A NOTE ON CHARACTERIZATIONS OF COMPACTNESS

D. S. JANKOVIĆ and C. KONSTADILAKI-SAVVOPOULOU

It is well known that a function f from a topological space X into a compact space Y is continuous if the graph of f, i.e. the set $\{(x, f(x)): x \in X\}$, is a closed subset of the product space $X \times Y$. J. Joseph $[\mathbf{3}]$ showed that the converse is true for T_{1} spaces. A T_{1} space Y is compact if for every space X every function $f: X \rightarrow Y$ with a closed graph is continuous. This result was originally obtained in $[\mathbf{1}],[\mathbf{6}]$, and $[4]$. In this note we improve the mentioned result and also offer some new characterizations of compact T_{1} spaces. In doing so, we utilize the concept of somewhat nearly continuous functions recently introduced by Z.Piotrowski [5]. A function $f: X \rightarrow Y$ is called somewhat nearly continuous if $\operatorname{Int}_{X} \mathrm{Cl}_{X} f^{-1}(V) \neq$ \emptyset for every nonvoid open set V in $Y\left(\mathrm{Cl}_{X} A\right.$ and $\operatorname{Int}_{X} A$ denote the closure and interior of a set A in a space X, respectively). Recall now that a function $f: X \rightarrow$ Y is locally closed [2] if for every $x \in X$ and for every neighbourhood U of x there exists a neighbourhood V of x such that $V \subset U$ and $f(V)$ is closed. A space X is called hyperconnected [7] if every two nonempty open subsets of X have a nonempty intersection.

Theorem. The following statements are equivalent for a T_{1} space Y.
(a) Y is compact.
(b) Every function from a T_{1} space into Y with all inverse images of compact sets closed is somewhat nearly continuous.
(c) Every closed graph function from a T_{1} space into Y is somewhat nearly continuous.
(d) Every locally closed function from a T_{1} space into Y with all point inverses closed is somewhat nearly continuous.
(e) Every locally closed bijection from a T_{1} space onto Y is somewhat nearly continuous.

Proof. It is clearly that if $f: X \rightarrow Y$ is a function with all inverse images of compact sets closed and Y is compact, then f is continuous. Thus, (a) implies (b). In [2] it is shown that the inverse images of compact sets under closed graph functions are closed. Hence (b) implies (c). Since locally closed functions with all point inverses closed have closed graphs [2], (c) implies (d). Obviously, (d) implies (e). To show that (e) implies (a), suppose that a T_{1} space $Y=(Y, \tau)$ is

[^0]not compact. Then there exists a filter base \mathcal{F} of closed sets in Y with $\cap \mathcal{F}=\emptyset$. Let $\mathcal{B}=\{F \cup\{x\}: x \in Y$ and $F \in \mathcal{F}\}$. It is not difficult to check that \mathcal{B} is an open base for a topology τ^{*} on Y. Let $x, y \in Y$ with $x \neq y$. Sine $\cap \mathcal{F}=\emptyset$, there exists an $F \in \mathcal{F}$ with $y \notin F \cup\{x\}$. Therefore, the space $Y^{*}=\left(Y, \tau^{*}\right)$ is T_{1}. Since each pair of elements of \mathcal{B} has a nonempty intersection, Y^{*} is hyperconnected. Let $f: Y^{*} \rightarrow Y$ be the identity function, let $x \in Y$, and let U be a neighbourhood of x in Y^{*}. Clearly, there exists an $F \in \mathcal{F}$ such that $F \cup\{x\} \subset U$. Since F is closed in Y and Y is $T_{1}, F \cup\{x\}$ is closed in Y. Thus, $f(F \cup\{x\})$ is closed in Y. This shows that f is locally closed. By hypothesis, f is somewhat nearly continuous and so $\operatorname{Int}_{Y^{*}} \mathrm{Cl}_{Y^{*}} f^{-1}(V) \neq \emptyset$ for every nonvoid $V \in \tau$. Let $F \in \mathcal{F}$ with $F \neq Y$. Then F is closed in Y, and consequently, $\mathrm{Cl}_{Y^{*}} \operatorname{Int}_{Y *} f^{-1}(F) \neq Y$. This implies $\mathrm{Cl}_{Y^{*}} F \neq Y$ since F is open in Y^{*}, but $\mathrm{Cl}_{Y^{*}} F=Y$ since Y^{*} is hyperconnected. This contradition completes the proof.

Corollary. A T_{1} space Y is compact if and only if each locally closed bijection from a T_{1} space onto Y is continuous.

References

1. Franklin S. P. and Sorgenfrey R. H., Closed and image closed projections, Pacific J. Math. 19 (1966), 433-439.
2. Fuller R. V., Relations among continuous and various non-continuous functions, Pacific J. Math. 25 (1968), 495-509.
3. Joseph J. E., On a characterization of compactness for T_{1} spaces, Amer. Math. Monthly 83 (1976), 728-729.
4. Kasahara S., Characterizations of compactness and countable compactness, Proc. Japan Acad. 49 (1973), 523-524.
5. Piotrowski Z., A survey of results concerning generalized continuity on topological spaces, Acta Math. Univ. Comenian. 52-53 (1987), 91-110.
6. Scarborough C. T., Closed graphs and closed projections, Proc. Amer. Math. Soc. 20 (1969), 465-470.
7. Steen L. A. and Seebach J. A., Jr.: Counterexamples in Topology, Holt, Rinehart and Winston, Inc., 1970.
D. S. Janković, Department of Mathematics, East Central University, Ada, Oklahoma 74820, U.S.A.

Ch. Konstadilaki-Savvopoulou, Department of Mathematics, Faculty of Sciences, Aristotle University of Thessaloniki, 54006 Thessaloniki, Greece

[^0]: Received June 25, 1990; revised March 27, 1991.
 1980 Mathematics Subject Classification (1985 Revision). Primary 54C10, 54D30.

