
Acta Math. Univ. Comenianae
Vol. LXI, 2(1992), pp. 193–208

193

ARITHMETICAL CHARACTERIZATIONS

OF DIVISOR CLASS GROUPS II

A. GEROLDINGER

1. Introduction

Almost 20 years ago, W. Narkiewicz posed the problem to give an arithmetical

characterization of the ideal class group of an algebraic number field ([13, problem

32]). In the meantime there are various answers to this question if the ideal class

group has a special form. (cf. [4], [5], [12] and the literature cited there).

The general case was treated by J. Koczorowski [11], F. Halter-Koch [8], [9, §5]

and D. E. Rush [16]. In principle they proceed in the following way: they consider

a finite sequence (ai)i=1...r of algebraic integers, requiring a condition of inde-

pendence and a condition of maximality. Thereby the condition of independence

guarantees that the ideal classes gi of one respectively all prime ideals gi appear-

ing in the prime ideal decomposition of ai are independent in a group theoretical

sense. The invariants of the class group are extracted from arithmetical properties

of the ai’s, and the condition of maximality ensures that one arrives at the full

class group but not at a subgroup.

We study the problem in the general context of semigroups with divisor theory

where every divisor class contains a prime divisor (cf. [1], [17]). Semigroups with

divisor theory have turned out to be not only the appropriate setting for investi-

gations on the arithmetic of rings of integers but to be of independent interest (cf.

[6], [9], [10]). But contrary to the case of algebraic number fields, where the class

group is always finite, every abelian group can be realized as a divisor class group

of a semigroup with divisor theory ([17, Theorem 3.7] and [9, Satz 5]).

The condition, that every divisor class has to contain at least one prime divisor,

means a quite natural restriction. It is just this condition, which ensures that the

relationship between the arithmetic of the semigroup and the class group in close

enough, to allow a reasonable answer to the present problem. However, there

are Dedekind domains which do not satisfy this condition, as can be seen from

L. Skula’s paper [18].

We achieve the various descriptions of invariants of the class group by using only

properties, which are satisfied by the semigroup if and only if they are satisfied by
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the corresponding block semigroup. Therefore, when clearing up the relationship

between arithmetical properties and properties of the class group, we may restrict

to block semigroups, which are the central tool in this paper.

After some preliminaries in Section 3, where we discuss arithmetical properties

of elements, we deal with the rank of a divisor class group. We introduce indepen-

dent systems in the semigroup (Definition 7b) which correspond to independent

systems in the class group (Corollary 1). The rank of the class group turns out to

be the supremum of the cardinals of independent systems in the semigroup (The-

orem 1). In addition, and this seems essential to us, the notion of independence is

made in such a way that it satisfies the following universal property: every mini-

mal independent system from which the rank of the class group can be extracted is

an independent one (Proposition 1). In particular this implies that the sequences

considered by Kaczorowski, Halter-Koch and Rush are independent in the present

sense. In Section 5 we consider torsion class groups, develop an arithmetical ana-

logue to pure subgroups (Definition 9b) and give an arithmetical characterization

of the type of a basic subgroup of the class group (Theorem 2).

2. Preliminaries

Throughout this paper, let S be a semigroup with divisor theory ∂ : S → F(P )

and divisor class group G; F(P ) means the free abelian semigroup with basis P .

Every divisor class should contain at least one prime divisor p ∈ P and for the sake

of simplicity we exclude the trivial cases card (G) ≤ 2, where S is half-factorial,

and assume card (G) ≥ 3.

We write G additively, and for α ∈ F(P ) we denote by [α] ∈ G the divisor class

containing α. For a subset G0 ⊂ G let 〈G0〉 be the subgroup generated by G0. In

S we have the usual notions of divisibility theory as developed in [7]. In particular

S× means the group of units, and for a system S0 of elements of S we denote by

[S0] the subsemigroup generated by the elements of S0. We shall make use of the

fact that an element a ∈ S is prime if and only if ∂a = p for some p ∈ P ([9,

Satz 10]). If for a non-unit a ∈ S, a = u1 . . . uk is a factorization into irreducibles

u1, . . . , uk ∈ S, then k is called length of the factorization and L(a) denotes the

set of lengths of possible factorizations of a.

Every element B of the free abelian semigroup F(G) with basis G is of the form

B =
∏
g∈G

gvg(B)

where vg(B) ∈ N and vg(B) = 0 for all but finitely many g ∈ G. The subsemigroup

B(G) = {B ∈ F(G) |
∑
g∈G

vg(B)g = 0 ∈ G }
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is called the block semigroup over G and the elements of B(G) are called blocks.

The embedding B(G) ↪→ F(G) is a divisor theory; G is the set of prime divisors;

the divisor class group is isomorphic to G and every class contains exactly one

prime divisor ([9, Beispiel 6]).

Let the block homomorphism β : S → B(G) be defined by β(a) = 1, if a ∈ S×,

and by

β(a) = [p1] . . . [pm]

if ∂a = p1 . . . pm. β(a) is called the block of a, and we have the following funda-

mental correspondence between S and B(G):

1) a is irreducible, respectively a prime or a unit (in S) if and only if β(a) is

irreducible, respectively a prime or unit (in B(G)).

2) If a = u1 . . . ur is a factorization of a into irreducible elements of S, then

β(a) = β(u1) . . . β(ur) is a factorization of β(a) into irreducible blocks, and every

factorization in B(G) arises in this way; in particular L(a) = L(β(a)).

Finally we set, for a ∈ S with β(a) =
k∏
i=1

gi,

γ(a) = { gi | 1 ≤ i ≤ k } = { g ∈ G | g|β(a) } .

3. Arithmetical Properties of an Element

Our first aim is to describe arithmetically the number of prime divisors, counted

with multiplicity, of ∂a for an element a ∈ S.

Definition 1. Let a ∈ S.

1) For a ∈ S× let σ(a) = 0, and if a is irreducible, we set

σ(a) =

{
1, if a is prime.

max{maxL(aa′) | a′ ∈ S irreducible}, otherwise.

2) If a = u1 . . . uk is any factorization of a into irreducibles, we set

σ(a) =
k∑
i=1

σ(ui) .

By the following Lemma, this definition is independent of the particular factor-

ization.

Lemma 1. For every a ∈ S we have

σ(a) = σ(β(a)) =
∑
p∈P
pr‖∂a

r
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Proof. Obviously it is sufficient to verify that for an irreducible block 0 6= B =∏k
i=1 gi ∈ B(G) we have σ(B) = k.

We set B∗ =
∏k
i=1(−gi); then B∗ is irreducible and k = maxL(BB∗) ≤ σ(B).

Since, on the other hand, for any irreducible block B we have maxL(BB) ≤ k,

the assertion follows. �

Definition 2. Let a ∈ S \ S×.

1) We say that a is of infinite type, if there exist an M ∈ N and, for every

n ∈ N+, an an ∈ S such that

an|an and minL(an) ≤M .

2) We say that a is of finite type, if no irreducible u ∈ S which divides some

power of a is of infinite type.

Lemma 2. Let a ∈ S \ S×.

1) The following conditions are equivalent:

(i) a is of infinite type.

(ii) β(a) is of infinite type.

(iii) ord (g) =∞ for every g ∈ γ(a).

2) The following conditions are equivalent:

(i) a is of finite type.

(ii) β(a) is of finite type.

(iii) ord (g) <∞ for every g ∈ γ(a).

Proof. In both cases (i) and (ii) are obviously equivalent. Therefore we may

restrict to block semigroups and it remains to proof the equivalence of (iii). Let

B =
∏k
i=1 gi ∈ B(G).

1) Suppose B is of infinite type and assume to the contrary, that ord (gi) <∞
for some i ∈ {1, . . . , k}. Let n ∈ N+; then for every Bn with Bn|Bn vgi(Bn) ≥
vgi (B

n) ≥ n. If Bn = C1 . . . Cs is any factorization of Bn into irreducible blocks

Cj , then vgi(Cj) ≤ ord (gi), and this implies s ≥ n
ord (gi)

, a contradiction.

Conversely, assume ord (gi) = ∞ for 1 ≤ i ≤ k and let n ∈ N+. Then

Bn|
∏k
i=1 Ci with Ci = (−ngi)gni and minL(

∏k
i=1Ci) ≤ k = σ(B).

2) Suppose B is of finite type and assume that property (iii) is violated. Then

M = {gi | 1 ≤ i ≤ k, ord (gi) < ∞} $ {g1, . . . , gk}. We set m = lcmM (m = 1 if

M = ∅!) and obtain Bm = (
∏
gi /∈M

gmi )(
∏
gi∈M

g
ord (gi)
i )m/ord (gi). Thus there is

an irreducible block Bm ∈ B(G) dividing
∏
gi /∈M

gmi ; Bm divides Bm and by 1) it

is of infinite type, a contradiction.

Conversely, assume ord (gi) < ∞ for 1 ≤ i ≤ k. Let n ∈ N+ and C ∈ B(G) an

irreducible block with C|Bn. Thus ord (g) < ∞ for every g ∈ γ(C) and therefore

by 1) C is not of infinite type; hence B is of finite type. �
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Definition 3. Two irreducible elements π1, π2 ∈ S are called block equal, if

L(π1a) = L(π2a) for all a ∈ S.

Lemma 3. For irreducible elements π1, π2 ∈ S the following conditions are

equivalent:

1) π1 and π2 are block equal.

2) β(π1) and β(π2) are block equal.

3) β(π1) = β(π2).

Proof. Obviously the only assertion to be proved is that two distinct irreducible

blocks are not block equal. Let B1 =
∏r
i=1 gi and B2 ∈ B(G) be irreducible with

B1 6= B2, σ(B1) ≥ σ(B2) and if σ(B1) = σ(B2), then

max{ ord (g) | g|B1 } ≥ max{ ord (g) | g|B2 } .

We define a block C ∈ B(G), depending on the following cases:

r ≥ 3 : C =
r∏
i=1

(−gi).

r = 2 and ord (g1) ≥ 3 : C = B
ord (g1)−1
1 .

r = 2, ord (g1) = 2 and B2 = h2 for some h ∈ G : C = (g1 + h)2h2.

r = 2, ord (g1) = 2 and B2 = 0 : C = (g1 + h)(g1 − h)h(−h) for

an arbitrary h ∈ G \ {0, g1}.

In each case it can be easily verified that r ∈ L(B1C) but r /∈ L(B2C). �
Definition 4. Let π ∈ S be an irreducible element of finite type. We say that

π is homogenous if it is block equal with every irreducible π′ ∈ S dividing some

power of π.

Lemma 4. Let π ∈ S be an irreducible element of finite type. Then the follow-

ing conditions are equivalent:

1) π is homogenous.

2) β(π) is homogenous.

3) β(π) = gord (g) for some g ∈ G.

Proof. Obvious. �
Remark. π is homogenous, if and only if β(π) is “absolut-unzerlegbar” in the

sense of F. Halter-Koch ([9, Definition 8]).

Definition 5. Let π ∈ S be an irreducible element of finite type with σ(π) =

n+ 1 for some 2 ≤ n ∈ N+. Then π is called n-simple, if it is either homogenous

or if there exists a homogenous π ∈ S satisfying the following two conditions:

1) π divides some power of π and σ(π) = min{k ∈ N+ | π|πk}.
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2) all homogenous elements, which divide some power of π and which are not

associated with π, are pairwise block equal.

If π is homogenous, we set π = π.

Lemma 5. For 2 ≤ n ∈ N+ and an irreducible element π ∈ S of finite type the

following conditions are equivalent:

1) π is n-simple.

2) β(π) is n-simple.

3) β(π) = (−g)n(ng) for some g ∈ G.

In addition, if β(π) = (−g)n(ng) for some g ∈ G, then β(π) = β(π) =

(ng)ord (ng) and π is unique up to associates.

Proof. If π is homogenous then all three conditions are satisfied and the addi-

tional statement is true.

So suppose π to be not homogenous. Because β(β(π)) = β(π) it is sufficient to

prove the equivalence of 1) and 3).

1) =⇒ 3) Let ∂π = p0 . . . pn and β(π) = g0 . . . gn with pi ∈ gi for 0 ≤ i ≤ n.

Assume ∂π 6= pord (gi)
i for all i ∈ {0, . . . , n}; then by condition 2) in Def. 5 all gi

are equal and π would be homogenous, a contradiction. So without restriction let

∂π = p
ord (g0)
0 . By condition 1) in Def. 5 we infer that p0 6= pi for all 1 ≤ i ≤ n.

Therefore by condition 2) all πi ∈ S with ∂πi = p
ord (gi)
i are pairwise block equal.

Thus g1 = · · · = gn = −g for some g ∈ G and β(π) has the required form.

3) =⇒ 1) Let β(π) = (−g)n(ng) and ∂π = p0 . . . pn with p0 ∈ ng and pi ∈ −g for

1 ≤ i ≤ n. Then every π ∈ S with ∂π = p
ord (ng)
0 satisfies condition 1) of Def. 5

and obviously condition 2) holds.

In addition, if β(π) = (−g)n(ng), then it follows from the proof of 3) =⇒ 1)

that β(π) = (ng)ord (ng); ∂π is unique and it can be seen directly that β(π) =

(ng)ord (ng). �
Definition 6. Let a ∈ S be of finite type and let p ∈ N be prime. We say that

a is of type p, if σ(u) is a power of p for every homogenous u ∈ S which divides

some power of a.

Lemma 6. Let a ∈ S be of finite type and let p ∈ N be prime. Then the

following conditions are equivalent:

1) a is of type p.

2) β(a) is of type p.

3) ord (g) is a power of p for every g ∈ γ(a).

Proof. It suffices to verify the equivalence of 3) for block semigroups. For this

we take a block B =
∏k
i=1 gi ∈ B(G).

Suppose B is of type p. Then for every i ∈ {1, . . . , k}gord (gi)
i is homogenous

and divides Bord (gi). Thus σ(g
ord (gi)
i ) = ord (gi) is a power of p.
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Conversely, let ord (gi) be a power of p for every i ∈ {1, . . . , k} and consider

a homogenous C ∈ B(G) dividing some power of B. Then gi|C for some i ∈
{1, . . . , k} and thus σ(C) = ord (gi) is a power of p. �

4. The Rank of a Divisor Class Group

The following definition recalls some group theoretical notions (cf. [3, §16]) on

which the subsequent arithmetical notions are modelled.

Definition 7a. 1) An element g ∈ G is said to be independent of a system G0

of elements of G if there is no dependence relation

0 6= ng =
k∑
i=1

nigi

for some gi ∈ G0 and integers n, ni ∈ Z.

2) A system G0 = (gi)i∈I of elements of G is said to be independent if for every

ı ∈ Igı is independent of (gi)i∈I\{ı}.

3) The rank r(G) of G is the cardinal number of a maximal independent system

containing only elements of infinite and prime power orders.

Remarks. 1) An independent system does not contain equal elements, and

hence it is a set.

2) A set G0 ⊂ G is independent if and only if 〈G0〉 = ⊕g∈G0 〈g〉.
3) r(G) = sup{ card (G0) | G0 ⊂ G is independent} .
Next we define for every a ∈ S a corresponding set M(a):

(i) For a ∈ S× we set M(a) = S×.

(ii) For an irreducible a ∈ S we set

M(a) = {a∗ ∈ S | a and a∗ are block equal}

if σ(a) ≤ 2, and

M(a) = {a∗ ∈ S | σ(a) = σ(a∗) = maxL(aa∗)}

else.

(iii) In all other cases let

M(a) =

{
r∏
i=1

u∗i | u
∗
i ∈M(ui) and a = u1 . . . ur with irreducibles ui

}

If S is a block semigroup and B =
∏k
i=1 gi ∈ S = B(G), then

M(B) = {
∏k
i=1(−gi) }. In general we have M(a) = {a∗ ∈ S | β(a∗) ∈ M(β(a))}

and M(β(a)) = β(M(a)); if a∗ ∈ M(a) and aa∗ = u1 . . . umaxL(aa∗), then either

β(ui) = 0 or β(ui) = gi(−gi) for some gi ∈ G.
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Definition 7b. 1) An element a ∈ S is said to be independent of a system S0

of elements of S, if there exists an irreducible ua ∈ S which is not prime such that

the following conditions are fulfilled:

(i) aa∗ = uau2 . . . umaxL(aa∗) for some a∗ ∈ M(a) and irreducibles u2, . . . ,

umaxL(aa∗).

(ii) ua - bb∗ for any b ∈ S0 and b∗ ∈M(b).

(iii) If v ∈ S is irreducible and v|uiab with i ∈ N and b ∈ [S0], then v|uia or

v|b.

2) A system S0 = (ai)i∈I of elements of S is said to be independent if for every

ı ∈ Iaı is independent of (ai)i∈I\{ı}.

Remarks. 1) If a ∈ S is independent of a system S0, then a is neither a unit

nor a product of primes in S, whence in particular σ(a) ≥ 2.

2) By property (ii) an independent system does not contain equal elements,

hence it is a set.

Let S0 = (ai)i∈I be a system of elements of S; we get

β(S0) = (β(ai))i∈I and γ(S0) =
⋃
i∈I

γ(ai) .

Obviously γ(S0) = γ(β(S0)) and γ(S) = G.

Lemma 7. For an element a ∈ S and a system S0 of elements of S the fol-

lowing conditions are equivalent:

1) a is independent of S0.

2) β(a) is independent of β(S0).

3) There exists a ga ∈ γ(a) which is independent of γ(S0).

If a and every element of S0 are of finite type, then there is further equivalence:

4) There exists an irreducible πa ∈ S which is not prime such that the fol-

lowing conditions are fulfilled:

(i) πa divides some power of a.

(ii) πa - b for any b ∈ [S0].

(iii) If v ∈ S is irreducible and v|πkab for some k ∈ N and some b ∈ [S0],

then v|πka or v|b.

Proof. 1) =⇒ 2) Let ua ∈ S satisfy the conditions (i)–(iii) of Definition 7b.

We contend that β(ua) does the job for β(a). Obviously the properties (i) and

(iii) are fulfilled and we assume that (ii) is violated. Then there exists an element

b ∈ S0 and an element g ∈ γ(b) such that β(ua) = g(−g). Since ua satisfies (ii),

there are distinct prime divisors p, q with [p] = [q] = g, p|∂ua and q|∂b. We set

∂ua = pp and choose a v ∈ S with ∂v = qp. Then v|uab, v - ua and thus by (iii)

v|b, which implies that p|∂b. But then there exists a b∗ ∈ M(b) with p|∂b∗ and

hence ua|bb∗, a contradiction.



CHARACTERIZATIONS OF DIVISOR CLASS GROUPS 201

2) =⇒ 3) For A = β(a) let UA be an irreducible block having the properties

given in Definition 7b. Then UA = gA(−gA) for some gA ∈ γ(A). Assume, that

gA depends on γ(S0). Then there exist g1, . . . , gk ∈ γ(S0) and mA, n1, . . . , nk ∈ Z
such that

(*) 0 6= mAgA =
k∑
j=1

njgj .

Since for every gj there are gj,1, . . . , gj,lj ∈ γ(S0) with −gj = gj,1 + · · · + gj,lj ,

we may assume without restriction that mA, n1, . . . , nk ∈ N+. Further we may

assume that (mA, n1, . . . , nk) ∈ Nk+1
+ is minimal (with respect to the usual order

≤ in Nk+1
+ ) such that (*) holds. We choose blocks Bj ∈ β(S0) with gj |Bj and set

V = gmAA
∏k
j=1 g

nj
j . Then V is irreducible and divides UmAA B

nj
j . By property (ii)

gA or −gA does not divide
∏k
i=1B

nj
j and thus by (iii) V has to divide UmAA . From

this we infer g1 ∈ {gA,−gA} and thus UA|B1B
∗
1 , a contradiction to (ii).

3) =⇒ 1) We choose a prime divisor pa ∈ ga with pa|∂a and an ua ∈ S with

∂ua = pap
∗
a for an arbitrary prime divisor p∗a ∈ −ga. We check the properties

(i)–(iii) of Definitions 7b:

(i) is obviously satisfied. If ua|bb∗ for some b ∈ S0 and b∗ ∈ M(b), then ga
depends on γ(S0), whence (ii) is fulfilled.

Finally let v ∈ S be irreducible with v|ukaa b for some ka ∈ N and b ∈ [S0].

Assume that v - ukaa and v - b; then ∂v = qrq1 . . . qs with r, s ∈ N+, q ∈ {pa, p
∗
a}

and q1 . . . qs|∂b. This, however, implies

0 6= ±rga = [qr] = −
s∑
j=1

[qj ] ,

i.e. ga depends on γ(S0), a contradiction.

3) =⇒ 4) Let pa ∈ ga be a prime divisor with pa|∂a, and let πa ∈ S be

an element with ∂πa = p
ord (ga)
a . Since ga 6= 0, πa is not prime. We verify the

properties (i)–(iii) of condition 4).

(i) is satisfied by construction. Since ga is independent of γ(S0) we infer that

ga - β(b) and thus pa - ∂b for any b ∈ [S0], which implies (ii).

Let v ∈ S be irreducible with v|πkaa b for some ka ∈ N and some b ∈ [S0]. Then

∂v = pmaa q1 . . . qr with q1 . . . qr|∂b. Since ga is independent of γ(S0) it follows that

ma ∈ {0, ord (ga)} and thus (iii) holds.

4) =⇒ 3) There is a prime divisor pa with pa|∂πa but pa - ∂b for any b ∈ [S0].

We set ga = [pa] and assume to the contrary that ga depends on γ(S0). Now the

arguments run along the lines of the proof of 2) =⇒ 3). �
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Corollary 1. For a system S0 = (ai)i∈I of elements of S the following condi-

tions are equivalent:

1) S0 is independent.

2) β(S0) is independent.

3) For every ı ∈ I there exists a gı ∈ γ(aı) which is independent of

γ((ai)i∈I\{ı}). (In particular this implies that {gı | ı ∈ I} ⊂ G is inde-

pendent).

If all ai, i ∈ I are of finite type, then there is further equivalence:

4) For every ı ∈ I there exists an irreducible πı ∈ S which is not prime and

satisfies the conditions of point 4) of Lemma 7 with (ai)i∈I\{ı} instead

of S0.

Proof. 1) =⇒ 2) We have to show that for every ı ∈ Iβ(aı) is independent of

(β(ai))i∈I\{ı}. Let ı ∈ I; since aı is independent of (ai)i∈I\{ı}, Lemma 7 implies

that β(aı) is independent of (β(ai))i∈I\{ı}.

All remaining implications are similar. �

Theorem 1. Let S be a semigroup with divisor theory where every class con-

tains a prime divisor and let G be the divisor class group with card (G) > 2. Then

r(G) = sup{card (S0) | S0 ⊂ S is an independent subset}.

Proof. By Corollary 1 it suffices to proof the assertion for block semigroups.

Again by Corollary 1 an independent set S0 ⊂ S gives rise to an independent set

G0 ⊂ G and by Remark 3 after Definition 7a we infer card (G0) ≤ r(G).

Let on the other hand G0 be an independent set with card (G0) = r(G). Then

{g(−g) | g ∈ G0} ⊂ B(G) is an independent subset. �

Remark. Using the notions finite type, infinite type and p-type, which were

defined in Section 3, we obtain analogous arithmetical descriptions of the torsion

rank, the torsionfree rank and the p-rank of G.

We close this section by verifying that independent sets satisfy a universal

property.

Definition 8. We say that the rank of G can be extracted from a set S0 ⊂ S,

if r(〈γ(S0)〉) = r(G).

Proposition 1. If the rank of G can be extracted from a set S0 but not from

a proper subset, then S0 is independent.

Proof. Assume S0 to be not independent. By Lemma 7 there is an a ∈ S0 such

that every g ∈ γ(a) depends on γ(S0 \ {a}). This implies

r(〈γ(S0 \ {a})〉) = r(〈γ(S0 \ {a}) ∪ γ(a)〉) = r(G) ,

and hence the rank of G can be extracted from S0 \ {a}, a contradiction. �
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5. Pure Subgroups of a Divisor Class Group

In this section we assume G to be a torsion group. Our first aim is to derive an

arithmetical analogue to pure subgroups (Definition 9b, Lemma 9). After dealing

with the type of an independent subset we introduce pure-independent subsets

(Definition 11), which provide the central notion in our discussion. We establish

a correspondence between the type of a pure-independent subset S0 ⊂ S and the

type of a pure-independent subset G0 ⊂ G. This finally allows us to describe the

type of a basic subgroup of G (Theorem 2).

Definition 9a. A subset H ⊂ G is called pure, if it generates a pure subgroup

i.e. if nG ∩ 〈H〉 = n 〈H〉 for all n ∈ N+.

Remarks. 1) Obviously, H ⊂ G is pure if and only if nG ∩ 〈H〉 ⊂ n 〈H〉 for

all 2 ≤ n ∈ N+.

2) Let H < G be a subgroup. If H is a direct summand then it is pure;

conversely, if H < G is a bounded pure subgroup, then it is a direct summand.

For a subset U ⊂ S we set

Ud = { a ∈ S | a divides some b ∈ U }

and

〈U〉 = { a ∈ S | if π is a homogenous divisor of some power of a,

not block equal with any π′ ∈ [U ]d, then π and

a are not block equal but π−1aσ(π) ∈ [U ]d }.

〈U〉 is defined in such a way, that Lemma 8.5 holds.

Lemma 8. Let U ⊂ S be a subset.

1) β(Ud) = β(U)d .

2) [β(U)] = β([U ]) .

3) B(γ(U) = [β(U)]d .

4) β(〈U〉) = 〈β(U)〉 .
5) γ(〈U〉) = 〈γ(U)〉 .
6) B(〈γ(U)〉) = [〈β(U)〉]d = β([〈U〉]d) .

Proof. 1) Let B ∈ β(Ud); then there are an a ∈ Ud and a b ∈ U with a|b and

B = β(a). Thus β(a)|β(b), β(b) ∈ β(U) and B = β(a) ∈ β(U)d.

Conversely, let B ∈ β(U)d; then B|β(b) for some b ∈ U . Since there is an a ∈ S
with a|b and B = β(a), we infer that B = β(a) ∈ β(Ud).

2) Let B ∈ B(G); B ∈ β([U ]) if and only if B = β(
∏r
i=1 bi), with bi ∈ U , if and

only if B =
∏r
i=1 β(bi) ∈ [β(U)].

3) Let B =
∏r
i=1 gi ∈ B(γ(U)); then for every 1 ≤ i ≤ r there is an ai ∈ U with

gi|β(ai) and thus B =
∏r
i=1 gi|

∏r
i=1 β(ai) i.e. B ∈ [β(U)]d.
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Conversely, let B ∈ [β(U)]d; thus there are a1, . . . , ar ∈ U such that

B|
∏r
i=1 β(ai). Therefore γ(B) ⊂ γ(U) and consequently B ∈ B(γ(U)).

4) We start with a description of 〈β(U)〉:

〈β(U)〉 = {A ∈ B(G) | if C = gord (g) divides some power of A

and C /∈ [β(U)]d = B(γ(U)), then

A 6= C and C−1Aord (g) ∈ B(γ(U)) }

= {A ∈ B(G) | if g ∈ γ(A) \ γ(U), then A 6= gord (g)

and g−ord (g)Aord (g) ∈ B(γ(U)) }

= B(γ(U)) ∪ {
r∏
i=0

gi | r ∈ N+, g0 /∈ γ(U) but gi ∈ γ(U)

for 1 ≤ i ≤ r } .

(*)

Further we have

β(〈U〉) = { β(a) ∈ B(G) | if a homogenous π ∈ S divides some power

of a ∈ S and π is not block equal with

any π′ ∈ [U ]d, then π and a are not block

equal but π−1aσ(π) ∈ [U ]d }

= { β(a) ∈ B(G) | if a homogenous π ∈ S divides some power

of a and β(π) /∈ β([U ]d) = B(γ(U)), then

β(π) 6= β(a) but π−1aσ(π) ∈ [U ]d }.

Let β(a) ∈ β(〈U〉) and let C be a homogenous divisor of some power of β(a)

with C /∈ B(γ(U)). Then there is a homogenous π dividing some power of a with

β(π) = C. Then C 6= β(a) and π−1aσ(π) ∈ [U ]d, which implies β(π)−1β(a)σ(π) ∈
β([U ]d) = B(γ(U)). Therefore β(a) ∈ 〈β(U)〉.

Conversely, let A ∈ 〈β(U)〉. Firstly, if A ∈ B(γ(U)), then there is an a ∈ [U ]d

with A = β(a) ∈ β(〈U〉). Secondly, if A =
∏r
i=0 gi with g0 /∈ γ(U) and gi ∈ γ(U)

for 1 ≤ i ≤ r, then there is an a ∈ S with ∂a =
∏r
i=0 pi, pi ∈ gi and pi|∂ai for

some ai ∈ [U ]d, 1 ≤ i ≤ r. So if π is a homogenous divisor of some power of

a with β(π) /∈ B(γ(U)), then β(π) = g
ord (g0)
0 and we infer that β(π) 6= A and

π−1aσ(π) ∈ [U ]d.

5) Because 〈γ(U)〉 = 〈γ(β(U))〉 and γ(〈U〉) = γ(β(〈U〉)) = γ(〈β(U)〉) it remains

to show that 〈γ(V )〉 = γ(〈V 〉) for V = β(U) ⊂ B(G).

By relation (*) we obtain

γ(〈V 〉) = γ(V ) ∪ { g0 ∈ G | g0 = −
r∑
i=1

gi with gi ∈ γ(V ) } = 〈γ(V )〉 .
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6) B(〈γ(U)〉)
5)
= B(γ(〈U〉))

3)
= [β(〈U〉)]d

2)
= β([〈U〉])d

1)
= β([〈U〉]d) .

Furthermore B(〈γ(U)〉) = B(〈γ(β(U))〉)
5)
= B(γ(〈β(U)〉))

3)
= [〈β(U)〉]d . �

Definition 9b. A subset U ⊂ S is called pure if for all 2 ≤ n ∈ N+ and all

n-simple elements a ∈ S with a ∈ [〈U〉]d there is an n-simple element b ∈ [〈U〉]d

with a ' b.

Lemma 9. For a subset U ⊂ S the following conditions are equivalent:

1) U ⊂ S is pure.

2) β(U) ⊂ β(S) = B(G) is pure.

3) γ(U) ⊂ γ(S) = G is pure.

Proof. Obviously 3) holds if and only if

3)’ 〈γ(U)〉 < G is pure

holds. Further 3)’ is equivalent to

2)’ for all 2 ≤ n ∈ N+ and all n-simple blocks A ∈ B(G) with A ∈ B(〈γ(U)〉)
there is an n-simple block B ∈ B(〈(U)〉) with A = B.

By Lemma 8 B(〈γ(U)〉) = [〈β(U)〉]d, and thus 2)’ is equivalent to 2) by defini-

tion. Again by Lemma 8 [〈β(U)〉]d = β([〈U〉]d) and thus 2)’ is equivalent to

2)” for all 2 ≤ n ∈ N+ and all n-simple elements A ∈ B(G) with A ∈ β([〈U〉]d)

there is an n-simple block B ∈ β([〈U〉]d) with A = B.

So it remains to verify the equivalence between 1) and 2)”.

1) =⇒ 2)” Let 2 ≤ n ∈ N+, A ∈ B(G) n-simple with A ∈ β([〈U〉]d). Then

there exists an n-simple a ∈ S with β(a) = A, β(a) = β(a) = A and a ∈ [〈U〉]d.
Since U ⊂ S is pure, there is an n-simple b ∈ [〈U〉]d with a ' b; therefore

B = β(b) ∈ β([〈U〉]d) and B = β(b) = β(b) = β(a) = A.

2)” =⇒ 1) Let 2 ≤ n ∈ N+ and a ∈ S n-simple with a ∈ [〈U〉]d. Then

A = β(a) ∈ B(G) is n-simple and A = β(a) = β(a) ∈ β([〈u〉]d). Therefore there is

an n-simple B ∈ β([〈U〉]d) with B = A i.e. B = β(b) for some n-simple b ∈ [〈U〉]d

and β(b) = β(b) = B = A. Thus there is also an n-simple c ∈ [〈U〉]d with

β(c) = β(b) and a ' c. �

Definition 10. For every element a of an independent set S0 ⊂ S we set

na(S0 \ {a}) = na = max{ σ(ua) | ua is a homogenous divisor of some

power of a and is independent of S0 \ {a} }

and we call (na)a∈S0 ∈ N
S0
+ the type of S0.

By Remark 1 after Definition 7b we infer na ≥ 2 for every a ∈ S0.
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Lemma 10. Let S0 ⊂ S be independent. Then for every a ∈ S0

na(S0 \ {a}) = nβ(a)(β(S0 \ {a}))

= max{ ord (ga) | ga ∈ γ(a) is independent of γ(S0 \ {a})} .

Proof. 1 i) Let ua be a homogenous divisor of some power of a, which is inde-

pendent of S0 \{a} with σ(ua) = na. Then β(ua) is a homogenous divisor of some

power of β(a), β(ua) is independent of β(S0 \ {a}) and thus

na = σ(ua) = σ(β(ua)) ≤ nβ(a)(β(S0 \ {a})) .

ii) Let B be a homogenous divisor of some power of β(a), which is independent

of β(S0 \ {a}) with σ(B) = nβ(a)(β(S0 \ {a})). Then there is a homogenous ua
with β(ua) = B such that ua divides some power of a and ua is independent of

S0 \ {a}. Therefore

nβ(a) = σ(B) = σ(ua) ≤ na(S0 \ {a}) .

2 i) Let B be a homogenous divisor of some power of β(a) which is independent

of β(S0 \{a}) with σ(B) = nβ(a)(β(S0 \{a})). Then there exists a g ∈ γ(B) which

is independent of γ(S0 \ {a}). Thus

nβ(a) = σ(B) = ord (g) ≤ max{ ord (ga) | . . . } .

ii) Let ga ∈ γ(a) be independent of γ(S0 \ {a}) with ord (ga) = max{. . . }.
Then B = g

ord (ga)
a is a homogenous divisor of β(a)ord (ga) and B is independent of

β(S \ {a}). Thus

max{. . . } = ord (ga) = σ(B) ≤ nβ(a) . �
Definition 11. a) A subset H ⊂ G is called pure-independent, if it is pure and

independent.

b) An independent set S0 ⊂ S is called pure-independent, if for every a ∈ S0

there exists a homogenous ua dividing some power of a such that ua is independent

of S0 \ {a}, σ(ua) = na and (ua)a∈S0 is pure.

Remark. Bourbaki uses the notion pseudofree instead of pure-independent

cf. [2, A. VII. 55].

We combine the results of Lemma 7, Lemma 9 and Lemma 10.

Corollary 2. For an independent subset S0 ⊂ S of type (na)a∈S0 the following

conditions are equivalent:

1) S0 is pure-independent.

2) β(S0) is pure-independent.

3) For every a ∈ S0 there exists a ga ∈ γ(a) such that ga is independent of

γ(S0 \ {a}), ord (ga) = na and (ga)a∈S0 is pure-independent.

Proof. Obvious. �
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Definition 12. A subgroup H < G is a basic subgroup of G if

1) H is a direct sum of cyclic groups.

2) H < G is pure.

3) G/H is divisible.

Remarks. 1) Every abelian torsion group G contains a basis subgroup and all

basic subgroups are isomorphic ([14, 4.3.4 and 4.3.6]).

2) If G is bounded and H < G a basic subgroup, then G/H is bounded and

divisible; thus G/H = {0} and G = H.

Theorem 2. Let S be a semigroup with divisor theory such that the divisor

class group G is a torsion group with card (G) > 2 and every class contains a

prime divisor.

1) Let S0 ⊂ S be a (pure)-independent subset of type (na)a∈S0 and H =

⊕a∈S0Cna . Then H is isomorphic to a (pure) subgroup of G. If S0 is a maximal

pure-independent subset consisting of homogenous elements, then H is isomorphic

to a basic subgroup of G.

2) Let H < G be a non-trivial (pure) subgroup which is a direct sum of cyclic

groups. Then there exists a (pure)-independent subset S0 ⊂ S of type (na)a∈S0

such that H ' ⊕a∈S0Cna .

Remark. If G is direct sum of cyclic groups, then also every subgroup H < G

([3, Theorem 18.1]).

Proof. We may restrict to block semigroups.

1) For A ∈ S0 ⊂ B(G) let gA ∈ γ(A) be independent of γ(S0 \ {A}) with

ord (gA) = nA. Then obviously H = ⊕A∈S0CnA ' ⊕A∈S0〈gA〉 < G. If S0 is

pure-independent, then by Corollary 2 gA may be chosen in such a way that

⊕A∈S0〈gA〉 < G is pure.

If S0 is a maximal pure-independent subset consisting of homogenous elements,

then {gA|A ∈ S0} is a maximal pure-independent subset. In order to show that

⊕A∈S0〈gA〉 is a basic subgroup of G, it is sufficient to proof that G/ ⊕A∈S0 〈gA〉
is divisible, which follows from Lemma 10.31 in [15]. Indeed, Lemma 10.31 is

formulated for p-groups but is valid for arbitrary abelian torsion groups. For this

one has to derive Lemma 10.29 in [15] for abelian torsion groups and then the

proof of the general case is entirely the same as the proof for p-groups.

2) Since H is a direct sum of cyclic groups, there exists a basis H0 ⊂ H such

that H = ⊕g∈H0〈g〉. Then S0 = {gord (g)|g ∈ H0} ⊂ B(G) is independent of type

(ord (g))g∈H0 . If H < G is pure, then S0 is pure-independent by Corollary 2. �

Finally we verify a universal property of the type of an independent set.

Definition 13. We say that the structure of a subgroup H < G can be ex-

tracted from an independent set So ⊂ S if 〈γ(S0)〉 = H.
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Proposition 2. Let H < G be a (pure) subgroup which is a direct sum of finite

cyclic groups and S0 ⊂ S an independent set. If the structure of H can be extracted

from every independent set S′0 = {ca ∈ S | a ∈ S0} where ca divides some power

of a, then S0 is (pure-) independent of type (na)a∈S0, where ⊕a∈S0Cna ' H.

Proof. Without restriction we assume S = B(G). For A ∈ S0 let gA ∈ γ(A) be

independent of γ(S0 \ {A}) with ord (gA) = nA. Then S′0 = {gnAA |A ∈ S0} is an

independent set. Since the structure of H can be extracted from it we obtain

H = 〈γ(S′0)〉 =
⊕
A∈S0

〈gA〉 '
⊕
A∈S0

CnA .

If H < G is pure, then (gA)A∈S0 is pure-independent, and by Corollary 2 S0 is

pure-independent. �
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2. Bourbaki N., Algebra II, Springer, 1990.
3. Fuchs L., Infinite abelian groups I, Academic Press, 1970.
4. Geroldinger A., Arithmetical characterizations of divisors class groups, Arch. Math. 54

(1990), 455–464.
5. , Systeme von Längenmengen, Abh. Math. Sem. Univ. Hamburg 60 (1990), 115–130.
6. Geroldinger A. and Halter-Koch F., Realization theorems for semigroups with divisor theory,

Semigroup Forum 44 (1992), 229–237.
7. Gilmer R., Commutative semigroup rings, The University of Chicago Press, 1984.
8. Halter-Koch F., Factorisation of algebraic integers, Bericht Nr. 191 (1983) der Math. Statist.

Sektion d. Forschungszentrums Graz.
9. , Halbgruppen mit Divisorentheorie, Expo. Math. 8 (1990), 27–66.

10. , Ein Approximationssatz für Halbgruppen mit Divisorentheorie, Results in Math. 19
(1991), 74–82.

11. Kaczorowski J., A pure arithmetical definition of the class group, Coll. Math. 48 (1984),
265–267.

12. Krause U. and Zahlten C., Arithmetic in Krull monoids and the cross number of divisor
class groups, Mitteilungen d. Math. Gesellschaft Hamburg 12 (1991), 681–696.

13. Narkiewicz W., Elementary and analytic theory of algebraic numbers, PWN, 1974.
14. Robinson D., A course in the theory of groups, Springer, 1982.
15. Rotman J., An introduction to the theory of groups, Allyn and Bacon, 1984.
16. Rush D. E., An arithmetic characterization of algebraic number fields with a given class

group, Math. Proc. Cambr. Phil. Soc. 94 (1983), 23–28.
17. Skula L., Divisorentheorie einer Halbgruppe, Math. Z. 114 (1970), 113–120.
18. , On c-semigroups, Acta Arith. 31 (1976), 247–257.

A. Geroldinger, Institut für Mathematik, Karl-Franzens-Universität, Heinrichstrasse 36/IV, A-
8010 Graz, Austria


