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AMALGAMATIONS AND LINK

GRAPHS OF CAYLEY GRAPHS

J. TOMANOVÁ

Abstract. The link of a vertex v in a graph G is the subgraph induced by all
vertices adjacent to v. If all the links in G are isomorphic to the same graph L,
then L is called the link graph of G. We consider the operation of an amalgamation
of graphs. Using the construction of the free product of groups with amalgamated
subgroups, we give a sufficient condition for a class of link graphs of Cayley graphs
to be closed under amalgamations.

1. Introduction

The link of a vertex v of a graph G is the subgraph induced by all vertices

adjacent to v; we denote it by link (v,G). If all the links in G are isomorphic to

the same graph L, then we say that G has a constant link L and L is called

the link graph of G. In 1963 Zykov [6] posed the problem of characterizing link

graphs. It turned out that the problem is algorithmically unsolvable in the class

of all (possibly infinite) graphs, see Bulitko [2]. However, the solution of Zykov’s

problem is known for certain classes of graphs (for survey see Hell [4] and Blass,

Harary and Miller [1]). Consequently, it is natural to ask whether the class of link

graphs is closed or not under standard binary operations, and how to modify the

graph to be a link graph. These problems are treated in Hell [4].

In the present paper we shall discuss a similar question, namely, whether an

amalgamation of link graphs results in a link graph or not. Using the construction

of the free product of groups with amalgamated subgroups, we give a sufficient

condition for a class of link graphs of Cayley graphs to be closed under amalgama-

tions. Further, the class of m-treelike graphs is defined and some necessary and

sufficient conditions for an m-treelike graph to be a link graph are derived.
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2. Preliminaries

2.1 Groups

We follow the standard terminology and notation of Lyndon and Shupp [5] and

Blass, Harary and Miller [1].

All groups considered are finitely generated. Let H be a group. We use 1 to

denote the identity element of H. U ≤ H means that U is a subgroup of H.

〈X;R〉 denotes the presentation with generators x ∈ X and relators r ∈ R. Let

H1 = 〈x1, . . . , xn; r1, . . . , rn〉 and H2 = 〈y1, . . . , ym; s1, . . . , sm〉

be disjoint groups. Let U1 ≤ H1 and U2 ≤ H2 be subgroups, such that there

exists an isomorphism f : U1 → U2. Then the free product of H1 and H2,

amalgamating U1 and U2 by the isomorphism f is the group

〈x1, . . . , xn, y1, . . . , ym; r1, . . . , rn, s1, . . . , sm, u = f(u), u ∈ U1〉 .

In order to simplify the notation this group will be denoted by

〈H1 ∗H2;u = f(u), u ∈ U1〉 .

2.2 Graphs

Let H be a group, and let Z ⊆ H be a generating subset closed under inverses

and not containing the identity. The Cayley graph [H,Z] of H with respect to

Z has H as its vertex set, with u and v adjacent if u−1v ∈ Z.

Let G1 and G2 be graphs. Let L1 ≤ G1 and L2 ≤ G2 be subgraphs, and let

f : L1 → L2 be an isomorphism. The graph with amalgamated subgraphs

L1 and L2 by the isomorphism f arises from the disjoint union of G1 and G2

by identifying every vertex v ∈ V (L1) with f(v) ∈ V (L2), and every edge of L1

with the corresponding edge of L2. The graph just defined will be denoted by

(G1, L1, f, L2, G2).

3. Amalgamations of Link Graphs of Cayley Graphs

Consider the following problem. Let L1 and L2 be link graphs. Let L′1 ≤ L1

and L′2 ≤ L2 be subgraphs, such that there is an isomorphism f : L′1 → L′2. Does

there exist a graph G with constant link (L1, L
′
1, f, L

′
2, L2)?

Note that the class of link graphs is not closed under amalgamations. Figure 1

shows the amalgamation of link graphs L1 and L2 by the isomorphism f which

results in a non-link graph P3.
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L1 =
a

L2 =
f(a)

a = f(a)

= P3

Figure 1.

Thus we are led to restrict the question to the special classes of graphs, namely,

to the link graphs of Cayley graphs. (Recall that the Cayley graph [H,Z] is vertex

transitive. Hence L = link (1, [H,Z]) is the constant link of [H,Z].)

Set I = {1, 2}. Let Hi be a group with the generating subset Zi, such that the

identity element 1i of Hi does not belong to Zi and Zi = Z−1
i , i ∈ I. Consider the

Cayley graph [Hi, Zi] with the constant link Li, i ∈ I. Let L′1 ≤ L1 and L′2 ≤ L2

be subgraphs, and let f : L′1 → L′2 be an isomorphism. As link (1i, [Hi, Zi]) ∼= Li,

the vertices in Li can be considered as elements contained in Zi, where i ∈ I.

Thus the amalgamation of vertices in L′1 and L′2 by f induces an amalgamation

of elements in Z1 and Z2.

Theorem 1. Let [Hi, Zi], Li and L′1 with i = 1, 2 be the graphs defined above.

Let f : L′1 → L′2 be an isomorphism, and let Ui ≤ Hi be a subgroup such that

V (L′i) ⊆ Ui, for i = 1, 2. Suppose that the following properties hold.

P1. The isomorphism of graphs L′1 and L′2 can be extended to an isomorphism of

subgroups U1 and U2.

P2. Ui ∩ Zi = V (L′i) for i = 1, 2.

Then there is an infinite graph with constant link (L1, L
′
1, f, L

′
2, L2).

Proof. Denote by f the isomorphism of subgroups U1 and U2 induced by f . Set

H =
〈
H1 ∗H2; u = f(u), u ∈ U1

〉
.

Since Zi is closed under inverses and 1i does not belong to Zi for i ∈ I, the

generating set of H (say Z) satisfies these conditions, too.

Let L denote the constant link of [H,Z], i.e. L ∼= link (1, [H,Z]). From the

properties P1 and P2 there follows that the elements from Z1 and Z2 identified by

f , correspond to the vertices in L1 and L2 identified by f , and vice versa. Next,

suppose that u ∈ Z1 − V (L′1) and v ∈ Z2 − V (L′2). If u−1v = c and c ∈ Z1 then

uc ∈ H1. However, it is in contradiction with the fact that v ∈ Z2−V (L′2). Using

similar arguments one can show that u−1v does not belong to Z2. It implies that

L is isomorphic to the graph (L1, L
′
1, f, L

′
2, L1), as required. �
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Obviously, the graph constructed by the procedure described above, is infinite.

However, in the special cases “finitizing” relations for the group H can be found.

For instance, consider a group H1 generated by the set Z1 = {BC,B,C,CB},
and with defining relations B2 = C2 = 11, BC 6= CB, (BC)3 = CB. Let H2

be an Abelian group generated by the set Z2 = {D,A,DA}, and with D2 =

A2 = 12. Let V (L′1) = {B} and V (L′2) = {D}. Then U1 = {11, B} and

U2 = {12, D}. For the group H =
〈
H1 ∗H2;u = f(u), u ∈ U1

〉
the finitizing

relation can be specified as AC = CA. The Cayley graph of the group H =

〈H1 ∗H2; u = f(u), u ∈ U1, AC = CA〉 with generating set Z = {BC,B,C,CB,
A,BA} is shown in Fig. 2.

BCB A(BC)2

BCBCB

ABCBCB

CB
(BC)2

BC

ABCB

ABC B C

ACB

AC

A

1

AB

Figure 2.

Theorem 2. Let [Hi, Zi] be a Cayley graph of an Abelian group Hi, such that

link (1i, [Hi, Zi]) ∼= Li for i = 1, 2. Let L′i ≤ Li, i = 1, 2 be a subgraph, and let

f : L′1 → L′2 be an isomorphism. Consider the subgroups U1 ≤ H1 and U2 ≤ H2
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satisfying the assumptions of Theorem 1. Then there exists a finite Cayley graph

with constant link (L1, L
′
1, f, L

′
2, L2).

Proof. Let f be the isomorphism of U1 and U2 induced by f . Consider the

group H = <H1 ∗H2; u = f(u), u ∈ U1> and the relation

(A) uv = vu if u ∈ Z1 and v ∈ Z2.

We shall show that the Cayley graph of the group

H =
〈
H1 ∗H2; u = f(u), u ∈ U1, (A)

〉
has the constant link (L1, L

′
1, f, L

′
2, L2). In fact, we shall prove that

1. The generating set of H (say Z) coincides with Z.

2. (A) preserves the edges and non-edges in (L1, L
′
1, f, L

′
2, L2).

Take the elements u ∈ Z1 − U1 and v ∈ Z2 − U2. Set uv = c and vu = d. If

c−1d ∈ Hi for i ∈ {1, 2} and c−1d 6= 1 with respect to the defining relations in Hi,

then (A) produces relations which are not valid in Hi, and consequently Z 6= Z.

Now, we shall show, it is not the case.

Since both H1 and H2 are Abelian groups, u and v can be written as u = X1Y1

and v = X2Y2 where Yi ∈ Ui, Xi ∈ Zi − Ui, and there is no element from

Ui contained in Xi, i = 1, 2. As Y1X2Y2 ∈ H2 and Y2X1Y1 ∈ H1, we have

uv = X1X2Y1Y2 and vu = X2X1Y2Y1. It implies that the equation c−1d = 1 holds

in Hi, i = 1, 2. Hence Z = Z, and the applying of (A) does not result in the new

edges in Li, i = 1, 2. Similarly as in the proof of Theorem 1 one can derive that

if u ∈ Z1 − U1 and v ∈ Z2 − U2 then u−1v /∈ Zi for i = 1, 2. This completes the

proof. �

4. m-Treelike Graphs

In this section the operation of the amalgamation of groups will be used to

construct graphs with constant link isomorphic to the so-called m-treelike graphs.

Definition 1. Let n and m be integers such that n ≥ 3 and m ≥ 1. A con-

nected graph T is said to be m-treelike if

A. T does not contain any cycle of length greater than three as an induced

subgraph.

B. The maximal cliques in T have the same size n. The intersection of any two

maximal cliques is empty or is the complete graph on m vertices.

Note that the concept of m-treelike graph generalizes that of treelike graph

introduced in Harary and Palmer [3].

An m-treelike graph is called m-starlike if all its maximal cliques have exactly

m vertices in common. An m-starlike graph in which the number of maximal

cliques is k ≥ 2 will be denoted by S(n,m, k), see Fig. 3.
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S(3, 2, 4) S(4, 2, 3)

Figure 3.

The next proposition gives a necessary and sufficient condition for an m-starlike

graph to be a link graph. As an m-starlike graph has exactly m universal vertices,

the assertion of our proposition follows also from Theorem 1 in Hell [4] (for the

definition of an universal vertex see the same paper, [4]). However, the method

we shall use to prove it allows us to construct Cayley graphs with constant link

isomorphic to the prescribed m-starlike graphs.

Proposition 1. An m-starlike graph S(n,m, k) is the link graph if and only if

n+ 1 = c(m+ 1) for an integer c > 1.

Proof of Proposition 1.

Sufficiency. Let S be an m-starlike graph with k ≥ 2, and let I = {1, . . . , k} be

an index set. Since n+ 1 = c(m+ 1), each maximal clique in S (say Ci with i ∈ I)

can be represented as the link graph of a Cayley graph defined in the following

way. Let Hi be an Abelian group with the generating set

Zi = {xhi a
r
i : h ∈ {0, . . . ,m}, r ∈ {0, . . . , c− 1}, (h, r) 6= (0, 0)}

and with defining relations xm+1
i = aci = 1i for i ∈ I.

Obviously, link (1i, [Hi, Zi]) ∼= Ci for i ∈ I.

Consider the subgraph C′i ≤ Ci induced by the vertices xi, . . . , x
m
i , i ∈ I. Let

Ui be a subgroup of Hi with Ui = {1i, xi, . . . , xmi }, and let f1 : C′1 → C′2 be the

mapping defined as f1(xt1) = xt2 for t = 1, . . . ,m. Then f1 is an isomorphism and

moreover, it can be naturally extended to the isomorphism of U1 and U2. Set
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f1(xt1) = xt2 for t = 0, . . . ,m. Then by Theorem 2, the Cayley graph of the group

P1 =
〈
H1 ∗H2; x1 = f1(x1), x1 ∈ U1, uv = vu, u ∈ Z1 and v ∈ Z2

〉
has the constant link (say L1) isomorphic to S(n,m, 2).

If k = 2 then L1
∼= S; otherwise consider the subgraph L′1 ≤ L1 induced by the

vertices x1, . . . , x
m
1 , and the subgraph C′3 ≤ C3 induced by the vertices x3, . . . , x

m
3 .

Let Z denote the generating set of P1 and let 1 be its identity element. An

isomorphism f2 : L′1 → C′3 can be extended to the isomorphism (say f2) of groups

A1 = {1, x1, . . . , x
m
1 } and U3 = {13, x3, . . . , x

m
3 }. As U3∩Z3 = C′3 andA1∩Z = L′1,

the Cayley graph of the group

P2 =
〈
P1 ∗H3; x1 = f2(x1), x1 ∈ A1, uv = vu, u ∈ Z and v ∈ Z3

〉
has constant link (say L2) isomorphic to S(n,m, 3).

If k = 3 then L2
∼= S; otherwise the construction described above will be used

repeatedly (exactly k − 2-times) to derive the Cayley graph with constant link S.

Necessity. In order to prove the necessary condition we shall need the next

definition, given in [1]. Let u and v be adjacent vertices in a graph G. The number

of vertices adjacent to both u and v is called the relative degree, and is denoted

by α(u, v). If α(u, v) = q then we say that the edge (u, v) is marked q.

Suppose that an m-starlike graph S is the link graph of a graph G. If X denotes

the centre of S then by the definition of the relative degree we obtain

α(x, y) = k(n−m) + (m− 1) for any x, y ∈ X and

α(a, x) = n− 1 for any x ∈ X and a ∈ S −X.

Let a be a vertex contained in S − X. Then there are m vertices in S − X
which belong to the centre of the link (a,G), say a1, . . . , am. Clearly, the vertices

a, a1, . . . , am belong to the same maximal clique in S, i.e.

α(a, ai) = α(ai, aj) = k(n−m) + (m− 1) for i, j = 1, . . . ,m.

Thus the edges marked k(n−m) + (n− 1) indicate a Km+1 factor of S−X, and

the assertion follows. �

Let T be a graph of type S(n,m, k). The set of all vertices in T with degree

k(n−m) + (m− 1) will be denoted by X. Now, we shall introduce a new class of

m-treelike graphs derived from a given graph S(n,m, k).

Definition 2. Let k and l be integers such that k ≥ 2 and l ≥ 1. Define the

class S(n,m, k, l) of m-treelike graphs with n ≥ 2m as follows.

1. S(n,m, k, 1) = {S(n,m, k)}.
2. A. Let k ≥ 3 and l ≥ 2. Consider a graph T ∈ S(n,m, k, l − 1), and all its
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maximal cliques such that each of them contains a vertex at distance l−1 from X;

the maximal cliques with the above property will be denoted by C1, . . . , Cj , where

j ≤ k. Let C′i ≤ Ci be complete subgraph onm vertices, such that if u and v belong

to V (C′i) then deg (u, T ) = deg (v, T ) = n− 1, i = 1, . . . , j. Further, let L1, . . . , Lt
be complete graphs on n vertices with t ≤ j, and L′i ≤ Li be the complete

subgraph on m vertices, i = 1, . . . , t. Consider an isomorphism fi : C
′
i → L′i where

i = 1, . . . , t. We define Hj
t (T ) to be the graph derived from the disjoint union of

T,L1, . . . , Lt by identifying every vertex v ∈ V (C′i) with fi(v) ∈ V (L′i), and every

edge of C′i with the corresponding edge of L′i, i = 1, . . . , t.

T

H2
1 (T ) H2

2 (T )

P (4, 2, 3)

Figure 4.
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Let G be an m-treelike graph. If there is a graph T ∈ S(n,m, k, l−1) such that

Hj
t (T ) is isomorphic to G for some t, then G belongs to the class S(n,m, k, l).

B. If k = 2 then the class S(n,m, 2, l) contains a single element, and we denote

it by P (n,m, l), see Fig. 4.

Figure 4 shows the graph T ∈ S(3, 1, 3, 2), and graphsH2
1 (T ) andH2

2 (T ) derived

from T .

To simplify the statement of the next proposition we give the following defini-

tion. Let T be a graph in S(n,m, k, l) with k ≥ 3. We say that the branch Bi of

T at X has length li if there is a maximal clique C in Bi, such that C contains

a vertex v at distance li from X, i ∈ {1, . . . , k}.
The branches of T at X will be simply called the branches of T .

Note that if T ∈ S(n,m, k, l) then 1 ≤ li ≤ l for i = 1, . . . , k, and there is at least

one branch in T of length equal to l.

Proposition 2. Let T be a graph in S(n,m, k, l) with k ≥ 3. Suppose that the

length of each branch in T is greater than or equal to 2. If T is a link graph

then n+ 1 ≥ (m+ 1)2.

Proof. Let G be a graph with constant link T . Take a vertex v ∈ G, and

consider the link (v,G) and the corresponding set X = {x : x ∈ link (v,G) such

that deg (x, link (v,G)) = k(n−m) + (m− 1)}.
By the definition of the relative degree we have

α(x, y) = k(n−m) + (m− 1) for any x, y ∈ X.

Let I = {1, . . . , k}. To each i ∈ I there corresponds a branch Bi in T containing

a maximal clique Ci so that X ≤ Ci. As n ≥ 2m there are m vertices in Ci (say

si,1, . . . , si,m) i ∈ I, with degrees equal to r = 2(n−m) + (m− 1).

Since

α(v, si,j) = r for j = 1, . . . ,m,

we obtain

α(si,p, si,j) = r for p, j = 1, . . . ,m.

The last equation follows from the following fact: if

α(si,p, si,j) = k(n− n) + (m− 1) for p, j ∈ {1, . . . ,m}

then by the definition of m-treelike graph we have

deg (v, link (si,j , G)) = k(n−m) + (m− 1), for j = 1, . . . ,m.

However, it is a contradiction with

α(v, si,j) = r, for j = 1, . . . ,m.
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Using similar arguments one can derive the inequality

α(x, si,j) 6= r for any x ∈ X, and j = 1, . . . ,m.

Next, consider link (x, T ) where x ∈ X, and the maximal clique C′i = Ci−{x}∪{v}
where i ∈ I. As α(x, si,j) 6= r for j = 1, . . . ,m, there are m vertices in C′i, say

s′i,1, . . . , s
′
i,m, such that α(x, s′i,j) = α(s′i,j , s

′
i,p)p = r for p, j = 1, . . . ,m, and i ∈ I.

Hence, n− 2m ≥ m2. �

Theorem 3. Let T be a graph from the class S(n,m, k, l) with k ≥ 2 and l ≥ 2.

If n+ 1 = c(m+ 1)2 for an integer c ≥ 1 then T is the link graph.

Proof. First we construct the Cayley graph with constant link S(n,m, k). Let

I = {1, . . . , k} be the index set.

Consider an Abelian group H with the generating set

Z = {xhyqi a
p
i : h, q ∈ {0, . . . ,m}, p ∈ {0, . . . , c− 1}, (h, q, p) 6= (0, 0, 0), i ∈ I}

and with xm+1 = ym+1
i = aci = 1 for i ∈ I.

For each i ∈ I the elements from the set

Zi = {xhyqi a
p
i : h, q ∈ {0, . . . ,m}, p ∈ {0, . . . , c− 1}, (h, q, p) 6= (0, 0, 0)}

correspond to the vertices of the complete subgraph on n vertices in L, where L

denotes the constant link of [H,Z]. Since the elements api a
r
j , y

q
i y
s
j , y

q
i a
p
j do not

belong to Z if i 6= j, p, r ∈ {1, . . . , c− 1}, and q, s ∈ {1, . . . ,m}, L is isomorphic

to S(n,m, k).

Let G be a graph which belongs to the class S(n,m, k, 2). Now, the graph with

constant link isomorphic to G will be derived from [H,Z]. Let H ′1 be an Abelian

group generated by the set

Z ′1 = {rh1 s
q
1b
p
1 : h, q ∈ {0, . . . ,m}, p ∈ {0, . . . , c− 1}, (h, q, p) 6= (0, 0, 0)}

with rm+1
1 = sn+1

1 = bc1 = 11.

Then link (11, [H
′
1, Z

′
1]) is isomorphic to the complete graph on n vertices, say L1.

Let L′1 ≤ L1 be the subgraph induced by the vertices r1, . . . , r
m
1 , and let L′ ≤ L be

the subgraph induced by the vertices y1, . . . , y
m
1 . Then the mapping f : L′1 → L′

defined as f(rh1 ) = yh1 for h = 1, . . . ,m is an isomorphism, and it can be extended

to the isomorphism of the groups U ′1 = {11, r1, . . . , r
m
1 } and U = {1, y1, . . . , y

m
1 },

say f . According to Theorem 2 we obtain, that the Cayley graph of the group

H ′ =
〈
H ∗H ′1; r1 = f(r1), r1 ∈ U

′
1, uv = vu, u ∈ Z and v ∈ Z ′1

〉
has constant link isomorphic to a graph (say G1) from S(n,m, k, 2). Let Z ′ denote

the generating set of H ′.
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If k = 2 then G ∼= G1, and the above construction gives the graph [H ′, Z ′] with

the constant link from S(n,m, 2, 2). Since link (1, [H ′, Z ′]) contains the subgraph

induced by the vertices s1, . . . , s
m
1 and H ′ contains the subgroup {1, s1, . . . , s

m
1 },

the operation of the amalgamation can be used repeatedly. In such a way we can

construct the Cayley graph with the constant link isomorphic to a graph from

S(n,m, k, l) with k = 2 and l ≥ 2.

Suppose that k ≥ 3. Then G has j (1 ≤ j ≤ k) branches of length two,

and link (1, [H ′, Z ′]) has exactly one branch of length 2. However, link (1, [H ′, Z ′])

contains the subgraph induced by the set Yi = {yi, . . . , ymi }, such that {1}∪Yi is the

subgroup of H ′ for i = 1, . . . , j. It means that each of j branches in link (1, [H ′, Z ′])

can be prolonged by the analogous procedure as we have prolonged the branch

containing the subgraph Y1. Hence, there exists a Cayley graph with the constant

link isomorphic to G. As link (1, [H ′, Z ′]) contains the subgraph induced by the

set s1, . . . , s
m
1 , and H ′ contains the subgroup {1, s1, . . . , s

m
1 }, the operation of the

amalgamation can be used to determine a Cayley graph with the constant link

isomorphic to a graph from S(n,m, k, 3). Hence, the proof of theorem follows by

induction on l. �
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