AMALGAMATIONS AND LINK GRAPHS OF CAYLEY GRAPHS

J. TOMANOVÁ

Abstract

The link of a vertex v in a graph G is the subgraph induced by all vertices adjacent to v. If all the links in G are isomorphic to the same graph L, then L is called the link graph of G. We consider the operation of an amalgamation of graphs. Using the construction of the free product of groups with amalgamated subgroups, we give a sufficient condition for a class of link graphs of Cayley graphs to be closed under amalgamations.

1. Introduction

The link of a vertex v of a graph G is the subgraph induced by all vertices adjacent to v; we denote it by $\operatorname{link}(v, G)$. If all the links in G are isomorphic to the same graph L, then we say that G has a constant link L and L is called the link graph of G. In 1963 Zykov [6] posed the problem of characterizing link graphs. It turned out that the problem is algorithmically unsolvable in the class of all (possibly infinite) graphs, see Bulitko [2]. However, the solution of Zykov's problem is known for certain classes of graphs (for survey see Hell [4] and Blass, Harary and Miller [1]). Consequently, it is natural to ask whether the class of link graphs is closed or not under standard binary operations, and how to modify the graph to be a link graph. These problems are treated in Hell [4].

In the present paper we shall discuss a similar question, namely, whether an amalgamation of link graphs results in a link graph or not. Using the construction of the free product of groups with amalgamated subgroups, we give a sufficient condition for a class of link graphs of Cayley graphs to be closed under amalgamations. Further, the class of m-treelike graphs is defined and some necessary and sufficient conditions for an m-treelike graph to be a link graph are derived.

2. Preliminaries

2.1 Groups

We follow the standard terminology and notation of Lyndon and Shupp [5] and Blass, Harary and Miller [1].

All groups considered are finitely generated. Let H be a group. We use 1 to denote the identity element of $H . U \leq H$ means that U is a subgroup of H. $\langle X ; R\rangle$ denotes the presentation with generators $x \in X$ and relators $r \in R$. Let

$$
H_{1}=\left\langle x_{1}, \ldots, x_{n} ; r_{1}, \ldots, r_{n}\right\rangle \text { and } H_{2}=\left\langle y_{1}, \ldots, y_{m} ; s_{1}, \ldots, s_{m}\right\rangle
$$

be disjoint groups. Let $U_{1} \leq H_{1}$ and $U_{2} \leq H_{2}$ be subgroups, such that there exists an isomorphism $f: U_{1} \rightarrow U_{2}$. Then the free product of H_{1} and H_{2}, amalgamating U_{1} and U_{2} by the isomorphism f is the group

$$
\left\langle x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m} ; r_{1}, \ldots, r_{n}, s_{1}, \ldots, s_{m}, u=f(u), u \in U_{1}\right\rangle .
$$

In order to simplify the notation this group will be denoted by

$$
\left\langle H_{1} * H_{2} ; u=f(u), u \in U_{1}\right\rangle .
$$

2.2 Graphs

Let H be a group, and let $Z \subseteq H$ be a generating subset closed under inverses and not containing the identity. The Cayley graph $[H, Z]$ of H with respect to Z has H as its vertex set, with u and v adjacent if $u^{-1} v \in Z$.

Let G_{1} and G_{2} be graphs. Let $L_{1} \leq G_{1}$ and $L_{2} \leq G_{2}$ be subgraphs, and let $f: L_{1} \rightarrow L_{2}$ be an isomorphism. The graph with amalgamated subgraphs L_{1} and L_{2} by the isomorphism f arises from the disjoint union of G_{1} and G_{2} by identifying every vertex $v \in V\left(L_{1}\right)$ with $f(v) \in V\left(L_{2}\right)$, and every edge of L_{1} with the corresponding edge of L_{2}. The graph just defined will be denoted by $\left(G_{1}, L_{1}, f, L_{2}, G_{2}\right)$.

3. Amalgamations of Link Graphs of Cayley Graphs

Consider the following problem. Let L_{1} and L_{2} be link graphs. Let $L_{1}^{\prime} \leq L_{1}$ and $L_{2}^{\prime} \leq L_{2}$ be subgraphs, such that there is an isomorphism $f: L_{1}^{\prime} \rightarrow L_{2}^{\prime}$. Does there exist a graph G with constant link $\left(L_{1}, L_{1}^{\prime}, f, L_{2}^{\prime}, L_{2}\right)$?

Note that the class of link graphs is not closed under amalgamations. Figure 1 shows the amalgamation of link graphs L_{1} and L_{2} by the isomorphism f which results in a non-link graph P_{3}.

Figure 1.
Thus we are led to restrict the question to the special classes of graphs, namely, to the link graphs of Cayley graphs. (Recall that the Cayley graph $[H, Z]$ is vertex transitive. Hence $L=\operatorname{link}(1,[H, Z])$ is the constant link of $[H, Z]$.)

Set $I=\{1,2\}$. Let H_{i} be a group with the generating subset Z_{i}, such that the identity element 1_{i} of H_{i} does not belong to Z_{i} and $Z_{i}=Z_{i}^{-1}, i \in I$. Consider the Cayley graph $\left[H_{i}, Z_{i}\right]$ with the constant link $L_{i}, i \in I$. Let $L_{1}^{\prime} \leq L_{1}$ and $L_{2}^{\prime} \leq L_{2}$ be subgraphs, and let $f: L_{1}^{\prime} \rightarrow L_{2}^{\prime}$ be an isomorphism. As $\operatorname{link}\left(1_{i},\left[H_{i}, Z_{i}\right]\right) \cong L_{i}$, the vertices in L_{i} can be considered as elements contained in Z_{i}, where $i \in I$. Thus the amalgamation of vertices in L_{1}^{\prime} and L_{2}^{\prime} by f induces an amalgamation of elements in Z_{1} and Z_{2}.

Theorem 1. Let $\left[H_{i}, Z_{i}\right], L_{i}$ and L_{1}^{\prime} with $i=1,2$ be the graphs defined above. Let $f: L_{1}^{\prime} \rightarrow L_{2}^{\prime}$ be an isomorphism, and let $U_{i} \leq H_{i}$ be a subgroup such that $V\left(L_{i}^{\prime}\right) \subseteq U_{i}$, for $i=1,2$. Suppose that the following properties hold.
P1. The isomorphism of graphs L_{1}^{\prime} and L_{2}^{\prime} can be extended to an isomorphism of subgroups U_{1} and U_{2}.
P2. $U_{i} \cap Z_{i}=V\left(L_{i}^{\prime}\right) \quad$ for $i=1,2$.
Then there is an infinite graph with constant link $\left(L_{1}, L_{1}^{\prime}, f, L_{2}^{\prime}, L_{2}\right)$.
Proof. Denote by \bar{f} the isomorphism of subgroups U_{1} and U_{2} induced by f. Set

$$
H=\left\langle H_{1} * H_{2} ; u=\bar{f}(u), u \in U_{1}\right\rangle
$$

Since Z_{i} is closed under inverses and 1_{i} does not belong to Z_{i} for $i \in I$, the generating set of H (say Z) satisfies these conditions, too.

Let L denote the constant link of $[H, Z]$, i.e. $L \cong \operatorname{link}(1,[H, Z])$. From the properties P 1 and P2 there follows that the elements from Z_{1} and Z_{2} identified by \bar{f}, correspond to the vertices in L_{1} and L_{2} identified by f, and vice versa. Next, suppose that $u \in Z_{1}-V\left(L_{1}^{\prime}\right)$ and $v \in Z_{2}-V\left(L_{2}^{\prime}\right)$. If $u^{-1} v=c$ and $c \in Z_{1}$ then $u c \in H_{1}$. However, it is in contradiction with the fact that $v \in Z_{2}-V\left(L_{2}^{\prime}\right)$. Using similar arguments one can show that $u^{-1} v$ does not belong to Z_{2}. It implies that L is isomorphic to the graph $\left(L_{1}, L_{1}^{\prime}, f, L_{2}^{\prime}, L_{1}\right)$, as required.

Obviously, the graph constructed by the procedure described above, is infinite. However, in the special cases "finitizing" relations for the group H can be found. For instance, consider a group H_{1} generated by the set $Z_{1}=\{B C, B, C, C B\}$, and with defining relations $B^{2}=C^{2}=1_{1}, B C \neq C B,(B C)^{3}=C B$. Let H_{2} be an Abelian group generated by the set $Z_{2}=\{D, A, D A\}$, and with $D^{2}=$ $A^{2}=1_{2}$. Let $V\left(L_{1}^{\prime}\right)=\{B\}$ and $V\left(L_{2}^{\prime}\right)=\{D\}$. Then $U_{1}=\left\{1_{1}, B\right\}$ and $U_{2}=\left\{1_{2}, D\right\}$. For the group $H=\left\langle H_{1} * H_{2} ; u=\bar{f}(u), u \in U_{1}\right\rangle$ the finitizing relation can be specified as $A C=C A$. The Cayley graph of the group $\bar{H}=$ $\left\langle H_{1} * H_{2} ; u=f(u), u \in U_{1}, A C=C A\right\rangle$ with generating set $\bar{Z}=\{B C, B, C, C B$, $A, B A\}$ is shown in Fig. 2.

Figure 2.
Theorem 2. Let $\left[H_{i}, Z_{i}\right]$ be a Cayley graph of an Abelian group H_{i}, such that $\operatorname{link}\left(1_{i},\left[H_{i}, Z_{i}\right]\right) \cong L_{i}$ for $i=1,2$. Let $L_{i}^{\prime} \leq L_{i}, i=1,2$ be a subgraph, and let $f: L_{1}^{\prime} \rightarrow L_{2}^{\prime}$ be an isomorphism. Consider the subgroups $U_{1} \leq H_{1}$ and $U_{2} \leq H_{2}$
satisfying the assumptions of Theorem 1. Then there exists a finite Cayley graph with constant link ($\left.L_{1}, L_{1}^{\prime}, f, L_{2}^{\prime}, L_{2}\right)$.

Proof. Let \bar{f} be the isomorphism of U_{1} and U_{2} induced by f. Consider the group $H=<H_{1} * H_{2} ; u=\bar{f}(u), u \in U_{1}>$ and the relation

$$
\begin{equation*}
u v=v u \quad \text { if } \quad u \in Z_{1} \quad \text { and } \quad v \in Z_{2} \tag{A}
\end{equation*}
$$

We shall show that the Cayley graph of the group

$$
\bar{H}=\left\langle H_{1} * H_{2} ; u=\bar{f}(u), u \in U_{1},(A)\right\rangle
$$

has the constant link $\left(L_{1}, L_{1}^{\prime}, f, L_{2}^{\prime}, L_{2}\right)$. In fact, we shall prove that

1. The generating set of \bar{H} (say \bar{Z}) coincides with Z.
2. (A) preserves the edges and non-edges in $\left(L_{1}, L_{1}^{\prime}, f, L_{2}^{\prime}, L_{2}\right)$.

Take the elements $u \in Z_{1}-U_{1}$ and $v \in Z_{2}-U_{2}$. Set $u v=c$ and $v u=d$. If $c^{-1} d \in H_{i}$ for $i \in\{1,2\}$ and $c^{-1} d \neq 1$ with respect to the defining relations in H_{i}, then (A) produces relations which are not valid in H_{i}, and consequently $Z \neq \bar{Z}$. Now, we shall show, it is not the case.

Since both H_{1} and H_{2} are Abelian groups, u and v can be written as $u=X_{1} Y_{1}$ and $v=X_{2} Y_{2}$ where $Y_{i} \in U_{i}, X_{i} \in Z_{i}-U_{i}$, and there is no element from U_{i} contained in $X_{i}, i=1,2$. As $Y_{1} X_{2} Y_{2} \in H_{2}$ and $Y_{2} X_{1} Y_{1} \in H_{1}$, we have $u v=X_{1} X_{2} Y_{1} Y_{2}$ and $v u=X_{2} X_{1} Y_{2} Y_{1}$. It implies that the equation $c^{-1} d=1$ holds in $H_{i}, i=1,2$. Hence $Z=\bar{Z}$, and the applying of (A) does not result in the new edges in $L_{i}, i=1,2$. Similarly as in the proof of Theorem 1 one can derive that if $u \in Z_{1}-U_{1}$ and $v \in Z_{2}-U_{2}$ then $u^{-1} v \notin Z_{i}$ for $i=1,2$. This completes the proof.

4. m-Treelike Graphs

In this section the operation of the amalgamation of groups will be used to construct graphs with constant link isomorphic to the so-called m-treelike graphs.

Definition 1. Let n and m be integers such that $n \geq 3$ and $m \geq 1$. A connected graph T is said to be m-treelike if
A. T does not contain any cycle of length greater than three as an induced subgraph.
B. The maximal cliques in T have the same size n. The intersection of any two maximal cliques is empty or is the complete graph on m vertices.

Note that the concept of m-treelike graph generalizes that of treelike graph introduced in Harary and Palmer [3].

An m-treelike graph is called m-starlike if all its maximal cliques have exactly m vertices in common. An m-starlike graph in which the number of maximal cliques is $k \geq 2$ will be denoted by $S(n, m, k)$, see Fig. 3.

$S(3,2,4)$

$S(4,2,3)$

Figure 3.
The next proposition gives a necessary and sufficient condition for an m-starlike graph to be a link graph. As an m-starlike graph has exactly m universal vertices, the assertion of our proposition follows also from Theorem 1 in Hell [4] (for the definition of an universal vertex see the same paper, [4]). However, the method we shall use to prove it allows us to construct Cayley graphs with constant link isomorphic to the prescribed m-starlike graphs.

Proposition 1. An m-starlike graph $S(n, m, k)$ is the link graph if and only if $n+1=c(m+1)$ for an integer $c>1$.

Proof of Proposition 1.
Sufficiency. Let S be an m-starlike graph with $k \geq 2$, and let $I=\{1, \ldots, k\}$ be an index set. Since $n+1=c(m+1)$, each maximal clique in S (say C_{i} with $i \in I$) can be represented as the link graph of a Cayley graph defined in the following way. Let H_{i} be an Abelian group with the generating set

$$
Z_{i}=\left\{x_{i}^{h} a_{i}^{r}: h \in\{0, \ldots, m\}, r \in\{0, \ldots, c-1\},(h, r) \neq(0,0)\right\}
$$

and with defining relations $x_{i}^{m+1}=a_{i}^{c}=1_{i}$ for $i \in I$.
Obviously, $\operatorname{link}\left(1_{i},\left[H_{i}, Z_{i}\right]\right) \cong C_{i}$ for $i \in I$.
Consider the subgraph $C_{i}^{\prime} \leq C_{i}$ induced by the vertices $x_{i}, \ldots, x_{i}^{m}, i \in I$. Let U_{i} be a subgroup of H_{i} with $U_{i}=\left\{1_{i}, x_{i}, \ldots, x_{i}^{m}\right\}$, and let $f_{1}: C_{1}^{\prime} \rightarrow C_{2}^{\prime}$ be the mapping defined as $f_{1}\left(x_{1}^{t}\right)=x_{2}^{t}$ for $t=1, \ldots, m$. Then f_{1} is an isomorphism and moreover, it can be naturally extended to the isomorphism of U_{1} and U_{2}. Set
$\bar{f}_{1}\left(x_{1}^{t}\right)=x_{2}^{t}$ for $t=0, \ldots, m$. Then by Theorem 2, the Cayley graph of the group

$$
P_{1}=\left\langle H_{1} * H_{2} ; x_{1}=\bar{f}_{1}\left(x_{1}\right), x_{1} \in U_{1}, u v=v u, u \in Z_{1} \text { and } v \in Z_{2}\right\rangle
$$

has the constant link (say L_{1}) isomorphic to $S(n, m, 2)$.
If $k=2$ then $L_{1} \cong S$; otherwise consider the subgraph $L_{1}^{\prime} \leq L_{1}$ induced by the vertices x_{1}, \ldots, x_{1}^{m}, and the subgraph $C_{3}^{\prime} \leq C_{3}$ induced by the vertices x_{3}, \ldots, x_{3}^{m}. Let Z denote the generating set of P_{1} and let 1 be its identity element. An isomorphism $f_{2}: L_{1}^{\prime} \rightarrow C_{3}^{\prime}$ can be extended to the isomorphism (say \bar{f}_{2}) of groups $A_{1}=\left\{1, x_{1}, \ldots, x_{1}^{m}\right\}$ and $U_{3}=\left\{1_{3}, x_{3}, \ldots, x_{3}^{m}\right\}$. As $U_{3} \cap Z_{3}=C_{3}^{\prime}$ and $A_{1} \cap Z=L_{1}^{\prime}$, the Cayley graph of the group

$$
P_{2}=\left\langle P_{1} * H_{3} ; x_{1}=\bar{f}_{2}\left(x_{1}\right), x_{1} \in A_{1}, u v=v u, u \in Z \text { and } v \in Z_{3}\right\rangle
$$

has constant link (say L_{2}) isomorphic to $S(n, m, 3)$.
If $k=3$ then $L_{2} \cong S$; otherwise the construction described above will be used repeatedly (exactly $k-2$-times) to derive the Cayley graph with constant link S.

Necessity. In order to prove the necessary condition we shall need the next definition, given in [1]. Let u and v be adjacent vertices in a graph G. The number of vertices adjacent to both u and v is called the relative degree, and is denoted by $\alpha(u, v)$. If $\alpha(u, v)=q$ then we say that the edge (u, v) is marked q.

Suppose that an m-starlike graph S is the link graph of a graph G. If X denotes the centre of S then by the definition of the relative degree we obtain

$$
\begin{aligned}
& \alpha(x, y)=k(n-m)+(m-1) \quad \text { for any } x, y \in X \text { and } \\
& \alpha(a, x)=n-1 \quad \text { for any } x \in X \text { and } a \in S-X .
\end{aligned}
$$

Let a be a vertex contained in $S-X$. Then there are m vertices in $S-X$ which belong to the centre of the $\operatorname{link}(a, G)$, say a_{1}, \ldots, a_{m}. Clearly, the vertices a, a_{1}, \ldots, a_{m} belong to the same maximal clique in S, i.e.

$$
\alpha\left(a, a_{i}\right)=\alpha\left(a_{i}, a_{j}\right)=k(n-m)+(m-1) \quad \text { for } i, j=1, \ldots, m
$$

Thus the edges marked $k(n-m)+(n-1)$ indicate a K_{m+1} factor of $S-X$, and the assertion follows.

Let T be a graph of type $S(n, m, k)$. The set of all vertices in T with degree $k(n-m)+(m-1)$ will be denoted by X. Now, we shall introduce a new class of m-treelike graphs derived from a given graph $S(n, m, k)$.

Definition 2. Let k and l be integers such that $k \geq 2$ and $l \geq 1$. Define the class $S(n, m, k, l)$ of m-treelike graphs with $n \geq 2 m$ as follows.

1. $S(n, m, k, 1)=\{S(n, m, k)\}$.
2. A. Let $k \geq 3$ and $l \geq 2$. Consider a graph $T \in S(n, m, k, l-1)$, and all its
maximal cliques such that each of them contains a vertex at distance $l-1$ from X; the maximal cliques with the above property will be denoted by C_{1}, \ldots, C_{j}, where $j \leq k$. Let $C_{i}^{\prime} \leq C_{i}$ be complete subgraph on m vertices, such that if u and v belong to $V\left(C_{i}^{\prime}\right)$ then $\operatorname{deg}(u, T)=\operatorname{deg}(v, T)=n-1, i=1, \ldots, j$. Further, let L_{1}, \ldots, L_{t} be complete graphs on n vertices with $t \leq j$, and $L_{i}^{\prime} \leq L_{i}$ be the complete subgraph on m vertices, $i=1, \ldots, t$. Consider an isomorphism $f_{i}: C_{i}^{\prime} \rightarrow L_{i}^{\prime}$ where $i=1, \ldots, t$. We define $H_{t}^{j}(T)$ to be the graph derived from the disjoint union of T, L_{1}, \ldots, L_{t} by identifying every vertex $v \in V\left(C_{i}^{\prime}\right)$ with $f_{i}(v) \in V\left(L_{i}^{\prime}\right)$, and every edge of C_{i}^{\prime} with the corresponding edge of $L_{i}^{\prime}, i=1, \ldots, t$.

Figure 4.

Let G be an m-treelike graph. If there is a graph $T \in S(n, m, k, l-1)$ such that $H_{t}^{j}(T)$ is isomorphic to G for some t, then G belongs to the class $S(n, m, k, l)$.
B. If $k=2$ then the class $S(n, m, 2, l)$ contains a single element, and we denote it by $P(n, m, l)$, see Fig. 4.

Figure 4 shows the graph $T \in S(3,1,3,2)$, and graphs $H_{1}^{2}(T)$ and $H_{2}^{2}(T)$ derived from T.

To simplify the statement of the next proposition we give the following definition. Let T be a graph in $S(n, m, k, l)$ with $k \geq 3$. We say that the branch B_{i} of T at X has length l_{i} if there is a maximal clique C in B_{i}, such that C contains a vertex v at distance l_{i} from $X, i \in\{1, \ldots, k\}$.
The branches of T at X will be simply called the branches of T.
Note that if $T \in S(n, m, k, l)$ then $1 \leq l_{i} \leq l$ for $i=1, \ldots, k$, and there is at least one branch in T of length equal to l.

Proposition 2. Let T be a graph in $S(n, m, k, l)$ with $k \geq 3$. Suppose that the length of each branch in T is greater than or equal to 2 . If T is a link graph then $n+1 \geq(m+1)^{2}$.

Proof. Let G be a graph with constant link T. Take a vertex $v \in G$, and consider the $\operatorname{link}(v, G)$ and the corresponding set $X=\{x: x \in \operatorname{link}(v, G)$ such that $\operatorname{deg}(x, \operatorname{link}(v, G))=k(n-m)+(m-1)\}$.
By the definition of the relative degree we have

$$
\alpha(x, y)=k(n-m)+(m-1) \quad \text { for any } x, y \in X
$$

Let $I=\{1, \ldots, k\}$. To each $i \in I$ there corresponds a branch B_{i} in T containing a maximal clique C_{i} so that $X \leq C_{i}$. As $n \geq 2 m$ there are m vertices in C_{i} (say $\left.s_{i, 1}, \ldots, s_{i, m}\right) i \in I$, with degrees equal to $r=2(n-m)+(m-1)$.
Since

$$
\alpha\left(v, s_{i, j}\right)=r \quad \text { for } j=1, \ldots, m
$$

we obtain

$$
\alpha\left(s_{i, p}, s_{i, j}\right)=r \quad \text { for } p, j=1, \ldots, m
$$

The last equation follows from the following fact: if

$$
\alpha\left(s_{i, p}, s_{i, j}\right)=k(n-n)+(m-1) \quad \text { for } p, j \in\{1, \ldots, m\}
$$

then by the definition of m-treelike graph we have

$$
\operatorname{deg}\left(v, \operatorname{link}\left(s_{i, j}, G\right)\right)=k(n-m)+(m-1), \quad \text { for } j=1, \ldots, m
$$

However, it is a contradiction with

$$
\alpha\left(v, s_{i, j}\right)=r, \quad \text { for } j=1, \ldots, m
$$

Using similar arguments one can derive the inequality

$$
\alpha\left(x, s_{i, j}\right) \neq r \quad \text { for any } x \in X, \text { and } j=1, \ldots, m
$$

Next, consider link (x, T) where $x \in X$, and the maximal clique $C_{i}^{\prime}=C_{i}-\{x\} \cup\{v\}$ where $i \in I$. As $\alpha\left(x, s_{i, j}\right) \neq r$ for $j=1, \ldots, m$, there are m vertices in C_{i}^{\prime}, say $s_{i, 1}^{\prime}, \ldots, s_{i, m}^{\prime}$, such that $\alpha\left(x, s_{i, j}^{\prime}\right)=\alpha\left(s_{i, j}^{\prime}, s_{i, p}^{\prime}\right)_{p}=r$ for $p, j=1, \ldots, m$, and $i \in I$. Hence, $n-2 m \geq m^{2}$.

Theorem 3. Let T be a graph from the class $S(n, m, k, l)$ with $k \geq 2$ and $l \geq 2$. If $n+1=c(m+1)^{2}$ for an integer $c \geq 1$ then T is the link graph.

Proof. First we construct the Cayley graph with constant link $S(n, m, k)$. Let $I=\{1, \ldots, k\}$ be the index set.

Consider an Abelian group H with the generating set

$$
Z=\left\{x^{h} y_{i}^{q} a_{i}^{p}: h, q \in\{0, \ldots, m\}, p \in\{0, \ldots, c-1\},(h, q, p) \neq(0,0,0), i \in I\right\}
$$

and with $x^{m+1}=y_{i}^{m+1}=a_{i}^{c}=1$ for $i \in I$.
For each $i \in I$ the elements from the set

$$
Z_{i}=\left\{x^{h} y_{i}^{q} a_{i}^{p}: h, q \in\{0, \ldots, m\}, p \in\{0, \ldots, c-1\},(h, q, p) \neq(0,0,0)\right\}
$$

correspond to the vertices of the complete subgraph on n vertices in L, where L denotes the constant link of $[H, Z]$. Since the elements $a_{i}^{p} a_{j}^{r}, y_{i}^{q} y_{j}^{s}, y_{i}^{q} a_{j}^{p}$ do not belong to Z if $i \neq j, p, r \in\{1, \ldots, c-1\}$, and $q, s \in\{1, \ldots, m\}, L$ is isomorphic to $S(n, m, k)$.

Let G be a graph which belongs to the class $S(n, m, k, 2)$. Now, the graph with constant link isomorphic to G will be derived from $[H, Z]$. Let H_{1}^{\prime} be an Abelian group generated by the set

$$
Z_{1}^{\prime}=\left\{r_{1}^{h} s_{1}^{q} b_{1}^{p}: h, q \in\{0, \ldots, m\}, p \in\{0, \ldots, c-1\},(h, q, p) \neq(0,0,0)\right\}
$$

with $r_{1}^{m+1}=s_{1}^{n+1}=b_{1}^{c}=1_{1}$.
Then $\operatorname{link}\left(1_{1},\left[H_{1}^{\prime}, Z_{1}^{\prime}\right]\right)$ is isomorphic to the complete graph on n vertices, say L_{1}. Let $L_{1}^{\prime} \leq L_{1}$ be the subgraph induced by the vertices r_{1}, \ldots, r_{1}^{m}, and let $L^{\prime} \leq L$ be the subgraph induced by the vertices y_{1}, \ldots, y_{1}^{m}. Then the mapping $f: L_{1}^{\prime} \rightarrow L^{\prime}$ defined as $f\left(r_{1}^{h}\right)=y_{1}^{h}$ for $h=1, \ldots, m$ is an isomorphism, and it can be extended to the isomorphism of the groups $U_{1}^{\prime}=\left\{1_{1}, r_{1}, \ldots, r_{1}^{m}\right\}$ and $U=\left\{1, y_{1}, \ldots, y_{1}^{m}\right\}$, say \bar{f}. According to Theorem 2 we obtain, that the Cayley graph of the group

$$
H^{\prime}=\left\langle H * H_{1}^{\prime} ; r_{1}=\bar{f}\left(r_{1}\right), r_{1} \in U_{1}^{\prime}, u v=v u, u \in Z \text { and } v \in Z_{1}^{\prime}\right\rangle
$$

has constant link isomorphic to a graph (say G_{1}) from $S(n, m, k, 2)$. Let Z^{\prime} denote the generating set of H^{\prime}.

If $k=2$ then $G \cong G_{1}$, and the above construction gives the graph $\left[H^{\prime}, Z^{\prime}\right]$ with the constant link from $S(n, m, 2,2)$. Since link $\left(1,\left[H^{\prime}, Z^{\prime}\right]\right)$ contains the subgraph induced by the vertices s_{1}, \ldots, s_{1}^{m} and H^{\prime} contains the subgroup $\left\{1, s_{1}, \ldots, s_{1}^{m}\right\}$, the operation of the amalgamation can be used repeatedly. In such a way we can construct the Cayley graph with the constant link isomorphic to a graph from $S(n, m, k, l)$ with $k=2$ and $l \geq 2$.

Suppose that $k \geq 3$. Then G has $j(1 \leq j \leq k)$ branches of length two, and link $\left(1,\left[H^{\prime}, Z^{\prime}\right]\right)$ has exactly one branch of length 2. However, $\operatorname{link}\left(1,\left[H^{\prime}, Z^{\prime}\right]\right)$ contains the subgraph induced by the set $Y_{i}=\left\{y_{i}, \ldots, y_{i}^{m}\right\}$, such that $\{1\} \cup Y_{i}$ is the subgroup of H^{\prime} for $i=1, \ldots, j$. It means that each of j branches in link $\left(1,\left[H^{\prime}, Z^{\prime}\right]\right)$ can be prolonged by the analogous procedure as we have prolonged the branch containing the subgraph Y_{1}. Hence, there exists a Cayley graph with the constant link isomorphic to G. As $\operatorname{link}\left(1,\left[H^{\prime}, Z^{\prime}\right]\right)$ contains the subgraph induced by the set s_{1}, \ldots, s_{1}^{m}, and H^{\prime} contains the subgroup $\left\{1, s_{1}, \ldots, s_{1}^{m}\right\}$, the operation of the amalgamation can be used to determine a Cayley graph with the constant link isomorphic to a graph from $S(n, m, k, 3)$. Hence, the proof of theorem follows by induction on l.

References

1. Blass A., Harary F. and Miller Z., Which trees are link graphs?, J. Com. Theory B 29 (1980), 277-292.
2. Bulitko V. K., On graphs with given vertex neighborhoods, Abstract, Proc. Sixth All-Soviet Topological Conf. Tbilisi (1972), 23-24.
3. Harary F. and Palmer E. M., Graphical Enumeration, Academic Press, New York and London, 1973.
4. Hell P., Graphs with given neighborhoods I., In Proc. Colloque, Inter. C. N. R. S., Orsay, 1976, pp. 219-223.
5. Lyndon R. C. and Schupp P. E., Combinatorial Graph Theory, Springer-Verlag, 1977.
6. Zykov A. A., Problem 30, Theory of Graphs and Applications (M. Fiedler, ed.), Academia, Praha, 1964, pp. 164.
J. Tomanová, Department of Algebra and Number Theory, Faculty of Mathematics and Physics, Comenius University, 84215 Bratislava, Czechoslovakia
