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ON DIRECT DECOMPOSITIONS OF

CERTAIN ORTHOMODULAR LATTICES

P. KONÔPKA AND S. PULMANNOVÁ

Abstract. Let L be an orthomodular lattice. For a, b ∈ L define a↔cb if either a
and b both belong to the centre C(L) of L or if {a, b} ∩C(L) = ∅ and a↔b (i.e. a is
compatible with b). Let R be the transitive closure of the relation ↔c. Then there
exist at least three equivalence classes of the relation R in L if and only if either L
is a horizontal sum (if C(L) = {0, 1}) or L is a direct product of a Boolean algebra
and a horizontal sum.

In the theory of orhomodular lattices (abbreviated: OML) a classical theorem
states that every finitely generated OML decomposes into a direct product of
a Boolean algebra and an OML without nontrivial Boolean factor [7, 1]. This
classical decomposition theorem has obtained several generalizations [4, 6, 8]. In
the present paper, we will characterize certain type of OML’s admitting the above
direct decomposition by means of so-called c-compatibility.

Basic definitions and facts about orthomodular lattices can be found in [1] and
[2]. We recall that an orthomodular lattice L(0, 1,′ ,∨,∧) is a horizontal sum of
orthomodular lattices Li, i ∈ I, if L = ∪i∈ILi, Li ∩ Lj = {0, 1} for i 6= j, i, j ∈ I
(0, 1 are the zero and unit element in both Li and Lj) and every Li is contained
in L as a subalgebra.

Two elements a, b of an orthomodular lattice L are called compatible (written
a↔b) if a = (a ∧ b) ∨ (a ∧ b′), b = (a ∧ b) ∨ (a′ ∧ b) (one of the latter equalities is
sufficient). The compatibility relation ↔ is clearly reflexive and symmetric, but
not transitive. If we introduced the transitive closure of ↔, the result would be
trivial, because all the elements of L would belong to the same class via the centre
C(L) of L. Therefore we suggest to change the compatibility relation as follows:
We say that a and b (a, b ∈ L) are c-compatible (a↔cb) if one of (i) and (ii) is
satisfied, where

(i) a ∈ C(L) and b ∈ C(L),
(ii) a /∈ C(L), b /∈ C(L) and a↔b.

Now we define the transitive closure R of c-compatibility: aRb if there are d1,
d2, . . . , dn ∈ L such that d1 = a, dn = b and di↔cdi+1, i < n. Evidently, R is
an equivalence relation and the centre C(L) of L is one of the equivalence classes.
Let us denote by T the family of all equivalence classes of R different from C(L),
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i.e. L = ∪{T |T ∈ T } ∪ C(L). It is easy to see that if L is a horizontal sum of
Li, i ∈ I, then for every T ∈ T there is a (unique) i ∈ I such that T ⊂ Li.

In what follows, we shall need the notion of a commutator. We recall that the
commutator of a finite subset F of L is defined by

comF =
∨

f∈{0,1}n

∧
i≤n

a
f(i)
i ,

where af(i) = a if f(i) = 1, and af(i) = a′ if f(i) = 0 (see [1], [2], [3], [4]). For an
arbitrary subset M ⊂ L we put

comM =
∧
{ comF |F is a finite subset of M }

if the infimum on the right-hand side exists (see [6]).

For a subset M of L, we denote by C(M) the commutant of M , i.e.

C(M) = { b ∈ L | b↔a for all a ∈M}.

We shall need the following results.

Lemma 1. Let M be a subset of an orthomodular lattice L such that comM
exists in L and C(C(M)) = L. Then c = comM belongs to C(L) and L =
[0, c]× [0, c′], where [0, c] is a Boolean algebra and [0, c′] has no nontrivial Boolean
factor.

Proof. The proof can be easily obtained from [6] by the combination of Corol-
lary 1, Theorem 10 and Corollary 4. �

Lemma 2. Let L = B×L1, where B is a Boolean algebra. Let T be the family
of all R-equivalence classes in L different from C(L) and let T1 be the family of all
R-equivalence classes in L1 different from C(L1). Then T 1 = {T ∧ (0, 1) |T ∈ T }
(here T ∧ (0, 1) = { t ∧ (0, 1) | t ∈ T }).

Proof. It follows by the simple observation that (a, b)R(c, d) in L if and only if
bRd in L1. �

Lemma 3. Let T ∪C(L) be the partition of L by the relation R. Then

(i) T ∪ C(L) is a subalgebra of L for any T ∈ T ,
(ii) if for any a ∈ T1, b ∈ T2 (T1 6= T2) we have a ∧ b = 0 (dually, a ∨ b = 1)

then C(L) = {0, 1}. Consequently, L is a horizontal sum of the logics
T ∪ C(L), T ∈ T .

(iii) T ∪C(L) (T ∈ T ) cannot be expressed in the form of any horizontal sum.

Proof. (i) Clearly, 0, 1 ∈ T ∪ C(L), and a ∈ T ∪ C(L) implies a′ ∈ T ∪ C(L).
Suppose that a, b ∈ T ∪ C(L). If a, b ∈ C(L), then a ∧ b ∈ C(L). Suppose that
a ∈ T . If a ∧ b /∈ C(L), then a↔a ∧ b implies that aRa ∧ b, hence a ∧ b ∈ T .
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(ii) Suppose that a ∈ T1, b ∈ T2 is where T1 6= T2. Let there be c ∈ C(L),
c 6= 0, c 6= 1. Then a ∧ c ∈ T1 ∪ C(L), b ∧ c ∈ T2 ∪ C(L) by (i). The following
situations can occur:

(a) a ∧ c, b∧ c ∈ C(L). Then a∧ c′, b∧ c′ /∈ C(L), for otherwise a, b ∈ C(L).
Therefore is a ∧ c′ ∈ T1, b ∧ c′ ∈ T2. But then (a ∧ c′) ∨ (b ∧ c′) = 1 =
(a ∨ b) ∧ c′ = c′, a contradiction.

(b) a∧c ∈ C(L), b∧c ∈ T2. Then a∧c′ ∈ T1, and (a∧c′)∨ (b∧c) = 1 implies
that c = c∧ ((a∧ c′)∨ (b∧ c)) = b∧ c, c′ ∧ ((a ∧ c′)∨ (b∧ c)) = a∧ c′. But
then c ≤ b, c′ ≤ a imply a′ ≤ b, i.e. aRa ∧ b a contradiction.

(c) a ∧ c ∈ T1, b ∧ c ∈ T2. Then 1 = (a ∧ c) ∨ (b ∧ c) = (a ∨ b) ∧ c = c, a
contradiction.

All the remaining cases are symmetric.

(iii) is clear.

Now we are ready to prove our main result. �

Theorem 1. Let L be an orthomodular lattice and let cardT ≥ 2. Let a ∈
T1, b ∈ T2, (T1, T2 ∈ T , T1 6= T2) and let c = com { a, b }. Then c ∈ C(L) and
L = [0, c]× [0, c′], where [0, c] is a Boolean algebra and [0, c′] is the horizontal sum
of the orthomodular lattices (T ∪ C(L)) ∧ c′, and none of the latter lattices is a
horizontal sum.

Proof. Let a ∈ T1, b ∈ T2 (T1 6= T2). Then C{a, b} = C(L), hence C(C({a, b})
= L. By Lemma 1, L = [0, c]×[0, c′], where [0, c] is a Boolean algebra and [0, c′] has
no nontrivial Boolean factor. By Lemma 2, [0, c′] = ∪{T∧c′ |T ∈ T }∪C(L)∧c′ =
∪{(T ∪ C(L)) ∧ c′ |T ∈ T } and every (T ∪ C(L)) ∧ c′ is a subalgebra of [0, c′] by
Lemma 3 (i). If a ∈ T1 ∧ c′, b ∈ T2 ∧ c′, T1 6= T2, then com [0,c′]{ a, b } = 0
(where com [0,c′] means the commutator in [0, c′]), for otherwise there would exist
a nontrivial Boolean factor in [0, c′]. Hence a ∧ b = 0 for any a ∈ T1 ∧ c′ and
b ∈ T2 ∧ c′, T1 6= T2. Therefore by Lemma 3 (ii), C([0, c′]) = { 0, c′ }, and hence
[0, c′] is the horizontal sum of (T ∪ C(L)) ∧ c′, t ∈ T . Finally, by Lemma 3 (iii),
none of (T ∪ C(L)) ∧ c′ is a horizontal sum. �

References

1. Beran L., 1984, Orthomodular lattices, Reidel, Dordrecht, Holland.

2. Kalmbach G., 1983, Orthomodular lattices, Academic Press, London.

3. Marsden L., The commutator and solvability in a generalized orthomodular lattice, Pac. J.
Math. 33 (1970), 357–361.

4. Greechie R. and Herman L., Commutator-finite orthomodular lattices, Order 1 (1985),
277–284.
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