ON DIRECT DECOMPOSITIONS OF CERTAIN ORTHOMODULAR LATTICES

P. KONÔPKA AND S. PULMANNOVÁ

ABSTRACT. Let L be an orthomodular lattice. For $a, b \in L$ define $a \leftrightarrow^c b$ if either a and b both belong to the centre C(L) of L or if $\{a, b\} \cap C(L) = \emptyset$ and $a \leftrightarrow b$ (i.e. a is compatible with b). Let R be the transitive closure of the relation \leftrightarrow^c . Then there exist at least three equivalence classes of the relation R in L if and only if either L is a horizontal sum (if $C(L) = \{0, 1\}$) or L is a direct product of a Boolean algebra and a horizontal sum.

In the theory of orhomodular lattices (abbreviated: OML) a classical theorem states that every finitely generated OML decomposes into a direct product of a Boolean algebra and an OML without nontrivial Boolean factor [7, 1]. This classical decomposition theorem has obtained several generalizations [4, 6, 8]. In the present paper, we will characterize certain type of OML's admitting the above direct decomposition by means of so-called *c*-compatibility.

Basic definitions and facts about orthomodular lattices can be found in [1] and [2]. We recall that an orthomodular lattice $L(0, 1, ', \vee, \wedge)$ is a horizontal sum of orthomodular lattices L_i , $i \in I$, if $L = \bigcup_{i \in I} L_i$, $L_i \cap L_j = \{0, 1\}$ for $i \neq j$, $i, j \in I$ $(0, 1 \text{ are the zero and unit element in both } L_i \text{ and } L_j)$ and every L_i is contained in L as a subalgebra.

Two elements a, b of an orthomodular lattice L are called compatible (written $a \leftrightarrow b$) if $a = (a \land b) \lor (a \land b')$, $b = (a \land b) \lor (a' \land b)$ (one of the latter equalities is sufficient). The compatibility relation \leftrightarrow is clearly reflexive and symmetric, but not transitive. If we introduced the transitive closure of \leftrightarrow , the result would be trivial, because all the elements of L would belong to the same class via the centre C(L) of L. Therefore we suggest to change the compatibility relation as follows: We say that a and b $(a, b \in L)$ are c-compatible $(a \leftrightarrow^c b)$ if one of (i) and (ii) is satisfied, where

- (i) $a \in C(L)$ and $b \in C(L)$,
- (ii) $a \notin C(L), b \notin C(L)$ and $a \leftrightarrow b$.

Now we define the transitive closure R of c-compatibility: aRb if there are d_1 , $d_2, \ldots, d_n \in L$ such that $d_1 = a, d_n = b$ and $d_i \leftrightarrow^c d_{i+1}$, i < n. Evidently, R is an equivalence relation and the centre C(L) of L is one of the equivalence classes. Let us denote by \mathcal{T} the family of all equivalence classes of R different from C(L),

Received August 29, 1990.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 06B05, 81B10.

i.e. $L = \bigcup \{T \mid T \in \mathcal{T}\} \cup C(L)$. It is easy to see that if L is a horizontal sum of $L_i, i \in I$, then for every $T \in \mathcal{T}$ there is a (unique) $i \in I$ such that $T \subset L_i$.

In what follows, we shall need the notion of a commutator. We recall that the commutator of a finite subset F of L is defined by

$$\operatorname{com} F = \bigvee_{f \in \{0,1\}^n} \bigwedge_{i \le n} a_i^{f(i)},$$

where $a^{f(i)} = a$ if f(i) = 1, and $a^{f(i)} = a'$ if f(i) = 0 (see [1], [2], [3], [4]). For an arbitrary subset $M \subset L$ we put

$$\operatorname{com} M = \bigwedge \{ \operatorname{com} F | F \text{ is a finite subset of } M \}$$

if the infimum on the right-hand side exists (see [6]).

For a subset M of L, we denote by C(M) the commutant of M, i.e.

$$C(M) = \{ b \in L \, | \, b {\leftrightarrow} a \text{ for all } a \in M \}.$$

We shall need the following results.

Lemma 1. Let M be a subset of an orthomodular lattice L such that com M exists in L and C(C(M)) = L. Then $c = \operatorname{com} M$ belongs to C(L) and $L = [0, c] \times [0, c']$, where [0, c] is a Boolean algebra and [0, c'] has no nontrivial Boolean factor.

Proof. The proof can be easily obtained from [6] by the combination of Corollary 1, Theorem 10 and Corollary 4.

Lemma 2. Let $L = B \times L_1$, where B is a Boolean algebra. Let \mathcal{T} be the family of all R-equivalence classes in L different from C(L) and let T_1 be the family of all R-equivalence classes in L_1 different from $C(L_1)$. Then $\mathcal{T}_1 = \{T \wedge (0,1) | T \in \mathcal{T}\}$ (here $T \wedge (0,1) = \{t \wedge (0,1) | t \in T\}$).

Proof. It follows by the simple observation that (a, b)R(c, d) in L if and only if bRd in L_1 .

Lemma 3. Let $\mathcal{T} \cup C(L)$ be the partition of L by the relation R. Then

- (i) $T \cup C(L)$ is a subalgebra of L for any $T \in \mathcal{T}$,
- (ii) if for any $a \in T_1$, $b \in T_2$ $(T_1 \neq T_2)$ we have $a \wedge b = 0$ (dually, $a \vee b = 1$) then $C(L) = \{0, 1\}$. Consequently, L is a horizontal sum of the logics $T \cup C(L)$, $T \in \mathcal{T}$.
- (iii) $T \cup C(L)$ $(T \in \mathcal{T})$ cannot be expressed in the form of any horizontal sum.

Proof. (i) Clearly, $0, 1 \in T \cup C(L)$, and $a \in T \cup C(L)$ implies $a' \in T \cup C(L)$. Suppose that $a, b \in T \cup C(L)$. If $a, b \in C(L)$, then $a \wedge b \in C(L)$. Suppose that $a \in T$. If $a \wedge b \notin C(L)$, then $a \leftrightarrow a \wedge b$ implies that $aRa \wedge b$, hence $a \wedge b \in T$. (ii) Suppose that $a \in T_1$, $b \in T_2$ is where $T_1 \neq T_2$. Let there be $c \in C(L)$, $c \neq 0, c \neq 1$. Then $a \wedge c \in T_1 \cup C(L), b \wedge c \in T_2 \cup C(L)$ by (i). The following situations can occur:

- (a) $a \wedge c, b \wedge c \in C(L)$. Then $a \wedge c', b \wedge c' \notin C(L)$, for otherwise $a, b \in C(L)$. Therefore is $a \wedge c' \in T_1$, $b \wedge c' \in T_2$. But then $(a \wedge c') \vee (b \wedge c') = 1 = (a \vee b) \wedge c' = c'$, a contradiction.
- (b) $a \wedge c \in C(L)$, $b \wedge c \in T_2$. Then $a \wedge c' \in T_1$, and $(a \wedge c') \vee (b \wedge c) = 1$ implies that $c = c \wedge ((a \wedge c') \vee (b \wedge c)) = b \wedge c, c' \wedge ((a \wedge c') \vee (b \wedge c)) = a \wedge c'$. But then $c \leq b, c' \leq a$ imply $a' \leq b$, i.e. $aRa \wedge b$ a contradiction.
- (c) $a \wedge c \in T_1$, $b \wedge c \in T_2$. Then $1 = (a \wedge c) \vee (b \wedge c) = (a \vee b) \wedge c = c$, a contradiction.

All the remaining cases are symmetric.

(iii) is clear.

Now we are ready to prove our main result.

Theorem 1. Let L be an orthomodular lattice and let $card \mathcal{T} \geq 2$. Let $a \in T_1$, $b \in T_2$, $(T_1, T_2 \in \mathcal{T}, T_1 \neq T_2)$ and let $c = com \{a, b\}$. Then $c \in C(L)$ and $L = [0, c] \times [0, c']$, where [0, c] is a Boolean algebra and [0, c'] is the horizontal sum of the orthomodular lattices $(T \cup C(L)) \wedge c'$, and none of the latter lattices is a horizontal sum.

Proof. Let $a \in T_1$, $b \in T_2$ $(T_1 \neq T_2)$. Then $C\{a, b\} = C(L)$, hence $C(C(\{a, b\}) = L$. By Lemma 1, $L = [0, c] \times [0, c']$, where [0, c] is a Boolean algebra and [0, c'] has no nontrivial Boolean factor. By Lemma 2, $[0, c'] = \cup \{T \land c' \mid T \in \mathcal{T}\} \cup C(L) \land c' = \cup \{(T \cup C(L)) \land c' \mid T \in \mathcal{T}\}$ and every $(T \cup C(L)) \land c'$ is a subalgebra of [0, c'] by Lemma 3 (i). If $a \in T_1 \land c'$, $b \in T_2 \land c'$, $T_1 \neq T_2$, then $\operatorname{com}_{[0,c']}\{a, b\} = 0$ (where $\operatorname{com}_{[0,c']}$ means the commutator in [0, c']), for otherwise there would exist a nontrivial Boolean factor in [0, c']. Hence $a \land b = 0$ for any $a \in T_1 \land c'$ and $b \in T_2 \land c'$, $T_1 \neq T_2$. Therefore by Lemma 3 (ii), $C([0, c']) = \{0, c'\}$, and hence [0, c'] is the horizontal sum of $(T \cup C(L)) \land c'$, $t \in \mathcal{T}$. Finally, by Lemma 3 (ii), none of $(T \cup C(L)) \land c'$ is a horizontal sum.

References

- 1. Beran L., 1984, Orthomodular lattices, Reidel, Dordrecht, Holland.
- 2. Kalmbach G., 1983, Orthomodular lattices, Academic Press, London.
- Marsden L., The commutator and solvability in a generalized orthomodular lattice, Pac. J. Math. 33 (1970), 357–361.
- Greechie R. and Herman L., Commutator-finite orthomodular lattices, Order 1 (1985), 277–284.
- 5. Konôpka P. and Pulmanová S., *Commutators in orthomodular posets*, submitted for publication.
- Pulmannová S., Commutators in orthomodular lattices, Demonstratio Mathematica 18 (1985), 187–208.
- Bruns G. and Kalmbach G., Some remarks on free orthomodular lattices, Proc. Univ. Houston, Lattice Theory Conf., Houston, 1973, pp. 397–408.

8. Carrega J., Chevalier G. and Mayet R., *Direct decompositions of orthomodular lattices*, Algebra Universalis (to appear).

P. Konôpka, Department of Mathematics, University of Banská Bystrica, 975 49 Banská Bystrica, Czechoslovakia

S. Pulmannová, Mathematics Institute, Slovak Academy of Sciences, 81473 Bratislava, Czechoslovakia