ON DIRECT DECOMPOSITIONS OF CERTAIN ORTHOMODULAR LATTICES

P. KONÔPKA AND S. PULMANNOVÁ

Abstract

Let L be an orthomodular lattice. For $a, b \in L$ define $a \leftrightarrow^{c} b$ if either a and b both belong to the centre $C(L)$ of L or if $\{a, b\} \cap C(L)=\emptyset$ and $a \leftrightarrow b$ (i.e. a is compatible with b). Let R be the transitive closure of the relation \leftrightarrow^{c}. Then there exist at least three equivalence classes of the relation R in L if and only if either L is a horizontal sum (if $C(L)=\{0,1\}$) or L is a direct product of a Boolean algebra and a horizontal sum.

In the theory of orhomodular lattices (abbreviated: OML) a classical theorem states that every finitely generated OML decomposes into a direct product of a Boolean algebra and an OML without nontrivial Boolean factor [7, 1]. This classical decomposition theorem has obtained several generalizations $[\mathbf{4}, \mathbf{6}, 8]$. In the present paper, we will characterize certain type of OML's admitting the above direct decomposition by means of so-called c-compatibility.

Basic definitions and facts about orthomodular lattices can be found in [1] and [2]. We recall that an orthomodular lattice $L\left(0,1,{ }^{\prime}, \vee, \wedge\right)$ is a horizontal sum of orthomodular lattices $L_{i}, i \in I$, if $L=\cup_{i \in I} L_{i}, L_{i} \cap L_{j}=\{0,1\}$ for $i \neq j, i, j \in I$ (0,1 are the zero and unit element in both L_{i} and L_{j}) and every L_{i} is contained in L as a subalgebra.

Two elements a, b of an orthomodular lattice L are called compatible (written $a \leftrightarrow b)$ if $a=(a \wedge b) \vee\left(a \wedge b^{\prime}\right), b=(a \wedge b) \vee\left(a^{\prime} \wedge b\right)$ (one of the latter equalities is sufficient). The compatibility relation \leftrightarrow is clearly reflexive and symmetric, but not transitive. If we introduced the transitive closure of \leftrightarrow, the result would be trivial, because all the elements of L would belong to the same class via the centre $C(L)$ of L. Therefore we suggest to change the compatibility relation as follows: We say that a and $b(a, b \in L)$ are c-compatible $\left(a \leftrightarrow^{c} b\right)$ if one of (i) and (ii) is satisfied, where
(i) $a \in C(L)$ and $b \in C(L)$,
(ii) $a \notin C(L), b \notin C(L)$ and $a \leftrightarrow b$.

Now we define the transitive closure R of c-compatibility: $a R b$ if there are d_{1}, $d_{2}, \ldots, d_{n} \in L$ such that $d_{1}=a, d_{n}=b$ and $d_{i} \leftrightarrow^{c} d_{i+1}, i<n$. Evidently, R is an equivalence relation and the centre $C(L)$ of L is one of the equivalence classes. Let us denote by \mathcal{T} the family of all equivalence classes of R different from $C(L)$,

[^0]i.e. $L=\cup\{T \mid T \in \mathcal{T}\} \cup C(L)$. It is easy to see that if L is a horizontal sum of $L_{i}, i \in I$, then for every $T \in \mathcal{T}$ there is a (unique) $i \in I$ such that $T \subset L_{i}$.

In what follows, we shall need the notion of a commutator. We recall that the commutator of a finite subset F of L is defined by

$$
\operatorname{com} F=\bigvee_{f \in\{0,1\}^{n}} \bigwedge_{i \leq n} a_{i}^{f(i)}
$$

where $a^{f(i)}=a$ if $f(i)=1$, and $a^{f(i)}=a^{\prime}$ if $f(i)=0$ (see $\left.[\mathbf{1}],[\mathbf{2}],[\mathbf{3}],[\mathbf{4}]\right)$. For an arbitrary subset $M \subset L$ we put

$$
\operatorname{com} M=\bigwedge\{\operatorname{com} F \mid F \text { is a finite subset of } M\}
$$

if the infimum on the right-hand side exists (see [6]).
For a subset M of L, we denote by $C(M)$ the commutant of M, i.e.

$$
C(M)=\{b \in L \mid b \leftrightarrow a \text { for all } a \in M\}
$$

We shall need the following results.
Lemma 1. Let M be a subset of an orthomodular lattice L such that $\operatorname{com} M$ exists in L and $C(C(M))=L$. Then $c=\operatorname{com} M$ belongs to $C(L)$ and $L=$ $[0, c] \times\left[0, c^{\prime}\right]$, where $[0, c]$ is a Boolean algebra and $\left[0, c^{\prime}\right]$ has no nontrivial Boolean factor.

Proof. The proof can be easily obtained from [6] by the combination of Corollary 1, Theorem 10 and Corollary 4.

Lemma 2. Let $L=B \times L_{1}$, where B is a Boolean algebra. Let \mathcal{T} be the family of all R-equivalence classes in L different from $C(L)$ and let T_{1} be the family of all R-equivalence classes in L_{1} different from $C\left(L_{1}\right)$. Then $\mathcal{T}_{1}=\{T \wedge(0,1) \mid T \in \mathcal{T}\}$ (here $T \wedge(0,1)=\{t \wedge(0,1) \mid t \in T\}$).

Proof. It follows by the simple observation that $(a, b) R(c, d)$ in L if and only if $b R d$ in L_{1}.

Lemma 3. Let $\mathcal{T} \cup C(L)$ be the partition of L by the relation R. Then
(i) $T \cup C(L)$ is a subalgebra of L for any $T \in \mathcal{T}$,
(ii) if for any $a \in T_{1}, b \in T_{2}\left(T_{1} \neq T_{2}\right)$ we have $a \wedge b=0 \quad$ (dually, $a \vee b=1$) then $C(L)=\{0,1\}$. Consequently, L is a horizontal sum of the logics $T \cup C(L), T \in \mathcal{T}$.
(iii) $T \cup C(L)(T \in \mathcal{T})$ cannot be expressed in the form of any horizontal sum.

Proof. (i) Clearly, $0,1 \in T \cup C(L)$, and $a \in T \cup C(L)$ implies $a^{\prime} \in T \cup C(L)$. Suppose that $a, b \in T \cup C(L)$. If $a, b \in C(L)$, then $a \wedge b \in C(L)$. Suppose that $a \in T$. If $a \wedge b \notin C(L)$, then $a \leftrightarrow a \wedge b$ implies that $a R a \wedge b$, hence $a \wedge b \in T$.
(ii) Suppose that $a \in T_{1}, b \in T_{2}$ is where $T_{1} \neq T_{2}$. Let there be $c \in C(L)$, $c \neq 0, c \neq 1$. Then $a \wedge c \in T_{1} \cup C(L), b \wedge c \in T_{2} \cup C(L)$ by (i). The following situations can occur:
(a) $a \wedge c, b \wedge c \in C(L)$. Then $a \wedge c^{\prime}, b \wedge c^{\prime} \notin C(L)$, for otherwise $a, b \in C(L)$. Therefore is $a \wedge c^{\prime} \in T_{1}, b \wedge c^{\prime} \in T_{2}$. But then $\left(a \wedge c^{\prime}\right) \vee\left(b \wedge c^{\prime}\right)=1=$ $(a \vee b) \wedge c^{\prime}=c^{\prime}$, a contradiction.
(b) $a \wedge c \in C(L), b \wedge c \in T_{2}$. Then $a \wedge c^{\prime} \in T_{1}$, and $\left(a \wedge c^{\prime}\right) \vee(b \wedge c)=1$ implies that $c=c \wedge\left(\left(a \wedge c^{\prime}\right) \vee(b \wedge c)\right)=b \wedge c, c^{\prime} \wedge\left(\left(a \wedge c^{\prime}\right) \vee(b \wedge c)\right)=a \wedge c^{\prime}$. But then $c \leq b, c^{\prime} \leq a$ imply $a^{\prime} \leq b$, i.e. $a R a \wedge b$ a contradiction.
(c) $a \wedge c \in T_{1}, b \wedge c \in T_{2}$. Then $1=(a \wedge c) \vee(b \wedge c)=(a \vee b) \wedge c=c$, a contradiction.
All the remaining cases are symmetric.
(iii) is clear.

Now we are ready to prove our main result.
Theorem 1. Let L be an orthomodular lattice and let $\operatorname{card} \mathcal{T} \geq 2$. Let $a \in$ $T_{1}, b \in T_{2},\left(T_{1}, T_{2} \in \mathcal{T}, T_{1} \neq T_{2}\right)$ and let $c=\operatorname{com}\{a, b\}$. Then $c \in C(L)$ and $L=[0, c] \times\left[0, c^{\prime}\right]$, where $[0, c]$ is a Boolean algebra and $\left[0, c^{\prime}\right]$ is the horizontal sum of the orthomodular lattices $(T \cup C(L)) \wedge c^{\prime}$, and none of the latter lattices is a horizontal sum.

Proof. Let $a \in T_{1}, b \in T_{2}\left(T_{1} \neq T_{2}\right)$. Then $C\{a, b\}=C(L)$, hence $C(C(\{a, b\})$ $=L$. By Lemma $1, L=[0, c] \times\left[0, c^{\prime}\right]$, where $[0, c]$ is a Boolean algebra and $\left[0, c^{\prime}\right]$ has no nontrivial Boolean factor. By Lemma 2, $\left[0, c^{\prime}\right]=\cup\left\{T \wedge c^{\prime} \mid T \in \mathcal{T}\right\} \cup C(L) \wedge c^{\prime}=$ $\cup\left\{(T \cup C(L)) \wedge c^{\prime} \mid T \in \mathcal{T}\right\}$ and every $(T \cup C(L)) \wedge c^{\prime}$ is a subalgebra of $\left[0, c^{\prime}\right]$ by Lemma 3 (i). If $a \in T_{1} \wedge c^{\prime}, b \in T_{2} \wedge c^{\prime}, T_{1} \neq T_{2}$, then $\operatorname{com}_{\left[0, c^{\prime}\right]}\{a, b\}=0$ (where $\operatorname{com}_{\left[0, c^{\prime}\right]}$ means the commutator in $\left[0, c^{\prime}\right]$), for otherwise there would exist a nontrivial Boolean factor in $\left[0, c^{\prime}\right]$. Hence $a \wedge b=0$ for any $a \in T_{1} \wedge c^{\prime}$ and $b \in T_{2} \wedge c^{\prime}, T_{1} \neq T_{2}$. Therefore by Lemma 3 (ii), $C\left(\left[0, c^{\prime}\right]\right)=\left\{0, c^{\prime}\right\}$, and hence $\left[0, c^{\prime}\right]$ is the horizontal sum of $(T \cup C(L)) \wedge c^{\prime}, t \in \mathcal{T}$. Finally, by Lemma 3 (iii), none of $(T \cup C(L)) \wedge c^{\prime}$ is a horizontal sum.

References

1. Beran L., 1984, Orthomodular lattices, Reidel, Dordrecht, Holland.
2. Kalmbach G., 1983, Orthomodular lattices, Academic Press, London.
3. Marsden L., The commutator and solvability in a generalized orthomodular lattice, Pac. J. Math. 33 (1970), 357-361.
4. Greechie R. and Herman L., Commutator-finite orthomodular lattices, Order 1 (1985), 277-284.
5. Konôpka P. and Pulmanová S., Commutators in orthomodular posets, submitted for publication.
6. Pulmannová S., Commutators in orthomodular lattices, Demonstratio Mathematica 18 (1985), 187-208.
7. Bruns G. and Kalmbach G., Some remarks on free orthomodular lattices, Proc. Univ. Houston, Lattice Theory Conf., Houston, 1973, pp. 397-408.
8. Carrega J., Chevalier G. and Mayet R., Direct decompositions of orthomodular lattices, Algebra Universalis (to appear).
P. Konôpka, Department of Mathematics, University of Banská Bystrica, 97549 Banská Bystrica, Czechoslovakia
S. Pulmannová, Mathematics Institute, Slovak Academy of Sciences, 81473 Bratislava, Czechoslovakia

[^0]: Received August 29, 1990.
 1980 Mathematics Subject Classification (1985 Revision). Primary 06B05, 81B10.

