1).

(ii) For each pair x, y of nodes of G, we add 2·n+ 16 another new nodes and

4·n+ 16 edges. Ten out of the added nodes we denote by ax,y, bx,y, . . . ,

hx,y, ux,y, vx,y (see Fig. 2).

(iii) If G does not contain triangles then, for each triple x, y, z of nodes of G,

we add 2·n + 16 another new nodes and 4·n + 16 edges. Eight out of
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the added nodes we denote by ax,y,z, bx,y,z, . . . , fx,y,z, ux,y,z, vx,y,z (see

Fig. 3).

Here ux and vx, ux,y and vx,y, ux,y,z and vx,y,z are joined to each node of G except

for x, x and y, x and y and z, respectively, by edge-disjoint paths of the length

two.
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At first we prove C(H) = G. Let w ∈ V (G). Then dH(w, z) ≤ 5 for each node

z ∈ V (G) because of the node uw (see Fig. 1). Moreover, we have eH(w) = 8,

since dH(w, aw) = 8 and dH(w, aw,y) = 7 and dH(w, aw,y,z) = 6 for arbitrary

y, z ∈ V (G).

Let w be a node of H but not the node of G. We distinguish two cases:

(i) There is x ∈ V (G) such that wx ∈ E(H).

Then dH(w, ax) = 9 or dH(w, hx) = 9, so eH(w) ≥ 9.

(ii) There is not x ∈ V (G) such that wx ∈ E(H).

Now x can be chosen arbitrarily and dH(w, ax) ≥ 9 or dH(w, hx) ≥ 9, so

eH(w) ≥ 9.

Thus, C(H) = G.

Now assume that G does not have triangles. We prove that C(L3(H)) = L3(G).

We shall investigate the distances between butts of nodes of L3(G).
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Let w be a node of L3(G). We point out that |V (B3(w))| = 4 according to

Lemma 2, since G contains no triangles. Then, dH(B3(w), B3(z)) ≤ 4 for each

node z of L3(G) (see Fig. 1). Thus, we have dL3(H)(w, z) ≤ 7 by Lemma 3.

However, we have eL3(H)(w) = 7, since

dH(B3(w), {ax, bx, cx, dx}) = dH(B3(w), {ax,y, bx,y, cx,y, dx,y})

= dH(B3(w), {ax,y,z, bx,y,z, cx,y,z}) = 4

for arbitrary x, y, z ∈ V (G).

Let w be a node of L3(H) but not the node of L3(G). Denote by Sx,y,z the

node set {ax,y,z, bx,y,z, cx,y,z} and by S ′x,y,z the node set {dx,y,z, ex,y,z, fx,y,z}. We

distinguish four cases according to the number of nodes in the intersection of B3(w)

and V (G):

(i) B3(w)
⋂
V (G) = {x, y, z}.

Then dH(B3(w), Sx,y,z) = 5 or dH(B3(w), S ′x,y,z) = 5 (see Fig. 3) and so

eL3(H)(w) ≥ 8.

(ii) B3(w)
⋂
V (G) = {x, y}.

We choose z such that dH(B3(w), {ux,y,z}) = 3 or dH(B3(w),

{vx,y,z}) = 3. Such a choice is possible since G has at least four nodes (G

is triangle-free and L3(G) is not empty). Then dH(B3(w), Sx,y,z) = 5 or

dH(B3(w), S ′x,y,z) = 5 and so eL3(H)(w) ≥ 8.

(iii) B3(w)
⋂
V (G) = {x}.

We choose y and z such that dH(B3(w), {ux,y,z}) = 3 or dH(B3(w),

{vx,y,z}) = 3. Again, such a choice is possible since G has at least four

nodes. Then dH(B3(w), Sx,y,z) = 5 or dH(B3(w), S ′x,y,z) = 5 and so

eL3(H)(w) ≥ 8.

(iv) B3(w)
⋂
V (G) = ∅.

Then we can choose x, y and z arbitrarily and dH(B3(w), Sx,y,z) ≥ 5 or

dH(B3(w), S ′x,y,z) ≥ 5. So, eL3(H)(w) ≥ 8.

Thus, C(L3(H)) = L3(G).

The assertions C(L(H)) = L(G) and C(L2(H)) = L2(G) can be proved analo-

gously. �
The graph H constructed in the proof above does not have the minimal order

since it is not necessary to add nodes to all pairs and triples of nodes of G.

However, the following statement implies that the constraints on i in Theorem 1

are necessary for an arbitrary graph G.

Theorem 4. Let G be a graph in which each node lies in a triangle and G

contains at least two edge-disjoint triangles. Moreover, let Li(G) do not be a self-

centred graph for some i ≥ 3. Then Li(G) 6= C(Li(H)) for any graph H ⊇ G.

Proof. Suppose to the contrary that there is H such that C(Li(H)) = Li(G).

Since Li(G) is not a self-centred graph, there is an edge e ∈ E(H)−E(G) with
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a node, say x, in G and a triangle T in G containing x. From (S1) in Lemma 3

we have eLi(H)(z) ≥ i for each node z of Li(G) since G contains two edge-disjoint

triangles and all the central nodes have the same eccentricity. Let w1 and w2 be

nodes of Li(H) such that Bi(w1) = T and K1,3
∼= Bi(w2) ⊆ T∪e. Then w1 is a

node of Li(G) and w2 is not a node of Li(G). However, for each node z of Li(H)

such that dLi(H)(w1, z) ≥ i we have dLi(H)(w1, z) ≥ dLi(H)(w2, z) from Lemma 3.

Thus, eLi(H)(w1) ≥ eLi(H)(w2), since eLi(H)(w1) ≥ i. The proof is complete since

we have arrived to a contradiction. �

Note that the square of a path on at least five nodes satisfies the hypothesis

of Theorem 4 for all i ≥ 3. The square of a graph G is the graph whose nodes

correspond to those of G, and where two distinct nodes are joined whenever the

distance between them is at most two. On the other hand, one can see that the

sufficient condition in Theorem 4 is not necessary. (Identify a node of a triangle

with an endnode of a path on at least four nodes and take this graph as G).

Thus, the characterization of the graphs G satisfying C(Li(H)) = Li(G) for all i,

0 ≤ i ≤ k, and some supergraph H, remains an unsolved problem (here k ≥ 3).

Since the center of a graph is its induced subgraph, G is a center of some line

graph if and only if G is a line graph. However, the center of i-iterated line graph

is not necessarily an i-iterated line graph. (Let H be the graph obtained from K1,4

by inserting two nodes into one edge. Then the center of L2(H) is isomorphic to

K4, that is not a 2-iterated line graph.) Thus, we have the following problem:

Problem. For i ≥ 2, characterize the centers of i-iterated line graphs
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