ON THE TREE-WIDTH OF A GRAPH

J. CHLEBÍKOVÁ

Abstract. Robertson and Seymour introduced the concept of the tree-width of a graph. It plays an important role in their results on graph minors culminating in their proof of Wagner's conjecture. This concept seems to be interesting from the algorithmic point of view as well: many graph problems that are NP-complete in general can be polynomially solvable if graphs are constrained to have bounded tree-width [2].

In the present paper several equivalent definitions of tree-width are discussed and tree-width of several families of graphs is determined.

All graphs in this paper are nonempty, finite and may have loops or multiple edges. $V(G)$ and $E(G)$ denote the set of vertices and the set of edges of the graph G, respectively. $\omega(G)$ denotes the cardinality of the maximal clique of G. K_{k} stands for the complete graph on k-vertices.

For any subset X of $V(G)$ we denote by $G-X$ the graph obtained from G by deleting the vertices of X (and all the edges adjacent with them). For any edge $e \in E(G)$ let $G-e$ stand for the graph obtained from G by deleting e.

In this paper the difference between isomorphism and equality of graphs is ignored.

Definition 1. A tree-decomposition of a graph G is a pair (T, \mathscr{X}), where T is a tree and $\mathscr{X}=\left(X_{t}, t \in V(T)\right)$ is a family of subsets of $V(G)$ with the following properties:
(i) $\cup\left(X_{t}, t \in V(T)\right)=V(G)$;
(ii) for every edge $e \in E(G)$ there exists $t \in V(T)$ such that e has both ends in X_{t};
(iii) for $t, t^{\prime}, t^{\prime \prime} \in V(T)$, if t^{\prime} is on the path of T between t and $t^{\prime \prime}$ then

$$
X_{t} \cap X_{t}^{\prime \prime} \subseteq X_{t}^{\prime}
$$

The width of the tree-decomposition (T, \mathscr{X}) is

$$
\max _{t \in V(T)}\left(\left|X_{t}\right|-1\right)
$$

Received May 22, 1992.
1980 Mathematics Subject Classification (1991 Revision). Primary 05C05, 05C75.

A tree-width of the graph $G, T W(G)$, is a minimal nonnegative integer k such that G has a tree-decomposition of the width k.

A tree-decomposition (T, \mathscr{X}) of the graph G is said to be fundamental, if (T, \mathscr{X}) has width $T W(G)$ and for any tree-decomposition $\left(T^{\prime}, \mathscr{X}^{\prime}\right)$ of G whose width is $T W(G)$, the inequality $\left|V\left(T^{\prime}\right)\right| \geq|V(T)|$ holds.

Lemma 2. Let (T, \mathscr{X}) be a fundamental tree-decomposition of a graph G, where $\mathscr{X}=\left(X_{t}, t \in V(T)\right)$. If vertices $t_{1}, t_{2} \in V(T)$ are adjacent in T, then $X_{t_{1}}-X_{t_{2}} \neq \emptyset$.

Proof. If $X_{t_{1}}-X_{t_{2}}=\emptyset$ for some vertices t_{1} and t_{2} adjacent in T, then define a new tree-decomposition of G in the following way: let t_{0} denote the vertex obtained by contraction of the edge $\left\{t_{1}, t_{2}\right\}$ in T and let T^{\prime} denote the tree obtained in this way. Set $X_{t_{0}}=X_{t_{2}}$ and $\mathscr{X}^{\prime}=\left(X_{t}, t \in V\left(T^{\prime}\right)\right)$. Clearly, the tree-decomposition ($T^{\prime}, \mathscr{X}^{\prime}$) of G has width $T W(G)$ but has less then $|V(T)|$ vertices, a contradiction.

Definition 3. Let (T, \mathscr{X}) be a tree-decomposition of a graph G, where $\mathscr{X}=$ $\left(X_{t}, t \in V(T)\right)$. For each $t \in V(T)$ the connected components of $T-t$ are called the branches of T at t.

For any $t \in V(T)$ and any $v \in V(G)$ for which $v \notin X_{t}$ there is a (unique) branch of T at t containing all $t^{\prime} \in V(T)$ with $v \in X_{t^{\prime}}$ (due to the property (iii) from Definition 1). Let $T_{t}(v)$ denote this branch.

Definition 4. Let G be a graph, $X, Y, Y^{\prime} \subseteq V(G)$. The sets Y and Y^{\prime} are separated in G by the set X, if every path from Y to Y^{\prime} in G contains a vertex of X.

Lemma 5. Let (T, \mathscr{X}) be a tree-decomposition of a graph G, where $\mathscr{X}=$ $\left(X_{t}, t \in V(T)\right)$.
(i) If $v, v^{\prime} \notin X_{t}$ and v, v^{\prime} are not separated in G by X_{t}, then $T_{t}(v)=T_{t}\left(v^{\prime}\right)$.
(ii) Let e be an edge of T with ends t, t^{\prime} and let N, N^{\prime} be the vertex sets of the two components of $T-e$. Then $X_{t} \cap X_{t^{\prime}}$ separates $\cup\left(X_{n}, n \in N\right)$ and $\cup\left(X_{n}, n \in N^{\prime}\right)$.
(iii) Let $|V(T)| \geq 2$ and for each $t \in V(T)$ let G_{t} be a connected subgraph of G with $V\left(G_{t}\right) \cap X_{t}=\emptyset$. Then there exist $t, t^{\prime} \in V(T)$ adjacent in T such that $X_{t} \cap X_{t^{\prime}}$ separates $V\left(G_{t}\right)$ and $V\left(G_{t^{\prime}}\right)$ in G.

Proof. See [3].
Lemma 6. Let (T, \mathscr{X}) be a tree-decomposition of a graph G, where $\mathscr{X}=$ $\left(X_{t}, t \in V(T)\right)$. For any clique $H \subseteq G$ there exists a vertex $t_{0} \in V(T)$ such that $V(H) \subseteq X_{t_{0}}$. In particular, $T W(G) \geq \omega(G)-1$.

Proof. If $|V(H)| \leq 2$ then the statement easily follows from the definition of the tree-decomposition of G.

Suppose to the contrary that there exists a clique $H \subseteq G(|V(H)| \geq 3)$ such that for every $t \in V(T)$ the vertex set $V(H)-X_{t}$ is nonempty. Then obviously $|V(T)| \geq 2$. For every $t \in V(T)$ set $G_{t}=H-X_{t}$. Then

$$
\begin{equation*}
V\left(G_{t}\right) \cap X_{t}=\emptyset . \tag{1}
\end{equation*}
$$

Due to Lemma 5 there are vertices t_{1}, t_{2} adjacent in T such that the subsets $V\left(G_{t_{1}}\right)$ and $V\left(G_{t_{2}}\right)$ are separated in G by the set $X_{t_{1}} \cap X_{t_{2}}$. By virtue of (1) we get, in particular, $V\left(G_{t_{1}}\right) \cap V\left(G_{t_{2}}\right)=\emptyset$. Choose arbitrary vertices $v_{1} \in V\left(G_{t_{1}}\right)$ and $v_{2} \in V\left(G_{t_{2}}\right)$. Since v_{1} and v_{2} are separated in G by the set $X_{t_{1}} \cap X_{t_{2}}$ and v_{1}, $v_{2} \notin X_{t_{1}} \cap X_{t_{2}}$, we get that v_{1} and v_{2} are not adjacent in G. But v_{1} and v_{2} are vertices of the clique $H \subseteq G$, a contradiction.

Theorem 7.

(i) $T W(G)=0$ if and only if G is a discrete graph.
(ii) $T W(C)=2$ for any cycle C.
(iii) $T W(G) \leq 1$ if and only if G is a forest.
(iv) $T W\left(K_{n}\right)=n-1$ for any positive integer n.

Proof. Part (i) is trivial.
(ii) Let C be a cycle, $C=v_{1} v_{2} \ldots v_{n} v_{1}$ and $n \geq 3$. To prove that $T W(C) \leq 2$, we define a tree T, where $V(T)=\{1, \ldots, n-2\}, E(T)=\{\{i, i+1\}: 1 \leq i \leq n-3\}$ and the family $\mathscr{X}=\left(X_{t}, t \in V(T)\right)$, where $X_{t}=\left\{v_{1}, v_{t+1}, v_{t+2}\right\}$ for any vertex $t \in V(T)$. Then (T, \mathscr{X}) is a tree-decomposition of C with width 2 .

To prove that $T W(C) \geq 2$, we assume, to the contrary, that (T, \mathscr{X}) is a fundamental tree-decomposition of C with width at most 1 . Then we can find vertices $t_{1}, t_{0} \in V(T)$ such that $X_{t_{1}}=\left\{v_{1}, v_{2}\right\}$ and $X_{t_{0}}=\left\{v_{1}, v_{n}\right\}$. Let $t_{2} \in V(T)$ be the first vertex different from t_{1} on the path from t_{1} to t_{0} in T. By Lemma $2 v_{2} \notin X_{t_{2}}$ and hence $X_{t_{1}} \cap X_{t_{2}}=\left\{v_{1}\right\}$. Delete from T the edge e joining the vertices t_{1} and t_{2}. For $i=1,2$ let N_{i} denote the vertex set of the component of $T-e$ which contains t_{i}. By Lemma 5, the sets $M_{1}=\cup\left(X_{t}, t \in N_{1}\right)$ and $M_{2}=\cup\left(X_{t}, t \in N_{2}\right)$ are separated in C by $\left\{v_{1}\right\}$. But vertices $v_{2} \in M_{1}$ and $v_{n} \in M_{2}$ are not separated by $\left\{v_{1}\right\}$ in C, a contradiction.
(iii) If G is a forest it is easy to find a tree-decomposition of G with width at most 1. If G is not a forest, then $T W(G) \geq 2$ by (ii).
(iv) The inequality $T W\left(K_{n}\right) \geq n-1$ is a consequence of Lemma 6 . The opposite inequality easily follows from the definition of a tree-decomposition of G.

Definition 8. A graph G is said to be chordal, if every cycle in G of length at least 4 has a chord.

A graph G has chord-width $k, C h W(G)=k$, if k is the smallest nonnegative integer such that G is a subgraph of some chordal graph H which contains no $(k+2)$-clique as a subgraph.

Definition 9. Let G_{1} and G_{2} be disjoint graphs. Choose cliques (without multiple edges and loops) from each of G_{1} and G_{2} of the same size k and a bijection between them. Identify each vertex of the first clique with the associated vertex of the second one.

1. If we delete the edges of both cliques, the result is said to be a k-sum of G_{1} and G_{2} (see Fig. 1).

G is 3 -sum of G_{1} and G_{2}

Figure 1.
2. If we delete the edges of only one of the cliques, the result is said to be a k-linkage of G_{1} and G_{2} (see Fig. 2).

G is 3-linkage of G_{1} and G_{2}

Figure 2.
Remark. 0-sum and 0-linkage correspond to the disjoint union of graphs. 1 -sum has the same meaning as 1 -linkage.

Notation. If \mathscr{C} is a set of graphs, we denote by $\langle\mathscr{C}\rangle_{k},\langle\langle\mathscr{C}\rangle\rangle_{k}$ and $\langle\langle\mathscr{C}\rangle\rangle_{k}^{*}$ the sets of graphs, which can be constructed by repeatedly applying the operation of a $\leq k$-sum, $\leq k$-linkage and a k-linkage starting from graphs belonging to \mathscr{C}, respectively.

Let \mathscr{K} denote the set of all complete graphs and $\langle\langle\mathscr{K}\rangle\rangle=\bigcup_{k=0}^{\infty}\left\langle\left\langle K_{k+1}\right\rangle\right\rangle_{k}$.
Definition 10. Let \mathscr{C}_{k+1} be the set of all graphs with $\leq(k+1)$ vertices. A graph G is said to have

1. sum-width $k(S W(G)=k)$, if k is the smallest nonnegative integer such that $G \in\left\langle\mathscr{C}_{k+1}\right\rangle_{k}$;
2. linkage-width $k(L W(G)=k)$ if k is the smallest nonnegative integer for which there exists a supergraph $H \supseteq G$ such that $H \in\left\langle\left\langle\mathscr{C}_{k+1}\right\rangle\right\rangle_{k}$;
3. clique-width $k(C W(G)=k)$ if k is the smallest nonnegative integer for which there exists a supergraph $H \supseteq G$ such that $H \in\left\langle\left\langle K_{k+1}\right\rangle\right\rangle_{k}^{*}$.

We prove that all the above mentioned variants of the width of a graph are equivalent. The following characterization of chordal graph was first given by Dirac [1].

Lemma 11. A graph G is chordal if and only if $G \in\langle\langle\mathscr{K}\rangle\rangle$.
Proof. Necessity: If $G \in \mathscr{K}$, then G is chordal. Further, we prove that if G is obtained by using operation of linkage two chordal graphs $G_{1}, G_{2} \in\langle\langle\mathscr{K}\rangle\rangle$ then G is chordal.

Let C be a cycle in the graph G of length at least 4. If $V(C) \subseteq V\left(G_{i}\right)$ for some $i=1,2$, then there is a chord of C in G, for G_{1} and G_{2} are chordal. Otherwise, $V(C) \cap\left(V\left(G_{1}\right)-V\left(G_{2}\right)\right) \neq \emptyset$ and $V(C) \cap\left(V\left(G_{2}\right)-V\left(G_{1}\right)\right) \neq \emptyset$. Then it is easy to see that there is a pair of different vertices $u, v \in V(C)$ such that $u, v \in V\left(G_{1}\right) \cap$ $V\left(G_{2}\right)$ and $\{u, v\} \notin E(C)$. Since u and v are vertices of a clique in G, the edge $\{u, v\}$ is a chord of C in G.

Sufficiency: Assume to the contrary that there are chordal graphs which do not belong to $\langle\langle\mathscr{K}\rangle\rangle$. Let G have the minimum number of vertices among all such graphs. The minimality condition implies that G is a block. We denote by $R=\left\{v_{1}, \ldots, v_{r}\right\}$ a minimal vertex-cut of G. The assumptions made about G imply that $2 \leq r \leq|V(G)|-2$. Let F denote the subgraph of G induced by the set R. Let $H_{1}, \ldots, H_{s}, s \geq 2$, be components of $G-R$. For every $i, 1 \leq i \leq s$, let \widetilde{H}_{i} denote the subgraph of G induced by $V\left(H_{i}\right) \cup R$. The graphs \widetilde{H}_{i} are chordal and since $\left|V\left(\widetilde{H}_{i}\right)\right|<|V(G)|$ we obtain that $\widetilde{H}_{i} \in\langle\langle\mathscr{K}\rangle\rangle$, for $1 \leq i \leq s$.

First of all, we prove that $F \in \mathscr{K}$. Assume to the contrary, that there are vertices v and $v^{\prime} \in R$ which are not adjacent in G. Choose arbitrary vertices $v_{1} \in V\left(H_{1}\right)$ and $v_{2} \in V\left(H_{2}\right)$. Any path from v_{1} to v_{2} in $G-\{R-\{v\}\}$ (resp. $G-\left\{R-\left\{v^{\prime}\right\}\right\}$ contains v^{\prime} (resp. v). Therefore there exists a cycle C in G with the following properties:
$v, v^{\prime} \in C, \quad V(C)-\left\{v, v^{\prime}\right\} \subseteq V\left(H_{1}\right) \cup V\left(H_{2}\right)$ and $V(C) \cap V\left(H_{i}\right) \neq \emptyset$ for every $i \in\{1,2\}$.

Let C_{0} denote the shortest cycle satisfying (2). Since G is chordal, we can find a chord, say $\{x, y\}$, of C_{0} in G. The vertices x and y both belong either to H_{1} or to H_{2}, because H_{1} and H_{2} are components of $G-R$ and $x, y \notin R$. Now, C_{0} contains a path P from x to y containing vertices v and v^{\prime}. Thus P together with the edge $\{x, y\}$ form a cycle satisfying (2) with less than $\left|V\left(C_{0}\right)\right|$ vertices, a contradiction. Consequently, $F \in \mathscr{K}$. However, G can be constructed by linking chordal graphs $\widetilde{H_{1}}, \ldots, \widetilde{H_{s}} \in\langle\langle\mathscr{K}\rangle\rangle$, hence $G \in\langle\langle\mathscr{K}\rangle\rangle$, a contradiction.

Theorem 12. For any G, the following equalities hold:

$$
T W(G)=C h W(G)=L W(G)=C W(G)=S W(G)
$$

Proof. For any nonnegative integer k is sufficient to prove the equivalence of the following five statements:

$$
T W(G) \leq k \Leftrightarrow C h W(G) \leq k \Leftrightarrow L W(G) \leq k \Leftrightarrow C W(G) \leq k \Leftrightarrow S W(G) \leq k
$$

$T W(G) \leq k \Longrightarrow C h W(G) \leq k:$
Let (T, \mathscr{X}) be a tree-decomposition of G with width at most k, where $\mathscr{X}=$ $\left(X_{t}, t \in V(T)\right)$. We define a supergraph H of G as follows: $V(H)=V(G)$, $E(H)=\bigcup_{t \in V(T)}\left\{\{u, v\} ; u, v \in X_{t}\right.$ and $\left.u \neq v\right\}$. Then (T, \mathscr{X}) is also a treedecomposition of H. We show that H is chordal and does not contain a $(k+2)$ clique as a subgraph. Let C be a cycle of length at least 4 in H and let $\left(T, \mathscr{X}_{C}\right)$, where $\mathscr{X}_{C}=\left(X_{t} \cap V(C), t \in V(T)\right)$, be a tree-decomposition of C. By Theorem 7, there is a vertex $t_{0} \in V(T)$ such that $\left|V(C) \cap X_{t_{0}}\right| \geq 3$. Since $|V(C)| \geq 4$, the set $V(C) \cap X_{t_{0}}$ contains a pair of vertices x and y nonadjacent in C. The edge $\{x, y\} \in H$ is a chord of C in H. Suppose that the graph H contains a ($k+2$)-clique K_{k+2}. Then the restriction of a tree-decomposition (T, \mathscr{X}) of H to the vertices of K_{k+2} is a tree-decomposition of K_{k+2} with width k, contradicting to Theorem 7. Hence H is a chordal supergraph of G containing no $(k+2)$-clique as a subgraph.
$C h W(G) \leq k \Longrightarrow L W(G) \leq k:$
Let H be a chordal supergraph of G containing no $(k+2)$-clique. By Lemma 11 we have $H \in\left\langle\left\langle\left\{K_{i}: 1 \leq i \leq k+1\right\}\right\rangle\right\rangle$. It is easy to see that the graph H fulfils the following statement:
H is a 1 -clique or a $(k+1)$-clique, or there are two nonadjacent vertices $v_{1}, v_{2} \in V(H), v_{1} \neq v_{2}$, for which $d_{H}\left(v_{1}\right), d_{H}\left(v_{2}\right) \leq k$.

Now we prove that for any graph $\widetilde{H} \widetilde{H} \in\left\langle\left\langle\left\{K_{i}, 1 \leq i \leq k+1\right\}\right\rangle\right\rangle$ implies $\widetilde{H} \in\left\langle\left\langle\mathscr{C}_{k+1}\right\rangle\right\rangle_{k}$. Let $H_{0} \in\left\langle\left\langle\left\{K_{i}, 1 \leq i \leq k+1\right\}\right\rangle\right\rangle$ be a graph with the smallest
number of vertices which does not belong to $\left\langle\left\langle\mathscr{C}_{k+1}\right\rangle\right\rangle_{k}$. Obviously, $\left|V\left(H_{0}\right)\right|>k+1$. According to (3), there is a vertex $v_{0} \in V\left(H_{0}\right)$ for which $d_{H_{0}}\left(v_{0}\right) \leq k$. Set $\widetilde{Z}=\left\{u:\left\{u, v_{0}\right\} \in E\left(H_{0}\right)\right\}$ and let $Z \subseteq \widetilde{Z}$ be a minimum vertex-cut of H_{0}. The proof of Lemma 11 shows that the subgraph induced by the set Z in H_{0} is a clique. Therefore H_{0} is a $\leq k$-sum of graphs from $\left\langle\left\langle\left\{K_{i}, 1 \leq i \leq k+1\right\}\right\rangle\right\rangle$ which belong to $\left\langle\left\langle\mathscr{C}_{k+1}\right\rangle\right\rangle_{k}$ due to the minimality property of H_{0}. Hence $H_{0} \in\left\langle\left\langle\mathscr{C}_{k+1}\right\rangle\right\rangle_{k}$.
$L W(G) \leq k \Longrightarrow C W(G) \leq k:$
We show that for any graph $H \in\left\langle\left\langle\mathscr{C}_{k+1}\right\rangle\right\rangle_{k}$ there exists a supergraph \widetilde{H} of H such that $\widetilde{H} \in\left\langle\left\langle K_{k+1}\right\rangle\right\rangle_{k}^{*}$. If $H \in \mathscr{C}_{k+1}$ that is trivial. Assume that the graph H is a m-linkage $(m \leq k)$ of graphs H_{1} and H_{2} such that there exist $\widetilde{H}_{i} \supseteq H_{i}$ for which $\widetilde{H}_{i} \in\left\langle\left\langle K_{k+1}\right\rangle\right\rangle_{k}^{*}$, for any $i=1,2$. We can assume that $V\left(\widetilde{H_{1}}\right) \cap V\left(\widetilde{H_{2}}\right)=V\left(H_{1}\right) \cap V\left(H_{2}\right)$ and $E\left(\widetilde{H_{1}}\right) \cap E\left(\widetilde{H_{2}}\right)=E\left(H_{1}\right) \cap E\left(H_{2}\right)$. The graph $M=\widetilde{H_{1}} \cap \widetilde{H_{2}}$ is a clique. Put $V(M)=\left\{v_{1}, \ldots, v_{m}\right\}$. If $m=k$, then $\widetilde{H_{1}} \cup \widetilde{H_{2}} \in$ $\left\langle\left\langle K_{k+1}\right\rangle\right\rangle_{k}^{*}$. If $m \leq k-1$ we can easily find graphs M_{i} such that $\left|V\left(M_{i}\right)\right|=k$ and $M \subseteq M_{i} \subseteq \widetilde{H}_{i}$ for any $i=1,2$. Put $V\left(M_{1}\right)-V(M)=\left\{u_{1}, \ldots, u_{k-m}\right\}$ and $V\left(M_{2}\right)-V(M)=\left\{v_{m+1}, \ldots, v_{k}\right\}$. Now define recurrently a finite sequence P_{1}, \ldots, P_{k-m+1} of graphs with the following properties: P_{1} is equal to $\widetilde{H_{2}}$ and for every $1 \leq i \leq k-m: P_{i+1} \supseteq P_{i}, V\left(P_{i+1}\right)=V\left(P_{i}\right) \cup\left\{u_{i}\right\}$ and $E\left(P_{i+1}\right)-E\left(P_{i}\right)=$ $\left\{\left\{u_{i}, v_{j}\right\}: m+1 \leq j \leq k+1-i\right\}$. Then $P_{i} \in\left\langle\left\langle K_{k+1}\right\rangle\right\rangle_{k}^{*}$ for every $i, 1 \leq i \leq k-m$.

The graph \widetilde{H} is obtained by a k-linkage of $\widetilde{H_{1}}$ and P_{k-m+1} through a k-clique with vertex set $\left\{v_{1}, \ldots, v_{m}, u_{1}, \ldots, u_{k-m}\right\}$. Therefore $\widetilde{H} \in\left\langle\left\langle K_{k+1}\right\rangle\right\rangle_{k}^{*}$ and $\widetilde{H} \supseteq$ $\widetilde{H_{1}} \cup \widetilde{H_{2}} \supseteq H_{1} \cup H_{2}=H$.
$C W(G) \leq k \Longrightarrow S W(G) \leq k:$
This implication is easy, since the class of graphs $\left\langle\mathscr{C}_{k+1}\right\rangle_{k}$ is closed on the operation of making subgraphs.
$S W(G) \leq k \Longrightarrow T W(G) \leq k:$
We prove that for any $G \in\left\langle\mathscr{C}_{k+1}\right\rangle_{k}$ we can find a tree-decomposition of G with width at most k. This is trivial if $G \in \mathscr{C}_{k+1}$. If not, assume that the graph G is m-linkage ($m \leq k$) of graphs H_{1} and H_{2} such that $H_{1}, H_{2} \in\left\langle\mathscr{C}_{k+1}\right\rangle_{k}$ and for any $i=1,2$ there exists a tree-decomposition $\left(T_{i}, \mathscr{X}_{i}\right)$ of H_{i} with width at most k, where $\mathscr{X}_{i}=\left(X_{t_{i}}, t_{i} \in V\left(T_{i}\right)\right)$. Due to Lemma 2 there exists a vertex $t_{i} \in V\left(T_{i}\right)$ such that $X_{t_{i}}$ contains vertices of a m-clique for any $i \in\{1,2\}$. Connecting trees T_{1} and T_{2} by the edge $\left\{t_{1}, t_{2}\right\}$, we obtain a tree T. Put $\mathscr{X}=\left(X_{t}, t \in V(T)\right)$. Then (T, \mathscr{X}) is tree-decomposition of G with width at most k.

The proof is complete.

2. Tree-width of Some Classes of Graphs

We have determined (Theorem 7) the tree-width of complete graphs, cycles and trees. In the following section the tree-width of some other classes of graphs is found.

Recall that a complete n-partite graph $K_{r_{1}, \ldots, r_{n}}$ is a graph whose vertex set is a disjoint union $\cup_{i=1}^{n} V_{i}$ and $\{u, v\} \in E\left(K_{r_{1}, \ldots, r_{n}}\right)$ if and only if there exist distinct integers i, j such that $u \in V_{i}$ and $v \in V_{j}$.

Theorem 13. Let $K_{r_{1}, \ldots, r_{n}}$ be the complete n-partite graph with $r_{1} \leq r_{2} \leq$ $\ldots r_{n}$. Then $T W\left(K_{r_{1}, \ldots, r_{n}}\right)=\sum_{i=1}^{n-1} r_{i}$.

Proof. Let $k=\sum_{i=1}^{n-1} r_{i}$. We define a supergraph $H \supseteq K_{r_{1}, \ldots, r_{n}}$ by adding to $K_{r_{1}, \ldots, r_{n}}$ all the edges $\{u, v\}$ such that $u, v \in V_{j}$ and $j \neq n$. It is easy to see that the graph H is chordal and does not contain a $(k+2)$-clique. This implies that $T W\left(K_{r_{1}, \ldots, r_{n}}\right) \leq k$.

To prove that $T W\left(K_{r_{1}, \ldots, r_{n}}\right) \geq k$ we need to show that any chordal supergraph of $K_{r_{1}, \ldots, r_{n}}$ contains a $(k+1)$-clique. Let G be an arbitrary chordal supergraph of $K_{r_{1}, \ldots, r_{n}}$. The graph G is either a clique on $\sum_{i=1}^{n} r_{i}$ vertices or there exists $i^{\prime}, 1 \leq$ $i^{\prime} \leq n$, and nonadjacent vertices $u_{0}, v_{0} \in V_{i^{\prime}}, u_{0} \neq v_{0}$, in G. We choose arbitrary vertices $u, v \in V_{j}, u \neq v, 1 \leq j \leq n, j \neq i^{\prime}$. Vertices $u_{0}, v, v_{0}, v \in V(G)$ induce a cycle in G. The graph G is chordal and $\left\{u_{0}, v_{0}\right\} \notin E(G)$, therefore $\{u, v\} \in E(G)$. This holds for arbitrary $u, v \in V_{j}, j \neq i^{\prime}, 1 \leq j \leq n, u \neq v$. Therefore the graph G contains a clique on $r_{1}+\cdots+r_{i^{\prime}-1}+1+r_{i^{\prime}+1}+\cdots+r_{n} \geq(k+1)$ vertices.

Remark. Let $K_{r_{1}, r_{2}}$ be a complete bipartite graph, where $r_{1}, r_{2} \in \mathbb{N}, r_{1} \leq r_{2}$. Let $K_{r_{1}, r_{2}}^{\prime}$ be a graph which we obtain be deleting of all the edges of maximum matching from $K_{r_{1}, r_{2}}$. Then the following assertions hold:
(i) If $r_{1}=r_{2}=r$, then $T W\left(K_{r, r}^{\prime}\right)=r-1$.
(ii) If $r_{2} \geq r_{1}+1,\left(r_{1}, r_{2}\right) \neq(2,3)$ then $T W\left(K_{r_{1}, r_{2}}^{\prime}\right)=r_{1}$ and $T W\left(K_{2,3}^{\prime}\right)=1$.

This can be proved using the same technique as in the proof of Theorem 13, but the discussion is more complicated.

Definition 14. For any positive integers $m \geq 2, n \geq 2$ the grid $G_{m, n}$ is the graph defined as follows:

$$
\begin{aligned}
V\left(G_{m, n}\right)= & \{(i, j): 1 \leq i \leq m \text { and } 1 \leq j \leq n\} \\
E\left(G_{m, n}\right)= & \{\{(i, j),(k, r)\}:|i-k|+|j-r|=1, \text { where } \\
& 1 \leq i, k \leq m \text { and } 1 \leq j, r \leq n\}
\end{aligned}
$$

and let $G_{m, n}^{\prime}$ denote the graph

$$
\begin{aligned}
V\left(G_{m, n}^{\prime}\right)= & V\left(G_{m, n}\right) \\
E\left(G_{m, n}^{\prime}\right)=\{ & \{(i, j),(i, k)\}: j \neq k, 1 \leq i \leq m, 1 \leq j, k \leq n\} \\
& \cup\{\{(i, j),(i+1, j)\}: 1 \leq i \leq m-1,1 \leq j \leq n\}
\end{aligned}
$$

Lemma 15. $T W\left(G_{m, n}^{\prime}\right) \leq n$.
Proof. We prove the lemma by induction on m. For $m=2$ we prove, by induction on n, that for every n the inequality $T W\left(G_{2, n}^{\prime}\right) \leq n$ holds.

For $n=2$ we have $T W\left(G_{2,2}^{\prime}\right)=2$. Suppose that for some $n \geq 2$ and for every $k \leq n$ the inequality $T W\left(G_{2, k}^{\prime}\right) \leq k$ holds. From Theorem 12 we see that $G_{2, k}^{\prime} \in\left\langle\left\langle\mathscr{C}_{k+1}\right\rangle\right\rangle_{k}$. Define supergraphs H_{1} and H_{2} of $G_{2, n}^{\prime}$ as follows:

$$
\begin{aligned}
& V\left(H_{1}\right)=V\left(G_{2, n}^{\prime}\right) \cup\{(1, n+1)\} \\
& E\left(H_{1}\right)=E\left(G_{2, n}^{\prime}\right) \cup\{\{(1, i),(1, n+1)\}: 1 \leq i \leq n\} \\
& V\left(H_{2}\right)=V\left(H_{1}\right) \cup\{(2, n+1)\} \\
& E\left(H_{2}\right)=E\left(H_{1}\right) \cup\{\{(2, i),(2, n+1)\}: 1 \leq i \leq n\}
\end{aligned}
$$

By the induction hypothesis $G_{2, n}^{\prime} \in\left\langle\left\langle\mathscr{C}_{n+1}\right\rangle\right\rangle_{n}$. From the construction of graphs H_{1} and H_{2} it follows that $H_{1} \in\left\langle\left\langle\mathscr{C}_{n+1}\right\rangle\right\rangle_{n}$ and then also $H_{2} \in\left\langle\left\langle\mathscr{C}_{n+1}\right\rangle\right\rangle_{n}$. This shows that $T W\left(H_{2}\right) \leq n$. The graph $G_{2, n+1}^{\prime}$ can be obtained by adding the edge $\{(1, n+1),(2, n+1)\}$ to the graph H_{2}. This means that $T W\left(G_{2, n+1}^{\prime}\right) \leq n+1$. Therefore $T W\left(G_{2, n}^{\prime}\right) \leq n$ for every positive integer n.

Now suppose that for some $m \geq 2$ and for any $s \leq m$ and any positive integer n the inequality $T W\left(G_{s, n}^{\prime}\right) \leq n$ holds. We show that $T W\left(G_{m+1, n}^{\prime}\right) \leq n$. Fix $n \in \mathbb{N}$. Let $H_{2, n}^{\prime}$ denote the induced subgraph of the graph $G_{m+1, n}^{\prime}$ on the set $\{(m+r, i)$: $0 \leq r \leq 1,1 \leq i \leq n\}$. The graph $G_{m+1, n}^{\prime}$ can be obtained by using operation of a m-linkage of graphs $G_{m, n}^{\prime}$ and $H_{2, n}^{\prime}$. By the induction hypothesis $G_{m, n}^{\prime} \in$ $\left\langle\left\langle\mathscr{C}_{n+1}\right\rangle\right\rangle_{n}, H_{2, n}^{\prime} \in\left\langle\left\langle\mathscr{C}_{n+1}\right\rangle\right\rangle_{n}$, and therefore $G_{m+1, n}^{\prime} \in\left\langle\left\langle\mathscr{C}_{n+1}\right\rangle\right\rangle_{n}$. Theorem 12 implies that $T W\left(G_{m+1, n}^{\prime}\right) \leq n$, completing the proof.

Theorem 16. $T W\left(G_{m, n}\right)=\min \{m, n\}$.
Proof. Since $G_{m, n}=G_{n, m}$ up to the isomorphism, we assume in the following that $m \geq n$. The graph $G_{m, n}$ is obviously a subgraph of the graph $G_{m, n}^{\prime}$. This implies $T W\left(G_{m, n}\right) \leq T W\left(G_{m, n}^{\prime}\right) \leq n$.

To prove the opposite inequality it is sufficient to prove that $T W\left(G_{n, n}\right) \geq$ n, since the graph $G_{n, n}$ is a subgraph of $G_{m, n}$. Assume, to the contrary, that $T W\left(G_{n, n}\right) \leq n-1$ and let (T, \mathscr{X}), where $\left(X_{t}, t \in V(T)\right)$, be a fundamental treedecomposition of $G_{n, n}$. Obviously, $|V(T)| \geq 2$, otherwise $T W\left(G_{n, n}\right)=n^{2}-1 \geq$ $n+1>n$, a contradiction. For any $1 \leq i \leq n$ we define subgraphs L_{i} and M_{i} of $G_{n, n}$ in the following way:

$$
\begin{aligned}
V\left(L_{i}\right) & =\{(j, i): 1 \leq j \leq n\}, & E\left(L_{i}\right) & =\{\{(j, i),(j+1, i)\}: 1 \leq j \leq n-1\} \\
V\left(M_{i}\right) & =\{(i, j): 1 \leq j \leq n\}, & E\left(M_{i}\right) & =\{\{(i, j),(i, j+1)\}: 1 \leq j \leq n-1\}
\end{aligned}
$$

The following two possible cases will be discussed separately:

1. For every $t \in V(T)$ there is a path P_{t} either from the set $V\left(L_{1}\right)$ to the set $V\left(L_{n}\right)$ or from the set $V\left(M_{1}\right)$ to the set $V\left(M_{n}\right)$ such that

$$
\begin{equation*}
V\left(P_{t}\right) \cap X_{t}=\emptyset \tag{4}
\end{equation*}
$$

2. There exists a vertex $t_{0} \in V(T)$ such that for every path P from the set $V\left(L_{1}\right)$ to the set $V\left(L_{n}\right)$ the set $V(P) \cap X_{t_{0}}$ is nonempty and for every path P from the set $V\left(M_{1}\right)$ to the set $V\left(M_{n}\right)$ the set $V(P) \cap X_{t_{0}}$ is (also) nonempty.
Case 1.
According to Lemma 5 , there are vertices $t_{1}, t_{2} \in V(T),\left\{t_{1}, t_{2}\right\} \in E(T)$ such that the sets $V\left(P_{t_{1}}\right)$ and $V\left(P_{t_{2}}\right)$ are separated in $G_{n, n}$ by $X_{t_{1}} \cap X_{t_{2}}$. By virtue of (4) we get, in particular, that $V\left(P_{t_{1}}\right) \cap V\left(P_{t_{2}}\right)=\emptyset$. Hence, either both $P_{t_{1}}$ and $P_{t_{2}}$ are paths from $V\left(L_{1}\right)$ to $V\left(L_{n}\right)$ or both of them are paths from $V\left(M_{1}\right)$ to $V\left(M_{n}\right)$. We assume that the paths are from $V\left(M_{1}\right)$ to $V\left(M_{n}\right)$. (The second case is analogous.)

Since (T, \mathscr{X}) is a fundamental tree-decomposition of $G_{n, n}$ and $\left\{t_{1}, t_{2}\right\} \in E(T)$, from Lemma 2.6 we obtain $\left|X_{t_{1}} \cap X_{t_{2}}\right| \leq n-1$. There exists $i_{0}, 1 \leq i_{0} \leq n$ for which $V\left(M_{i_{0}}\right) \cap\left(X_{t_{1}} \cap X_{t_{2}}\right)=\emptyset$. Since $V\left(P_{t_{1}}\right) \cap V\left(M_{i_{0}}\right) \neq \emptyset$ and $V\left(P_{t_{2}}\right) \cap V\left(M_{i_{0}}\right) \neq \emptyset$, we see that $V\left(P_{t_{1}}\right)$ and $V\left(P_{t_{2}}\right)$ are not separated in $G_{n, n}$ by the set $X_{t_{1}} \cap X_{t_{2}}$, a contradiction.
Case 2.
In this case, the following is satisfied for every $i, 1 \leq i \leq n: V\left(L_{i}\right) \cap X_{t_{0}} \neq \emptyset$, $V\left(M_{i}\right) \cap X_{t_{0}} \neq \emptyset$; since $\left|X_{t_{0}}\right| \leq n$, we see that $\left|V\left(L_{i}\right) \cap X_{t_{0}}\right|=1$ and $\left|V\left(M_{i}\right) \cap X_{t_{0}}\right|=$ 1. Define $k(i) \in\{1,2, \ldots, n\}$ to be the integer for which $V\left(M_{i}\right) \cap X_{t_{0}}=\{(i, k(i))\}$. Since $\left|V\left(L_{i}\right) \cap X_{t_{0}}\right|=1$ for every $1 \leq i \leq n$, we have $\{k(i): 1 \leq i \leq n\}=$ $\{1, \ldots, n\}$. We first show that for every $i, 1 \leq i \leq n-1,|k(i+1)-k(i)|=1$ holds.

Assume to the contrary that there is an integer $i, 1 \leq i \leq n-1$, such that $|k(i+1)-k(i)| \geq 2$, let i_{0} denote the smallest i with this property. Without loss of generality suppose that $k\left(i_{0}+1\right)-k\left(i_{0}\right) \geq 2$ (the second case is analogous). Let P be a subgraph of $G_{n, n}$ induced by the set $\cup_{i=1}^{5} V_{i}=V(P)$, where

$$
\begin{aligned}
& V_{1}=\left\{(i, n): 1 \leq i \leq i_{0}\right\} \\
& V_{2}=\left\{\left(i_{0}, j\right): k\left(i_{0}\right)+1 \leq j \leq n\right\} \\
& V_{3}=\left\{\left(i, k\left(i_{0}\right)+1\right): i_{0} \leq i \leq i_{0}+1\right\} \\
& V_{4}=\left\{\left(i_{0}+1, j\right): k\left(i_{0}\right) \leq j \leq k\left(i_{0}\right)+1\right\} \\
& V_{5}=\left\{\left(i, k\left(i_{0}\right)\right): i_{0}+1 \leq i \leq n\right\}
\end{aligned}
$$

Then P is a path from the set $V\left(L_{1}\right)$ to the set $V\left(L_{n}\right)$ and $V(P) \cap X_{t_{0}}=\emptyset$. This contradicts the assumption made about $X_{t_{0}}$, hence $|k(i+1)-k(i)|=1$ holds for
every $i, 1 \leq i \leq n-1$. As $\{k(i): 1 \leq i \leq n\}=\{1, \ldots, n\}$, we have either $k(i)=i$ for every $1 \leq i \leq n$ or $k(i)=n+1-i$, for every $1 \leq i \leq n$. This means that $X_{t_{0}}=\{(i, i): 1 \leq i \leq n\}$ or $X_{t_{0}}=\{(i, n+1-i): 1 \leq i \leq n\}$. The graph $G_{n, n}-X_{t_{0}}$ has two components. If vertices v, v^{\prime} belong to the same component, then $T_{t_{0}}(v)=T_{t_{0}}\left(v^{\prime}\right)$ by Lemma 5. Therefore all the vertices of $G_{n, n}-X_{t_{0}}$ are contained in at most two branches of T at t_{0}. Since (T, \mathscr{X}) is a fundamental tree-decomposition of $G_{n, n}$, we obtain that $d_{T}\left(t_{0}\right) \leq 2$.

If $d_{T}\left(t_{0}\right)=1$, set $T^{\prime}=T-\left\{t_{0}\right\}$. If $d_{T}\left(t_{0}\right)=2$, let t_{1}, t_{2} denote the vertices adjacent to t_{0} in T. Define the graph T^{\prime} in the following way:

$$
\begin{aligned}
& V\left(T^{\prime}\right)=V(T)-\left\{t_{0}\right\} \\
& E\left(T^{\prime}\right)=\left(E(T)-\left\{\left\{t_{0}, t_{1}\right\},\left\{t_{0}, t_{2}\right\}\right\}\right) \cup\left\{\left\{t_{1}, t_{2}\right\}\right\}
\end{aligned}
$$

and put $\mathscr{X}^{\prime}=\left(X_{t}, t \in V\left(T^{\prime}\right)\right)$. As the set $X_{t_{0}}$ is an independent set in the graph $G_{n, n}$, the pair $\left(T^{\prime}, \mathscr{X}^{\prime}\right)$ is a tree-decomposition of the graph $G_{n, n}$ with width at most $T W\left(G_{n, n}\right)$ and $\left|V\left(T^{\prime}\right)\right|<|V(T)|$. This contradicts the fact that (T, \mathscr{X}) is a fundamental tree-decompositionof $G_{m, n}$.

The proof is complete.
Remark. One can investigate triangle and hexagonal "grids" of size $m \times n$ instead of quadrilateral ones. The examples for $m=3$ and $n=4$ are given in Figure 3. The tree-width of such grids is equal to $\min \{m, n\}$. The proof is completely analogous to the proof of previous theorem.

Figure 3.

Problem. Find the tree-width of the n-dimensional cube Q_{n}. So far, we are able to prove that for any positive integer n,

$$
2^{\left\lfloor\frac{n}{2}\right\rfloor} \leq T W\left(Q_{n}\right) \leq\binom{ n}{\left\lfloor\frac{n-1}{2}\right\rfloor}+\binom{n}{\left\lfloor\frac{n+1}{2}\right\rfloor}-1
$$

and $T W\left(Q_{1}\right)=1, T W\left(Q_{2}\right)=2, T W\left(Q_{3}\right)=3$ and $T W\left(Q_{4}\right) \leq 6$.

References

1. Dirac G. A., On rigid circuit graphs, Abh. Math. Sem. Hamburg 25 (1961), 71-76.
2. Robertson N. and Seymour P. D., Graph Minors. II. Algoritmic aspects of tree-width, J. Algorithms 7 (1986), 309-322.
3. Robertson N. and Seymour P. D., Graph Minors. III. Planar Tree-width., Journal of Combinatorial Theory, Ser. B 36, No. 1 (1984), 49-64.
J. Chlebíková, Department of Artificial Intelligence, Faculty of Mathematics and Physics, Comenius University, 84215 Bratislava, Czechoslovakia
