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EXISTENCE OF OSCILLATORY SOLUTIONS

FOR FUNCTIONAL DIFFERENTIAL

EQUATIONS OF NEUTRAL TYPE

J. JAROŠ and T. KUSANO

Dedicated to Professor Valter Šeda on the occasion of his sixtieth birthday

1. Introduction

One of the important problems in the qualitative theory of functional differen-

tial equations of neutral type, which has currently received wide attention, is to

discuss the existence of solutions, either oscillatory or nonoscillatory, of the equa-

tion under consideration. As far as the nonoscillatory solutions are concerned,

there has been a lot of systematic investigations, and numerous results can be

found in the literature regarding the construction of such solutions with speci-

fied asymptotic behavior at infinity; see e.g. the papers [1–6]. However, virtually

nothing is known about the existence of oscillatory solutions of neutral functional

differential equations even for the first-order case.

The objective of this paper is establish sufficient conditions for the existence of

solutions for neutral equations of the form

(A±)
dn

dtn
[x(t)± λx(t − τ)] + f(t, x(g1(t)), . . . , x(gN (t))) = 0,

where n ≥ 1, λ and τ are positive constants, and gi(t), 1 ≤ i ≤ N , and

f(t, u1, . . . , uN) are continuous functions on [t0,∞) and [t0,∞)×RN , respectively.

In particular, our results provide sufficient conditions under which equation (A+)

has infinitely many oscillatory solutions which behave like

λt/τ [a cos((2m− 1)πt/τ) + b sin((2m− 1)πt/τ)] , m = 1, 2, . . .

at t → ∞, and equation (A−) has infinitely many oscillatory solutions which

behave like

λt/τ [a cos(2mπt/τ) + b sin(2mπt/τ)] , m = 1, 2, . . .
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at t→∞, where a and b are constants with a2 + b2 > 0. The desired solutions of

(A±) will be obtained as solutions of the following “integral-difference” equations

(B±) x(t)± λx(t − τ) + (−1)n
∫ ∞
t

(s− t)n−1

(n− 1)!
f(s, x(g(s)))ds = 0, t ≥ T,

(C±) x(t) ± λx(t− τ) +

∫ t

T

(t− s)n−1

(n− 1)!
f(s, x(g(s)))ds = 0, t ≥ T,

where f(s, x(g(s))) ≡ f(s, x(g1(s)), . . . , x(gN (s))) and T > T0 is a constant, and a

fixed point analysis combined with a device of Ruan [6] will be applied for solving

(B±) or (C±).

We note that by a solution of equation (A+) or (A−) is meant a continuous

function x : [Tx,∞) → R such that x(t) + λx(t − τ) or x(t) − λx(t − τ) is n-

times continuously differentiable and satisfies (A+) or (A−) for all sufficiently

large t > Tx. Such a solution is said to be nonoscillatory if it is either eventually

positive or eventually negative. A solution is said to be oscillatory if it has a

sequence of zeros tending to infinity.

2. Main Results

The following conditions on gi(t), 1 ≤ i ≤ N , and f(t, u1, . . . , uN ) in (A±)

are assumed to hold without further mentioning: limt→∞ gi(t) = ∞, 1 ≤ i ≤
N ; and there is a continuous function F (t, v1, . . . , vN ) on [T0,∞) × RN+ which is

nondecreasing in each vi, 1 ≤ i ≤ N , and satisfies

|f(t, u1, . . . , uN)| ≤ F (t, |u1|, . . . , |uN |), (t, u1, . . . , uN) ∈ [t0,∞)× RN .

The main results of this paper are as follows.

Theorem 1. Suppose that 0 < λ ≤ 1 and that there exist constants µ ∈ (0, λ)

and a > 0 such that

(1)

∫ ∞
tn−1µ−t/τF (t, aλg1(t)/τ , . . . , aλgN (t)/τ ) dt <∞.

Then

(i) for any continuous periodic oscillatory function ω−(t) with period τ , equation

(A−) has a bounded oscillatory solution x−(t) such that

(2−) x−(t) = λt/τω−(t) + o(λt/τ ) as t→∞,

(ii) for any continuous oscillatory function ω+(t) such that ω+(t+ τ) = −ω+(t)

for all t, equation (A+) has a bounded oscillatory solution x+(t) such that

(2+) x+(t) = λt/τω+(t) + o(λt/τ ) as t→∞.
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Theorem 2. Suppose that λ > 1 and that there exists a constant a > 0 such

that

(3)

∫ ∞
tn−1F (t, aλg1(t)/τ , . . . , aλgN (t)/τ ) dt <∞.

Then

(i) for any continuous periodic oscillatory function ω−(t) with period τ , equation

(A−) has an unbounded oscillatory solution x−(t) such that

(4−) x−(t) = λt/τω−(t) + o(1) as t→∞,

(ii) for any continuous oscillatory function ω+(t) such that ω+(t+ τ) = −ω+(t)

for all t, equation (A+) has an unbounded oscillatory solution x+(t) such that

(4+) x+(t) = λt/τω+(t) + o(1) as t→∞.

Theorem 3. Suppose that λ > 1 and that there exist constants µ ∈ (1, λ) and

a > 0 such that

(5)

∫ ∞
µ−t/τF (t, aλg

∗
1 (t)/τ , . . . , aλg

∗
N (t)/τ) dt <∞,

where g∗i (t) = max{gi(t), t}, 1 ≤ i ≤ N .

Then

(i) for any continuous periodic oscillatory function ω−(t) with period τ , equation

(A−) has an unbounded oscillatory solution x−(t) such that

(6−) x−(t) = λt/τω−(t) + o(λt/τ ) as t→∞,

(ii) for any continuous oscillatory function ω+(t) such that ω+(t+ τ) = −ω+(t)

for all t, equation (A+) has an unbounded oscillatory solution x+(t) such that

(6+) x+(t) = λt/τω+(t) + o(λt/τ ) as t→∞.

Remark. Each of the functions

a cos(2mπt/τ) + b sin(2mπt/τ), m = 1, 2, . . . ,

and

a cos((2m− 1)πt/τ) + b sin((2m− 1)πt/τ), m = 1, 2, . . . ,

a and b being constants with a2 + b2 > 0, can be used as ω−(t) and ω+(t),

respectively, in the above theorems.
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Proof of Theorem 1. Let ω±(t) be fixed and put ω∗± = max |ω±(t)|. Choose

c > 0 and T > t0 so that (1 + ω∗±)λc/(λ− µ) ≤ a,

(7) T0 = min{T − τ, inf
t≥T

g1(t), . . . , inf
t≥T

gN (t)} ≥ max{t0, τ}

and

(8)

∫ ∞
T

tn−1µ−t/τF (t, aλg1(t)/τ , . . . , aλgN (t)/τ ) dt ≤ c.

Let X denote the set

X = {x ∈ C[T0,∞) : |x(t)| ≤ cµt/τ for t ≥ T0},

which is a closed convex subset of Fréchet space C[T0,∞) of continuous functions

on [T0,∞) with the usual metric topology. Motivated by Ruan [6], with each

x ∈ X we associate the functions x̂±(t) : [T0,∞)→ R defined by

x̂±(t) =
λc

λ− µ
λt/τω±(t)−

∞∑
i=1

(∓1)iλ−ix(t+ iτ), t ≥ T − τ,

x̂±(t) = x̂±(t)(T − τ), T0 ≤ t ≤ T − τ.

(9)

It is easily verified that, for each x ∈ X, x̂±(t) are well defined and continuous on

[T0,∞) and satisfy

(10) x̂±(t)± λx̂(t− τ) = x(t), t ≥ T.

Since x ∈ X implies

(11)
∞∑
i=1

λ−i|x(t+ iτ)| ≤
µc

λ− µ
µt/τ , t ≥ T − τ,

it follows from (9) that

|x̂±(t)| ≤
λcω∗±
λ− µ

λt/τ +
µc

λ− µ
µt/τ ≤

λc(ω∗± + 1)

λ− µ
λt/τ , t ≥ T − τ,

and hence, in view of the fact that λ ≤ 1,

(12) |x̂±(t)(gi(t))| ≤
λc(ω∗± + 1)

λ− µ
λgi(t)/τ ≤ aλgi(t)/τ , t ≥ T, 1 ≤ i ≤ N.

Now we define the mappings F± : X → C[T0,∞), via (9), by

F±x(t) = (−1)n−1

∫ ∞
t

(s− t)n−1

(n− 1)!
f(s, x̂±(t)(g(s)))ds, t ≥ T,

F±x(t) = F±x(T ), T0 ≤ t ≤ T,

(13)
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where f(s, x̂±(g(s))) ≡ f(s, x̂±(g1(s)), . . . , x̂±(gN (s))). It will be shown that F±
are continuous and map X into compact subsets of X, so that Schauder-Tychonoff

fixed point theorem is applicable to F±. In fact, if x ∈ X, then, using (13), (12)

and (8), we obtain

|F±x(t)| ≤

∫ ∞
t

(s− t)n−1

(n− 1)!
|f(s, x̂±(t)(g(s)))| ds

≤ µt/τ
∫ ∞
t

sn−1µ−s/τF (s, |x̂±(t)(g1(s))|, . . . , |x̂±(t)(gN (s))|) ds

≤ µt/τ
∫ ∞
T

sn−1µ−s/τF (s, aλg1(s)/τ , . . . , aλgN (s)/τ ) ds

≤ cµt/τ , t ≥ T,

which implies that F±x ∈ X. Thus, F±(X) ⊂ X. Let {xk} be a sequence of

elements in X converging to an x ∈ X in the topology of C[T0,∞). Since

∞∑
i=1

(±1)iλ−ixk(t+ iτ)→
∞∑
i=1

(±1)iλ−ix(t+ iτ) as k →∞

uniformly on compact subintervals of [T0,∞), the Lebesgue dominated conver-

gence theorem shows that F±xk(t) → F±x(t) uniformly on compact subintervals

of [T0,∞). This proves the continuity of F±. Finally, from the inequalities

|(F±x)′(t)| ≤ F (t, aλg1(t)/τ , . . . , aλgN (t)/τ ), t ≥ T, for n = 1

|(F±x)′(t)| ≤

∫ ∞
T

(s− t)n−2

(n− 2)!
F (s, aλg1(s)/τ , . . . , aλgN (s)/τ ) ds, t ≥ T, for n ≥ 2,

holding for all x ∈ X, we conclude via the Ascoli-Arzela theorem that the sets

F±(X) have compact closure in C[T0,∞).

Therefore, by the Schauder-Tychonoff theorem, there exist fixed elements ξ± ∈
X of F±, which satisfy

ξ±(t) = (−1)n−1

∫ ∞
t

(s− t)n−1

(n− 1)!
f(s, ξ̂±(g)s)))ds, t ≥ T.

Combining the above equation with (10) (with x = ξ) yields

(14) ξ̂±(t)± λξ̂±(t− τ) = (−1)n−1

∫ ∞
t

(s− t)n−1

(n− 1)!
f(s, ξ̂±(g(s)))ds, t ≥ T,

implying that ξ̂±(t) solve the integral-difference equations (B±). Differentiation

of (14) shows that ξ̂±(t) are solutions of the neutral differential equations (A±) on

[T0,∞). From (9) and (11) we have

|ξ̂±(t)−
λc

λ− µ
λt/τω±(t)| ≤

µc

λ− µ
µt/τ , t ≥ T − τ,
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which shows that ξ̂±(t) satisfy the asymptotic relations (2±). It is obvious that

ξ̂±(t) are oscillatory. �

Proof of Theorem 2. The proof is essentially similar to that of Theorem 1.

For fixed ω±(t) define ω∗± = max |ω±(t)|, and take c > 0 and T > t0 so that

(1 + ω∗±)λc/(λ− 1) ≤ a, (7) holds, and∫ ∞
T

tn−1F (t, aλg1(t)/τ , . . . , aλgN (t)/τ ) dt ≤ c.

Define the set Y ⊂ C[T0,∞) and the mappings G± : Y → C[T0,∞) as follows:

Y = {y ∈ C[T0,∞) : |y(t)| ≤ c for t ≥ T0};

G±y(t) = (−1)n−1

∫ ∞
t

(s− t)n−1

(n− 1)!
f(s, ỹ±(g(s)))ds, t ≥ T,

G±y(t) = G±y(T ), T0 ≤ t ≤ T,

where f(s, ỹ±(g(s))) ≡ f(s, ỹ±(g1(s)), . . . , ỹ±(gN (s))) and ỹ± : [T0,∞) → R de-

note the functions defined by

ỹ±(t) =
λc

λ− 1
λt/τω±(t)−

∞∑
i=1

(∓1)iλ−iy(t+ iτ), t ≥ T − τ,

ỹ±(t) =
λc

λ− 1
λt/τω±(t)−

∞∑
i=1

(∓1)iλ−iy(T + (i− 1)τ), T0 ≤ t ≤ T − τ.

As is easily verified, y ∈ Y implies that ỹ± ∈ C[t0,∞) and

ỹ±(t)± λỹ±(t− τ) = y(t), t ≥ T.

Furthermore, since
∑∞
i=1 λ

−i|y±(t+ iτ)| ≤ c/(λ− 1), t ≥ T − τ ,

|ỹ±(t)| ≤
λcω∗±
λ− 1

λt/τ +
c

λ− 1
≤

(ω∗± + 1)λc

λ− 1
λt/τ , t ≥ T0,

and so

|ỹ±(gi(t))| ≤ aλ
gi(t)/τ , t ≥ T, 1 ≤ i ≤ N.

Proceeding as in Theorem 1, we see that the Schauder-Tychonoff fixed point the-

orem is applicable to G±. Let η± ∈ X be fixed points of G±. Then, the functions

η̂±(t) satisfy the integral-difference equations (B±), so that they solve the neu-

tral equations (A±). Since η±(t) → 0 as t → ∞, the solutions η̂±(t) have the

asymptotic properties (4±). Notice that limt→∞[η̂±(t)± λη̂±(t− τ)] = 0. �

Proof of Theorem 3. We intend to construct the desired oscillatory solutions

as solutions of the integral-difference equations (C±). Let ω±(t) be fixed and put
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ω∗± = max |ω±(t)|. Let ν ∈ (µ, λ) be fixed and choose c > 0 and T > t0 so that

(1 + ω∗±)λc/(λ− ν) ≤ a, (7) holds,

(15) tn−1µt/τ ≤ νt/τ for t ≥ T

and

(16)

∫ ∞
T

µ−t/τF (t, aλg
∗
1 (t)/τ , . . . , aλg

∗
N (t)/τ ) dt ≤ c.

Consider the set Z ⊂ C[T0,∞) and the mappings H± : Z → C[T0,∞) defined by

Z = {z ∈ C[T0,∞) : |z(t)| ≤ cνt/τ for t ≥ T0}

and

H±z(t) = −

∫ t

T

(t− s)n−1

(n− 1)!
f(s, ž±(g(s)))ds, t ≥ T,

H±z(t) = 0, T0 ≤ t ≤ T,

(17)

where f(s, ž±(g(s))) ≡ f(s, ž±(g1(s)), . . . , ž±(gN (s))) and ž± : [T0,∞)→ R denote

the functions constructed from z ∈ Z according to the rule

ž±(t) =
λc

λ− ν
λt/τω±(t)−

∞∑
i=1

(∓1)iλ−iz(t+ iτ), t ≥ T − τ

ž±(t) = ž±(T − τ), T0 ≤ t ≤ T − τ.

(18)

For every z ∈ Z, ž± ∈ C[T0,∞) and satisfy

(19) ž±(t)± λž±(t− τ) = z(t), t ≥ T.

Since

(20)
∞∑
i=1

λ−i|z±(t+ iτ)| ≤ [νc/(λ− ν)]νt/τ, t ≥ T − τ,

we have

|ž±(t)| ≤
λcω∗±
λ− ν

λt/τ +
λc

λ− ν
νt/τ ≤

(ω∗± + 1)λc

λ− ν
λt/τ , t ≥ T − τ,

which implies, in view of the fact that λ > 1, that

|ž±(gi(t))| ≤ aλ
g∗i (t)/τ , t ≥ T, 1 ≤ i ≤ N.
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From (17), (15), (16) and the above inequality it follows that for z ∈ Z

|H±z(t)| ≤ tn−1

∫ t

T

|f(s, ž±(g(s)))| ds

≤ tn−1µt/τ
∫ t

T

µ−s/τF (s, |ž±(g1(s))|, . . . , |ž±(gN (s))|) ds

≤ νt/τ
∫ t

T

µ−s/τF (s, aλg
∗
1 (t)/τ , . . . , aλg

∗
N (t)/τ ) ds

≤ cνt/τ , t ≥ T.

Thus, H± map Z into itself. Since the continuity of H± and the relative compact-

ness of H±(Z) can be verified easily, the Schauder-Tychonoff theorem guarantees

the existence of the elements ζ± ∈ Z such that ζ± = H±ζ±, i.e.,

ζ±(t) = −

∫ t

T

(t− s)n−1

(n− 1)!
f(s, ζ̌±(g(s)))ds, t ≥ T.

In view of (19) the above can be rewritten as

(21) ζ̌±(t)± λζ̌±(t− τ) = −

∫ t

T

(t− s)n−1

(n− 1)!
f(s, ζ̌±(g(s)))ds, t ≥ T,

which shows that ζ̌±(t) solve the equations (C±) for t ≥ T . Differentiating (21)

n times, we see that ζ̌±(t) are solutions of the neutral equations (A±) on [T,∞).

That ζ̌±(t) satisfy (6±) follows readily from (18) and (20). Observe that the limits

limt→∞[ζ̌±(t) ± λζ̌±(t − τ)] exist in the extended real line and are different from

zero in general. This completes the proof. �

3. Examples

Examples illustrating the above results will now be given.

Example 1. Consider the equations

(22±)
dn

dtn
[x(t)± e−1x(t− 1)] = (1± e−2)e(1−γθ)t|x(θt)|γsgnx(θt) = 0,

where γ and θ are positive constants such that γθ > 1. These equations are special

cases of (A±) in which λ = e−1, τ = 1, g(t) = θt and the function F (t, v) can be

taken to be F (t, v) = (1 + e−2)e(1−γθ)tvγ . Since∫ ∞
tn−1µ−t/τF (t, aλg(t)/τ ) dt = aγ(1 + e−2)

∫ ∞
tn−1µ−te(1−2γθ)t dt

= aγ(1 + e−2)

∫ ∞
tn−1(e1−2γθ/µ)t dt <∞
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for any µ such that e1−2γθ < µ < e−1, condition (1) is satisfied for (22±), and so

by Theorem 1, given any continuous periodic oscillatory function ω−(t) of period 1

and any continuous oscillatory function ω+(t) such that ω+(t + 1) = −ω+(t) for

all t, there exist bounded oscillatory solutions x±(t) of (22±) satisfying

x±(t) = e−tω±(t) + o(e−t) as t→∞.

In particular, (22±) possess infinitely many bounded oscillatory solutions x±m(t),

m = 1, 2, . . . , such that

x−m(t) = const · e−t cos(2mπt) + o(e−t) as t→∞,

x+
m(t) = const · e−t cos((2m− 1)πt) + o(e−t) as t→∞.

Example 2. Consider the equations

(23±)
dn

dtn
[x(t) ± ex(t− 1)] + (−1)n+1(1± e2)tγe−t|x(log t)|γsgnx(log t) = 0,

which are special cases of (A±) with λ = e, τ = 1, g(t) = log t, and F (t, v) =

(1 + e2)tγe−tvγ . Suppose that γ > 0. Condition (3) is satisfied, since∫ ∞
tn−1F (t, aλg(t)/τ ) dt = aγ(1 + e2)

∫ ∞
tn+2γ−1e−t dt <∞.

On the other hand, condition (5) is satisfied if 0 < γ < 2, since in this case∫ ∞
µ−t/τF (t, aλg

∗(t)/τ ) dt = aγ(1 + e2)

∫ ∞
tγ(eγ−1/µ)t <∞

for any µ such that max{1, eγ−1} < µ < e. Theorem 2 implies that (23±) have

unbounded oscillatory solutions x±(t) satisfying

(24) x±(t) = etω±(t) + o(1) as t→∞

for any continuous oscillatory functions ω±(t) such that ω+(t+ 1) = −ω+(t) and

ω−(t + 1) = ω−(t) for all t. According to Theorem 3, if 0 < γ < 2, then (23±)

have, in addition to these x±(t), unbounded oscillatory solutions y±(t) such that

y±(t) = etω±(t) + o(et) as t→∞

for the same functions ω±(t) as above. In particular, if 0 < γ < 2, there exist

for every m = 1, 2, . . . two different kinds of oscillatory solutions x±m(t) and y±m(t)

with the properties

x−m(t) = const · et sin(2mπt) + o(1) as t→∞,

y−m(t) = const · et sin(2mπt) + o(et) as t→∞;

x+
m(t) = const · et sin((2m− 1)πt) + o(1) as t→∞,

y+
m(t) = const · et sin((2m− 1)πt) + o(et) as t→∞.
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