ON OSCILLATION OF LIMIT FUNCTIONS

J. BORSÍK

In the paper [1] the set of all continuity points of the limit function of a functional sequence by using the oscillation of these functions is investigated. In the present paper we investigate the oscillation of a limit function.

Let X be a topological space and let (Y, d) be a metric space. Let $f: X \rightarrow Y$ be a function. The function $\omega_{f}: X \rightarrow \mathbb{R} \cup\{\infty\}$ (\mathbb{R} is the set of all real numbers), given by the formula $\omega_{f}(x)=\inf \{d(f(U)): U$ is neighbourhood of $x\}$ (where $d(A)=\sup \{d(x, y): x, y \in A\})$ is said to be the oscillation of the function f. It is well-known that f is continuous at x if and only if $\omega_{f}(x)=0([\mathbf{2}])$. The symbol $C(f)$ denotes the set of all continuity points of f, the letters \mathbb{N} and \mathbb{Q} stand for the set of all natural and rational numbers, respectively.

Let $f_{n}, f: X \rightarrow Y(n=1,2, \ldots)$ be functions. It is easy to see that if the sequence $\left(f_{n}\right)$ uniformly converges to f on an open set G, then for each $x \in G$ we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \omega_{f_{n}}(x)=\omega_{f}(x) \tag{1}
\end{equation*}
$$

Therefore, if X is a locally compact topological space, then the uniform on compacta convergence implies (1) on X. In general the uniform on compacta convergence does not imply (1).

Example 1.1 in [$\mathbf{1}]$ shows that (1) is not true for pointwise or quasiuniform convergence. We recall that a sequence $\left(f_{n}\right), f_{n}: X \rightarrow Y$ quasiuniformly converges to $f: X \rightarrow Y$ (see $[\mathbf{2}]$) if the sequence $\left(f_{n}\right)$ pointwise converges to f and

$$
\begin{aligned}
\forall \varepsilon>0 \forall m \in \mathbb{N} \exists p \in \mathbb{N} \forall x & \in X: \\
& \min \left\{d\left(f_{m+1}(x), f(x)\right), \ldots, d\left(f_{m+p}(x), f(x)\right)\right\}<\varepsilon
\end{aligned}
$$

We shall show that for the quasiuniform convergence we have

$$
\left\{x \in X: \limsup _{n \rightarrow \infty} \omega_{f_{n}}(x)=0\right\} \subset C(f)
$$

As corollary we obtain that the quasiuniform limit of continuous functions is continuous function.

[^0]Theorem 1. Let X be a topological space and let (Y, d) be a metric space. Let $f, f_{n}: X \rightarrow Y(n=1,2, \ldots)$ and let $\left(f_{n}\right)$ converges quasiuniformly to f. Then for each $x \in X$ we have

$$
\begin{equation*}
\omega_{f}(x) \leq 2 \limsup _{n \rightarrow \infty} \omega_{f_{n}}(x) \tag{2}
\end{equation*}
$$

Proof. Suppose that there is $x \in X$ such that $\omega_{f}(x)>2 \limsup _{n \rightarrow \infty} \omega_{f}(x)$. Then there are α, β such that

$$
\begin{equation*}
2 \limsup _{n \rightarrow \infty} \omega_{f_{n}}(x)<\alpha<\beta<\omega_{f}(x) \tag{3}
\end{equation*}
$$

Since $\limsup \omega_{f_{n}}(x)<\frac{\alpha}{2}$, there is $n_{1} \in \mathbb{N}$ such that for each $n \geq n_{1}$ we have $\omega_{f_{n}}<\frac{\alpha}{2}$. Then for each $n \geq n_{1}$ there is a neighbourhood U_{n} of x such that

$$
\begin{equation*}
d\left(f_{n}\left(U_{n}\right)\right)<\frac{\alpha}{2} \tag{4}
\end{equation*}
$$

Since $\left(f_{n}\right)$ pointwise converges to f, there is $n_{2} \in \mathbb{N}$ such that for $n \geq n_{2}$ we have

$$
\begin{equation*}
d\left(f_{n}(x), f(x)\right)<\frac{\beta-\alpha}{4} \tag{5}
\end{equation*}
$$

Denote $m=\max \left\{n_{1}, n_{2}\right\}$. Then there is $p \in \mathbb{N}$ such that for each $y \in X$ we have

$$
\min \left\{d\left(f_{m+1}(y), f(y), \ldots, d\left(f_{m+p}(y), f(y)\right)\right\}<\frac{\beta-\alpha}{4}\right.
$$

Denote $U=\bigcap_{i=1}^{p} U_{m+i}$. Then U is a neighbourhood of x. Let $z \in U$. Then there is $j \in\{1,2, \ldots, p\}$ such that

$$
\begin{equation*}
d\left(f_{m+j}(z), f(z)\right)<\frac{\beta-\alpha}{4} \tag{6}
\end{equation*}
$$

Then according to (4), (5) and (6) we obtain

$$
\begin{aligned}
d(f(z), f(x)) & \leq d\left(f(z), f_{m+j}(z)\right)+d\left(f_{m+j}(z), f_{m+j}(x)\right)+d\left(f_{m+j}(x), f(x)\right) \\
& <\frac{\beta-\alpha}{4}+\frac{\alpha}{2}+\frac{\beta-\alpha}{4}=\frac{\beta}{2}
\end{aligned}
$$

Therefore, for $s, t \in U$ we have

$$
d(f(s), f(t)) \leq d(f(s), f(x))+d(f(x), f(t))<\frac{\beta}{2}+\frac{\beta}{2}=\beta
$$

From this we get $\omega_{f}(x)<\beta$, which contradicts to [3].

Evidently, [2] is not true for the pointwise convergence. However, we have
Theorem 2. Let X be a Baire space and let (Y, d) be a separable metric space. Let $f_{n}, f: X \rightarrow Y(n=1,2, \ldots)$ be functions and let $\left(f_{n}\right)$ converge pointwise to f. Let the function f be locally bounded and let $M>2$. Then $\left\{x \in X: \omega_{f}(x) \leq\right.$ $\left.M \cdot \liminf _{n \rightarrow \infty} \omega_{f}(x)\right\}$ is dense in X.

If (Y, d) is an arbitrary metric space then $\left\{x \in X: \omega_{f}(x) \leq M \cdot \liminf _{n \rightarrow \infty} \omega_{f}(x)\right\}$ is dense in X for each $M>3$.

First we shall prove the following
Lemma 1. Let X be a Baire space and let (Y, d) be a separable metric space $((Y, d)$ be arbitrary metric space $)$. Let G be an open set in X, let $M>2(M>3)$ and let $0<S<\infty$. Let $f_{n}, f: X \rightarrow Y(n=1,2 \ldots)$ be functions and let $\lim _{n \rightarrow \infty} f_{n}=$ f. Let $\liminf _{n \rightarrow \infty} \omega_{f_{n}}(x) \leq S$ for each $x \in G$. Then $\left\{x \in G: \omega_{f}(x) \geq M \cdot S\right\}$ is a nowhere dense set in X.

Proof. Denote $A=\left\{x \in G: \omega_{f}(x) \geq M \cdot S\right\}$. Suppose that A is not nowhere dense in X. The there is a nonempty open set $H \subset G$ such that A is dense in H. We shall show that $H \subset A$. Let $z \in H-A$. Then $\omega_{f}(z)<M S$. Since ω_{f} is upper semi-continuous ([2]), there is a neighbourhood U of z such that $\omega_{f}(x)<M S$ for each $x \in U$, a contradiction with the density of A. Hence

$$
\begin{equation*}
\forall x \in H: \omega_{f}(X) \geq M \cdot S \tag{7}
\end{equation*}
$$

I. (Y, d) is a separable metric space and $M>2$.

Let $\left\{u_{1}, u_{2}, u_{3}, \ldots\right\}$ be a countable dense subset of Y. Then $Y=\bigcup_{n=1}^{\infty} S\left(u_{n}, \frac{S}{24}(M-\right.$
2)) (where $S(u, \varepsilon)$ is the open sphere of radius $\varepsilon>0$ about u). Since X is a Baire space, there is $j \in \mathbb{N}$ such that the set $H \cap f^{-1}\left(S\left(u_{j}, \frac{S}{24}(M-2)\right)\right)$ is not of the first category. Denote

$$
\begin{gathered}
B=H \cap f^{-1}\left(S\left(u_{j}, \frac{S}{24}(M-2)\right)\right), \\
D=H \cap f^{-1}\left(S\left(u_{j}, \frac{S}{4}(M+2)\right)\right), \\
A_{k}=\left\{x \in H: \forall n \geq k ; d\left(f_{n}(x), f(x)\right)<\frac{S}{24}(M-2)\right\}
\end{gathered}
$$

for $k \in \mathbb{N}$.
Then evidently $B \subset D, A_{k} \subset A_{k+1}$ for each $k \in \mathbb{N}$ and $H=\bigcup_{k=1}^{\infty} A_{k}$. Then there is $i \in \mathbb{N}$ such that $B \cap A_{i}$ is not nowhere dense. Therefore there is a nonempty open set $J \subset H$ such that $B \cap A_{i}$ is dense in J. Then $B \cap A_{n}$ is dense in J for each $n \geq i$.

Now we shall prove that $J-D$ is a nonempty set. If namely $J-D=\emptyset$, then $J \subset$ D and hence $f(J) \subset S\left(u_{j}, \frac{S}{4}(M+2)\right)$. From this we have $d(f(J)) \leq \frac{S}{2}(M+2)$ and $\omega_{f}(x) \leq \frac{S}{2}(M+2)<M S$ for each $x \in J$, a contradiction with (7).

Let $z \in J-D$. Let $p \in \mathbb{N}$ be such that $z \in A_{p}$. Since $\liminf _{n \rightarrow \infty} \omega_{f_{n}}(z) \leq S<$ $\frac{S}{8}(M+6)$, there is $m \geq \max \{i, p\}$ such that

$$
\begin{equation*}
\omega_{f_{m}}(z)<\frac{S}{8}(M+6) \tag{8}
\end{equation*}
$$

Let U be arbitrary neighbourhood of z. Then there is $v \in B \cap A_{m} \cap U \cap J$. We have

$$
\begin{aligned}
\frac{S}{4}(M+2) & \leq d\left(f(z), u_{j}\right) \\
& \leq d\left(f(z), f_{m}(z)\right)+d\left(f_{m}(z), f_{m}(v)\right)+d\left(f_{m}(v), f(v)\right)+d\left(f(v), u_{j}\right) \\
& <\frac{S}{24}(M-2)+d\left(f_{m}(z), f_{m}(v)\right)+\frac{S}{24}(M-2)+\frac{S}{24}(M-2)
\end{aligned}
$$

From this we get $d\left(f_{m}(z), f_{m}(v)\right)>\frac{S}{8}(M+6)$ and hence $d\left(f_{m}(U)\right)>\frac{S}{8}(M+6)$. Since this is true for each neighbourhood of z, we have $\omega_{f_{m}}(z) \geq \frac{S}{8}(M+6)$, a contradiction with (8).
II. (Y, d) is arbitrary metric space and $M>3$.

Denote $A_{k}=\left\{x \in H: \forall n \geq k ; d\left(f_{n}(x), f(x)\right)<\frac{S}{24}(M-3)\right\}$ for $k \in \mathbb{N}$. Then there is $i \in \mathbb{N}$ such that A_{i} is not nowhere dense. Therefore there is a nonempty open set $J \subset H$ such that A_{i} is dense in J.

Let $x \in J$. Let $p \in \mathbb{N}$ be such that $x \in A_{p}$. Since $\liminf _{n \rightarrow \infty} \omega_{f_{n}}(x) \leq S<$ $\frac{S}{12}(M+9)$, there is $m \geq \max \{i, p\}$ such that $\omega_{f_{m}}(x)<\frac{S}{12}(M+9)$. Therefore there is a neighbourhood U_{x} of x such that $d\left(f_{m}\left(U_{x}\right)\right)<\frac{S}{12}(M+9)$.

Let $y \in U_{x} \cap A_{i}$. Then

$$
\begin{align*}
d(f(y), f(x)) & \leq d\left(f(y), f_{m}(y)\right)+d\left(f_{m}(y), f_{m}(x)\right)+d\left(f_{m}(x), f(x)\right) \\
& <\frac{S}{24}(M-3)+\frac{S}{12}(M+9)+\frac{S}{24}(M-3)=\frac{S}{6}(M+3) \tag{9}
\end{align*}
$$

Let $y, z \subset U_{x} \cap A_{i}$. Then similarly

$$
\begin{equation*}
d(f(y), f(z))<\frac{S}{6}(M+3) \tag{10}
\end{equation*}
$$

Now let $r \in J$. Let $u, v \in U_{r} \cap J$. Then there are $s \in U_{r} \cap U_{u} \cap A_{i}$ and $t \in U_{r} \cap U_{v} \cap A_{i}$. According to (9) and (10) we have

$$
d(f(u), f(v)) \leq d(f(u), f(s))+d(f(s), f(t))+d(f(t), f(v))<\frac{S}{2}(M+3)
$$

Therefore $d\left(f\left(U_{r} \cap J\right)\right) \leq \frac{S}{2}(M+3)$ and hence $\omega_{f}(r)<M \cdot S$, a contradiction with (7).

Proof of Theorem 2. Since f is locally bounded, we have $\omega_{f}(x)<\infty$ for each $x \in X$. Suppose that this theorem is not true. Then there is an open nonempty set G in X such that

$$
\begin{equation*}
\forall x \in G: \infty>\omega_{f}(x)>M \cdot \liminf _{n \rightarrow \infty} \omega_{f_{n}}(x) \tag{11}
\end{equation*}
$$

Define functions $h, g: G \rightarrow \mathbb{R}$ as

$$
\begin{gathered}
h(x)=\liminf _{n \rightarrow \infty} \omega_{f_{n}}(x) \\
g(x)=\inf \{\sup \{h(y): y \in U\}: U \text { is a neighbourhood of } x\} .
\end{gathered}
$$

Then g is a nonnegative upper semi-continuous function. Let K be such that $M>K>2(M>K>3$ if (Y, d) is not separable). Then we have $h(x)<$ $\frac{1}{M} \omega_{f}(x)<\frac{1}{K} \omega_{f}(x)$ for each $x \in G$. We observe that

$$
g(x) \leq \frac{1}{M} \omega_{f}(x)<\frac{1}{K} \omega_{f}(x)
$$

Since X is a Baire space, so there is $z \in G \cap C\left(\omega_{f}\right)$. Let α be such that $g(z)<$ $\alpha<\frac{1}{K} \omega_{f}(z)$. Then there is an open neighbourhood U of z such that

$$
\begin{equation*}
h(x) \leq g(x)<\alpha<\frac{1}{K} \omega_{f}(x) \quad \text { for each } x \in U \tag{12}
\end{equation*}
$$

Hence according to Lemma 1 the set $\left\{x \in U: \omega_{f}(x) \geq K \alpha\right\}$ is nowhere dense, a contradiction with (12).

The following example shows that the assumption "f is locally bounded" cannot be omitted.

Example 1. Let $X=Y=\mathbb{R}$, let $\mathbb{Q}=\left\{q_{1}, q_{2}, q_{3}, \ldots\right\}$ (one-to-one sequence). Define functions $f_{n}, f: \mathbb{R} \rightarrow \mathbb{R}$ as

$$
\begin{gathered}
f_{n}(x)= \begin{cases}k, & \text { if } x=q_{k} \text { and } k \leq n, \\
0, & \text { otherwise }\end{cases} \\
f(x)= \begin{cases}k, & \text { if } x=q_{k} \\
0, & \text { otherwise }\end{cases}
\end{gathered}
$$

Then $\lim _{n \rightarrow \infty} f_{n}=f, \omega_{f}(x)=\infty$ for each $x \in X$ and $\liminf _{n \rightarrow \infty} \omega_{f_{n}}(x)=f(x)$ for each $x \in X^{n}$.

Next example shows that Theorem 2 (and Lemma 1) does not hold for $M=2$.

Example 2. Let $X=Y=\mathbb{R}, \mathbb{Q}=\left\{q_{1}, q_{2}, \ldots\right\}$ (one-to-one sequence) and $\mathbb{Q}=A \cup B$, where A and B are dense disjoint sets. Define $f_{n}, f: \mathbb{R} \rightarrow \mathbb{R}$ as

$$
\begin{gathered}
f_{n}(x)= \begin{cases}1-\frac{1}{k}, & \text { if } x=q_{k}, x \in A \text { and } k \leq n, \\
\frac{1}{k}-1, & \text { if } x=q_{k}, x \in B \text { and } k \leq n, \\
0, & \text { otherwise }\end{cases} \\
f(x)= \begin{cases}1-\frac{1}{k}, & \text { if } x=q_{k} \text { and } x \in A \\
\frac{1}{k}-1, & \text { if } x=q_{k} \text { and } x \in B \\
0, & \text { otherwise }\end{cases}
\end{gathered}
$$

Then $\lim _{n \rightarrow \infty} f_{n}=f, \omega_{f}(x)=2$ for each $x \in X$ and

$$
\liminf _{n \rightarrow \infty} \omega_{f_{n}}(x)= \begin{cases}1-\frac{1}{k}, & \text { if } x=q_{k} \\ 0, & \text { otherwise }\end{cases}
$$

This example shows also that the set $\left\{x \in X: \omega_{f}(x) \leq M \cdot \liminf _{n \rightarrow \infty} \omega_{f_{n}}(x)\right\}$ (where $M>2$) may be not residual.

Since every function $f: \mathbb{Q} \rightarrow \mathbb{R}$ is in the first Baire class the assumption on X to be a Baire space (in Theorem 2) cannot be omitted. Next example shows that Theorem 2 does not hold for arbitrary metric space (Y, d) with $M>2$.

Example 3. Let $\left\{B_{n}: n \in \mathbb{N}\right\}$ be a countable base in \mathbb{R}. We choose two different points $a_{1}, b_{1} \in B_{1}$ and for $n>1$ we choose two different points $a_{n}, b_{n} \in$ $B_{n}-\left\{a_{1}, b_{1}, \ldots, a_{n-1}, b_{n-1}\right\}$. Denote $P=\mathbb{R}-\left\{a_{1}, b_{1}, \ldots, a_{n}, b_{n}, \ldots\right\}$.

Let $X=\mathbb{R}$ with the usual topology and let $Y=\mathbb{R}$ with the following metric d :

$$
d(y, x)=d(x, y)= \begin{cases}0, & \text { if } x=y, \\ 1, & \text { if } x=a_{n}, y \in P \text { and }\left|y-a_{n}\right| \leq\left|y-b_{n}\right| \\ & \text { or } x=b_{n}, y \in P \text { and }\left|y-b_{n}\right|<\left|y-a_{n}\right|, \\ & \text { or } x, y \in P, x \neq y \\ 3, & \text { if } x=a_{n}, y=b_{n} \\ 2, & \text { otherwise. }\end{cases}
$$

Further denote for $n \in \mathbb{N}$

$$
\begin{aligned}
& U_{n}=\left(a_{n}-\frac{\left|a_{n}-b_{n}\right|}{2}, a_{n}+\frac{\left|a_{n}-b_{n}\right|}{2}\right) \\
& V_{n}=\left(b_{n}-\frac{\left|a_{n}-b_{n}\right|}{2}, b_{n}+\frac{\left|a_{n}-b_{n}\right|}{2}\right)
\end{aligned}
$$

and for $j>k$ denote

$$
D_{k}^{j}= \begin{cases}U_{k}, & \text { if } a_{j} \in U_{k} \\ V_{k}, & \text { if } a_{j} \in V_{k} \\ \mathbb{R}, & \text { if } a_{j} \notin U_{k} \cup V_{k}\end{cases}
$$

$$
C_{k}^{j}= \begin{cases}U_{k}, & \text { if } b_{j} \in U_{k}, \\ V_{k}, & \text { if } b_{j} \in V_{k}, \\ \mathbb{R}, & \text { if } b_{j} \notin U_{k} \cup V_{k} .\end{cases}
$$

Now for $j>n$ choose $p_{n}^{j} \in P \cap D_{1}^{j} \cap D_{2}^{j} \cap \cdots \cap D_{n}^{j}$ and $q_{n}^{j} \in P \cap C_{1}^{j} \cap C_{2}^{j} \cap \cdots \cap C_{n}^{j}$.
Define $f_{n}, f: X \rightarrow Y$ as

$$
\begin{gathered}
f_{n}(x)= \begin{cases}x, & \text { if } x \in P \cup\left\{a_{1}, b_{1}, \ldots, a_{n}, b_{n}\right\}, \\
p_{n}^{j}, & \text { if } x=a_{j} \text { and } j>n, \\
q_{n}^{j}, & \text { if } x=b_{j} \text { and } j>n ;\end{cases} \\
f(x)=x \text { for each } x \in X .
\end{gathered}
$$

Then for each $x \in X$ we have $\lim _{n \rightarrow \infty} f_{n}(x)=f(x), \omega_{f}(x)=3$ and $\liminf _{n \rightarrow \infty} \omega_{f_{n}}(x)=1$.

References

1. Kostyrko P., Malík J. and Šalát T, On continuity points of limits functions, Acta Math. Univ. Comen. 44-45 (1984), 137-145.
2. Sikorski R., Funkcje rzeczywiste I, PWN, Warszawa, 1958.
J. Borsík, Matematický ústav SAV, Grešákova 6, 04001 Košice, Czechoslovakia

[^0]: Received June 21, 1990; revised April 15, 1991.
 1980 Mathematics Subject Classification (1985 Revision). Primary 54C10.

