A NOTE ON CHARACTERIZATIONS OF COMPACTNESS

D. S. JANKOVIĆ AND C. KONSTADILAKI-SAVVOPOULOU

It is well known that a function f from a topological space X into a compact space Y is continuous if the graph of f, i.e. the set $\{(x, f(x)): x \in X\}$, is a closed subset of the product space $X \times Y$. J. Joseph [3] showed that the converse is true for T_1 spaces. A T_1 space Y is compact if for every space X every function $f: X \to Y$ with a closed graph is continuous. This result was originally obtained in [1], [6], and [4]. In this note we improve the mentioned result and also offer some new characterizations of compact T_1 spaces. In doing so, we utilize the concept of somewhat nearly continuous functions recently introduced by Z.Piotrowski [5]. A function $f: X \to Y$ is called **somewhat nearly continuous** if $\operatorname{Int}_X \operatorname{Cl}_X f^{-1}(V) \neq \emptyset$ for every nonvoid open set V in Y ($\operatorname{Cl}_X A$ and $\operatorname{Int}_X A$ denote the closure and interior of a set A in a space X, respectively). Recall now that a function $f: X \to$ Y is **locally closed** [2] if for every $x \in X$ and for every neighbourhood U of xthere exists a neighbourhood V of x such that $V \subset U$ and f(V) is closed. A space X is called **hyperconnected** [7] if every two nonempty open subsets of X have a nonempty intersection.

Theorem. The following statements are equivalent for a T_1 space Y.

- (a) Y is compact.
- (b) Every function from a T₁ space into Y with all inverse images of compact sets closed is somewhat nearly continuous.
- (c) Every closed graph function from a T_1 space into Y is somewhat nearly continuous.
- (d) Every locally closed function from a T_1 space into Y with all point inverses closed is somewhat nearly continuous.
- (e) Every locally closed bijection from a T_1 space onto Y is somewhat nearly continuous.

Proof. It is clearly that if $f: X \to Y$ is a function with all inverse images of compact sets closed and Y is compact, then f is continuous. Thus, (a) implies (b). In [2] it is shown that the inverse images of compact sets under closed graph functions are closed. Hence (b) implies (c). Since locally closed functions with all point inverses closed have closed graphs [2], (c) implies (d). Obviously, (d) implies (e). To show that (e) implies (a), suppose that a T_1 space $Y = (Y, \tau)$ is

Received June 25, 1990; revised March 27, 1991.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 54C10, 54D30.

not compact. Then there exists a filter base \mathcal{F} of closed sets in Y with $\cap \mathcal{F} = \emptyset$. Let $\mathcal{B} = \{F \cup \{x\} : x \in Y \text{ and } F \in \mathcal{F}\}$. It is not difficult to check that \mathcal{B} is an open base for a topology τ^* on Y. Let $x, y \in Y$ with $x \neq y$. Sine $\cap \mathcal{F} = \emptyset$, there exists an $F \in \mathcal{F}$ with $y \notin F \cup \{x\}$. Therefore, the space $Y^* = (Y, \tau^*)$ is T_1 . Since each pair of elements of \mathcal{B} has a nonempty intersection, Y^* is hyperconnected. Let $f \colon Y^* \to Y$ be the identity function, let $x \in Y$, and let U be a neighbourhood of x in Y^* . Clearly, there exists an $F \in \mathcal{F}$ such that $F \cup \{x\} \subset U$. Since F is closed in Y and Y is $T_1, F \cup \{x\}$ is closed in Y. Thus, $f(F \cup \{x\})$ is closed in Y. This shows that f is locally closed. By hypothesis, f is somewhat nearly continuous and so $\operatorname{Int}_{Y^*} \operatorname{Cl}_{Y^*} f^{-1}(V) \neq \emptyset$ for every nonvoid $V \in \tau$. Let $F \in \mathcal{F}$ with $F \neq Y$. Then F is closed in Y, and consequently, $\operatorname{Cl}_{Y^*} f^{-1}(F) \neq Y$. This implies $\operatorname{Cl}_{Y^*} F \neq Y$ since F is open in Y^* , but $\operatorname{Cl}_{Y^*} F = Y$ since Y^* is hyperconnected. This contradition completes the proof.

Corollary. A T_1 space Y is compact if and only if each locally closed bijection from a T_1 space onto Y is continuous.

References

- Franklin S. P. and Sorgenfrey R. H., Closed and image closed projections, Pacific J. Math. 19 (1966), 433–439.
- Fuller R. V., Relations among continuous and various non-continuous functions, Pacific J. Math. 25 (1968), 495–509.
- Joseph J. E., On a characterization of compactness for T₁ spaces, Amer. Math. Monthly 83 (1976), 728–729.
- Kasahara S., Characterizations of compactness and countable compactness, Proc. Japan Acad. 49 (1973), 523–524.
- Piotrowski Z., A survey of results concerning generalized continuity on topological spaces, Acta Math. Univ. Comenian. 52-53 (1987), 91–110.
- Scarborough C. T., Closed graphs and closed projections, Proc. Amer. Math. Soc. 20 (1969), 465–470.
- Steen L. A. and Seebach J. A., Jr.: Counterexamples in Topology, Holt, Rinehart and Winston, Inc., 1970.

D. S. Janković, Department of Mathematics, East Central University, Ada, Oklahoma 74820, U.S.A.

Ch. Konstadilaki-Savvopoulou, Department of Mathematics, Faculty of Sciences, Aristotle University of Thessaloniki, 54006 Thessaloniki, Greece

158