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ON OSCILLATION OF LIMIT FUNCTIONS

J. BORSÍK

In the paper [1] the set of all continuity points of the limit function of a func-

tional sequence by using the oscillation of these functions is investigated. In the

present paper we investigate the oscillation of a limit function.

Let X be a topological space and let (Y, d) be a metric space. Let f : X → Y

be a function. The function ωf : X → R ∪ {∞} (R is the set of all real numbers),

given by the formula ωf (x) = inf{d(f(U)): U is neighbourhood of x} (where

d(A) = sup{d(x, y) : x, y ∈ A}) is said to be the oscillation of the function f . It is

well-known that f is continuous at x if and only if ωf (x) = 0 ([2]). The symbol

C(f) denotes the set of all continuity points of f , the letters N and Q stand for

the set of all natural and rational numbers, respectively.

Let fn, f : X → Y (n = 1, 2, . . . ) be functions. It is easy to see that if the

sequence (fn) uniformly converges to f on an open set G, then for each x ∈ G we

have

(1) lim
n→∞

ωfn(x) = ωf (x).

Therefore, if X is a locally compact topological space, then the uniform on

compacta convergence implies (1) on X. In general the uniform on compacta

convergence does not imply (1).

Example 1.1 in [1] shows that (1) is not true for pointwise or quasiuniform

convergence. We recall that a sequence (fn), fn : X → Y quasiuniformly converges

to f : X → Y (see [2]) if the sequence (fn) pointwise converges to f and

∀ ε > 0 ∀m ∈ N∃ p ∈ N∀x ∈ X :

min{d(fm+1(x), f(x)), . . . , d(fm+p(x), f(x))} < ε.

We shall show that for the quasiuniform convergence we have

{x ∈ X : lim sup
n→∞

ωfn(x) = 0} ⊂ C(f).

As corollary we obtain that the quasiuniform limit of continuous functions is con-

tinuous function.
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Theorem 1. Let X be a topological space and let (Y, d) be a metric space. Let

f, fn : X → Y (n = 1, 2, . . . ) and let (fn) converges quasiuniformly to f . Then for

each x ∈ X we have

(2) ωf (x) ≤ 2 lim sup
n→∞

ωfn(x).

Proof. Suppose that there is x ∈ X such that ωf (x) > 2 lim sup
n→∞

ωf (x). Then

there are α, β such that

(3) 2 lim sup
n→∞

ωfn(x) < α < β < ωf (x).

Since lim sup
n→∞

ωfn(x) < α
2 , there is n1 ∈ N such that for each n ≥ n1 we have

ωfn <
α
2 . Then for each n ≥ n1 there is a neighbourhood Un of x such that

(4) d(fn(Un)) <
α

2
.

Since (fn) pointwise converges to f , there is n2 ∈ N such that for n ≥ n2 we have

(5) d(fn(x), f(x)) <
β − α

4
.

Denote m = max{n1, n2}. Then there is p ∈ N such that for each y ∈ X we have

min{d(fm+1(y), f(y), . . . , d(fm+p(y), f(y))} <
β − α

4
.

Denote U =
p⋂
i=1

Um+i. Then U is a neighbourhood of x. Let z ∈ U . Then there is

j ∈ {1, 2, . . . , p} such that

(6) d(fm+j(z), f(z)) <
β − α

4
.

Then according to (4), (5) and (6) we obtain

d(f(z), f(x)) ≤ d(f(z), fm+j(z)) + d(fm+j(z), fm+j(x)) + d(fm+j(x), f(x))

<
β − α

4
+
α

2
+
β − α

4
=
β

2
.

Therefore, for s, t ∈ U we have

d(f(s), f(t)) ≤ d(f(s), f(x)) + d(f(x), f(t)) <
β

2
+
β

2
= β.

From this we get ωf (x) < β, which contradicts to [3]. �
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Evidently, [2] is not true for the pointwise convergence. However, we have

Theorem 2. Let X be a Baire space and let (Y, d) be a separable metric space.

Let fn, f : X → Y (n = 1, 2, . . . ) be functions and let (fn) converge pointwise to f .

Let the function f be locally bounded and let M > 2. Then {x ∈ X : ωf(x) ≤
M · lim inf

n→∞
ωf (x)} is dense in X.

If (Y, d) is an arbitrary metric space then {x ∈ X : ωf(x) ≤ M · lim inf
n→∞

ωf (x)}

is dense in X for each M > 3.

First we shall prove the following

Lemma 1. Let X be a Baire space and let (Y, d) be a separable metric space

((Y, d) be arbitrary metric space). Let G be an open set in X, let M > 2 (M > 3)

and let 0 < S <∞. Let fn, f : X → Y (n = 1, 2 . . . ) be functions and let lim
n→∞

fn =

f . Let lim inf
n→∞

ωfn(x) ≤ S for each x ∈ G. Then {x ∈ G : ωf (x) ≥ M · S} is a

nowhere dense set in X.

Proof. Denote A = {x ∈ G : ωf(x) ≥ M · S}. Suppose that A is not nowhere

dense in X. The there is a nonempty open set H ⊂ G such that A is dense in H.

We shall show that H ⊂ A. Let z ∈ H −A. Then ωf (z) < MS. Since ωf is upper

semi-continuous ([2]), there is a neighbourhood U of z such that ωf (x) < MS for

each x ∈ U , a contradiction with the density of A. Hence

(7) ∀x ∈ H : ωf(X) ≥M · S.

I. (Y, d) is a separable metric space and M > 2.

Let {u1, u2, u3, . . . } be a countable dense subset of Y . Then Y =
∞⋃
n=1

S(un,
S
24(M−

2)) (where S(u, ε) is the open sphere of radius ε > 0 about u). Since X is a Baire

space, there is j ∈ N such that the set H ∩ f−1(S(uj ,
S
24(M − 2))) is not of the

first category. Denote

B = H ∩ f−1

(
S(uj,

S

24
(M − 2))

)
,

D = H ∩ f−1

(
S(uj,

S

4
(M + 2))

)
,

Ak =
{
x ∈ H : ∀n ≥ k; d(fn(x), f(x)) <

S

24
(M − 2)

}
for k ∈ N.

Then evidently B ⊂ D, Ak ⊂ Ak+1 for each k ∈ N and H =
∞⋃
k=1

Ak. Then there

is i ∈ N such that B ∩ Ai is not nowhere dense. Therefore there is a nonempty

open set J ⊂ H such that B ∩ Ai is dense in J . Then B ∩ An is dense in J for

each n ≥ i.
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Now we shall prove that J−D is a nonempty set. If namely J−D = ∅, then J ⊂
D and hence f(J) ⊂ S

(
uj ,

S
4 (M + 2)

)
. From this we have d(f(J)) ≤ S

2 (M + 2)

and ωf (x) ≤ S
2 (M + 2) < MS for each x ∈ J , a contradiction with (7).

Let z ∈ J − D. Let p ∈ N be such that z ∈ Ap. Since lim inf
n→∞

ωfn(z) ≤ S <

S
8 (M + 6), there is m ≥ max{i, p} such that

(8) ωfm(z) <
S

8
(M + 6).

Let U be arbitrary neighbourhood of z. Then there is v ∈ B ∩ Am ∩ U ∩ J . We

have

S

4
(M + 2) ≤ d(f(z), uj)

≤ d(f(z), fm(z)) + d(fm(z), fm(v)) + d(fm(v), f(v)) + d(f(v), uj)

<
S

24
(M − 2) + d(fm(z), fm(v)) +

S

24
(M − 2) +

S

24
(M − 2).

From this we get d(fm(z), fm(v)) > S
8 (M+6) and hence d(fm(U)) > S

8 (M+6).

Since this is true for each neighbourhood of z, we have ωfm(z) ≥ S
8 (M + 6), a

contradiction with (8).

II. (Y, d) is arbitrary metric space and M > 3.

Denote Ak = {x ∈ H : ∀n ≥ k; d(fn(x), f(x)) < S
24 (M − 3)} for k ∈ N. Then

there is i ∈ N such that Ai is not nowhere dense. Therefore there is a nonempty

open set J ⊂ H such that Ai is dense in J .

Let x ∈ J . Let p ∈ N be such that x ∈ Ap. Since lim inf
n→∞

ωfn(x) ≤ S <

S
12 (M + 9), there is m ≥ max{i, p} such that ωfm(x) < S

12(M + 9). Therefore

there is a neighbourhood Ux of x such that d(fm(Ux)) < S
12(M + 9).

Let y ∈ Ux ∩Ai. Then

d(f(y), f(x)) ≤ d(f(y), fm(y)) + d(fm(y), fm(x)) + d(fm(x), f(x))

<
S

24
(M − 3) +

S

12
(M + 9) +

S

24
(M − 3) =

S

6
(M + 3).

(9)

Let y, z ⊂ Ux ∩Ai. Then similarly

(10) d(f(y), f(z)) <
S

6
(M + 3).

Now let r ∈ J . Let u, v ∈ Ur ∩ J . Then there are s ∈ Ur ∩ Uu ∩ Ai and

t ∈ Ur ∩ Uv ∩Ai. According to (9) and (10) we have

d(f(u), f(v)) ≤ d(f(u), f(s)) + d(f(s), f(t)) + d(f(t), f(v)) <
S

2
(M + 3).
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Therefore d(f(Ur ∩ J)) ≤ S
2 (M + 3) and hence ωf (r) < M · S, a contradiction

with (7). �

Proof of Theorem 2. Since f is locally bounded, we have ωf (x) < ∞ for each

x ∈ X. Suppose that this theorem is not true. Then there is an open nonempty

set G in X such that

(11) ∀x ∈ G : ∞ > ωf (x) > M · lim inf
n→∞

ωfn(x).

Define functions h, g : G→ R as

h(x) = lim inf
n→∞

ωfn(x),

g(x) = inf{sup{h(y) : y ∈ U} : U is a neighbourhood of x}.

Then g is a nonnegative upper semi-continuous function. Let K be such that

M > K > 2 (M > K > 3 if (Y, d) is not separable). Then we have h(x) <
1
M ωf (x) < 1

Kωf (x) for each x ∈ G. We observe that

g(x) ≤
1

M
ωf (x) <

1

K
ωf (x).

Since X is a Baire space, so there is z ∈ G ∩ C(ωf ). Let α be such that g(z) <

α < 1
K
ωf (z). Then there is an open neighbourhood U of z such that

(12) h(x) ≤ g(x) < α <
1

K
ωf (x) for each x ∈ U.

Hence according to Lemma 1 the set {x ∈ U : ωf (x) ≥ Kα} is nowhere dense, a

contradiction with (12). �

The following example shows that the assumption “f is locally bounded” cannot

be omitted.

Example 1. Let X = Y = R, let Q = {q1, q2, q3, . . . } (one-to-one sequence).

Define functions fn, f : R→ R as

fn(x) =

{
k, if x = qk and k ≤ n,

0, otherwise;

f(x) =

{
k, if x = qk,

0, otherwise.

Then lim
n→∞

fn = f , ωf(x) = ∞ for each x ∈ X and lim inf
n→∞

ωfn(x) = f(x) for each

x ∈ X.

Next example shows that Theorem 2 (and Lemma 1) does not hold for M = 2.
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Example 2. Let X = Y = R, Q = {q1, q2, . . . } (one-to-one sequence) and

Q = A ∪B, where A and B are dense disjoint sets. Define fn, f : R→ R as

fn(x) =


1− 1

k
, if x = qk, x ∈ A and k ≤ n,

1
k
− 1, if x = qk, x ∈ B and k ≤ n,

0, otherwise;

f(x) =


1− 1

k
, if x = qk and x ∈ A,

1
k
− 1, if x = qk and x ∈ B,

0, otherwise.

Then lim
n→∞

fn = f , ωf (x) = 2 for each x ∈ X and

lim inf
n→∞

ωfn(x) =

{
1− 1

k
, if x = qk,

0, otherwise.

This example shows also that the set {x ∈ X : ωf (x) ≤ M · lim inf
n→∞

ωfn(x)}

(where M > 2) may be not residual.

Since every function f : Q→ R is in the first Baire class the assumption on X

to be a Baire space (in Theorem 2) cannot be omitted. Next example shows that

Theorem 2 does not hold for arbitrary metric space (Y, d) with M > 2.

Example 3. Let {Bn : n ∈ N} be a countable base in R. We choose two

different points a1, b1 ∈ B1 and for n > 1 we choose two different points an, bn ∈
Bn − {a1, b1, . . . , an−1, bn−1}. Denote P = R− {a1, b1, . . . , an, bn, . . . }.

Let X = R with the usual topology and let Y = R with the following metric d:

d(y, x) = d(x, y) =



0, if x = y,

1, if x = an, y ∈ P and |y − an| ≤ |y − bn|,

or x = bn, y ∈ P and |y − bn| < |y − an|,

or x, y ∈ P , x 6= y,

3, if x = an, y = bn,

2, otherwise.

Further denote for n ∈ N

Un = (an −
|an − bn|

2
, an +

|an − bn|

2
),

Vn = (bn −
|an − bn|

2
, bn +

|an − bn|

2
),

and for j > k denote

Dj
k =


Uk, if aj ∈ Uk,

Vk, if aj ∈ Vk,

R, if aj /∈ Uk ∪ Vk;
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Cjk =


Uk, if bj ∈ Uk,

Vk, if bj ∈ Vk,

R, if bj /∈ Uk ∪ Vk.

Now for j > n choose pjn ∈ P ∩D
j
1∩D

j
2∩· · ·∩D

j
n and qjn ∈ P ∩C

j
1 ∩C

j
2 ∩· · ·∩C

j
n.

Define fn, f : X → Y as

fn(x) =


x, if x ∈ P ∪ {a1, b1, . . . , an, bn},

pjn, if x = aj and j > n,

qjn, if x = bj and j > n;

f(x) = x for each x ∈ X.

Then for each x ∈ X we have lim
n→∞

fn(x) = f(x), ωf(x) = 3 and lim inf
n→∞

ωfn(x) = 1.
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