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ON QUASI–CONTINUOUS BIJECTIONS

Z. GRANDE AND T. NATKANIEC

In memory of Prof. T. Neubrunn

Abstract. The well-known classical theorem ascertains that if f is a one-to-one
continuous function from I onto I, then the inverse function f−1 is continuous
too (i.e. f is a homeomorphism). The purpose of this paper is to state that the
analogous result does not hold for quasi-continuous functions.

Let us establish some terminology to be used later. R denotes the set of all
reals and I denotes the closed unit interval [0, 1]. For topological spaces X and
Y a function f : X → Y is said to be quasi-continuous at a point x ∈ X if for
every open neighbourhoods U of x and V of f(x) there exists a non-empty open
set W ⊂ U ∩ f−1(V ). If Y is a metric space then a function f : X → Y is said to
be cliquish at a point x ∈ X if for every open neighbourhood U of x and for every
ε > 0 there exists a non-empty set W ⊂ U with oscW f < ε ([3] and [1]). It is
well-known (and easy to see) that a real function f defined on R is cliquish iff it is
pointwise dicontinuous. Additionally, each quasi-continuous function f : R→ R is
cliquish and therefore it has the Baire property (see e.g. [4]). A function f : R→ R
is said to be left (right) hand sided quasi-continuous at a point x ∈ R if for every
ε > 0 and for every open neighbourhood V of f(x) there exists a non-empty open
set W ⊂ (x − ε, x) ∩ f−1(V ) (W ⊂ (x, x + ε) ∩ f−1(V )). f is bilaterally quasi-
continuous at x if it is both left and right hand sided quasi-continuous at this
point. Every set which is homeomorphic with the Cantor ternary set C ⊂ I is
called a Cantor set.

Lemma 1. For a closed interval J = [a, b] and a Cantor set K there exists a
strictly increasing quasi-continuous function from J into K.

Proof. Let (qn)∞n=1 be a one-to-one sequence of all rationals from I. Let
g : I → I be the function defined as g(x) =

∑
qn≤x

2−n. It is obvious that g

is a strictly increasing and right hand sided continuous (hence quasi-continuous)
function. Moreover the set

I\g(I) = ∪∞n=1

 ∑
qm<qn

2−m,
∑
qm≤qn

2−m
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is dense in I. Thus the set g(I) is nonwhere dense and dense in itself. Consequently,

g(I) is a Cantor set. Let h1 and h2 be increasing homeomorphisms from J onto I

and from g(I) onto K, respectively. Then the composition f = h2 ◦ g ◦h1 satisfies
all conditions of Lemma 1. �

Proposition 1. There exists a measurable and quasi-continuous bijection f
from I onto I such that the function f−1 does not have the Baire property (hence
f−1 is not quasi-continuous) and is non-measurable.

Proof. Let C be the Cantor ternary set and let (Jk,n)∞k,n=1 be a one-to-one

sequence of all components of the set I\C such that for each n ∈ N the set
∪∞k=1Jk,n is dense in C. Let (In)∞n=1 be a basis of I consisting of intervals and
let (Ck,n)∞k,n=1 be a sequence of pairwise disjoint Cantor sets having Lebesgue
measure zero and such that Ck,n ⊂ In for each k ∈ N . For any k, n ∈ N let

fn,k : Jk,n → Ck,n be a function as in Lemma 1. Then the union ∪∞k,n=1 fk,n(Jk,n)

is a set of the first category and measure zero. Let {A,B} be a decomposition
of I\ ∪∞k,n=1 fk,n(Jk,n) into two non-measurable sets of the cardinality of the
continuum and without the Baire property. Let C0 be the set consisting of 0, 1,
and all bilaterally accumulation points of C and let f0,0, f0,1 be bijections from
C0 ∩ [0, 1/2] onto A and from C0 ∩ [0, 1/2] onto B, respectively. Let us put f =
f0,0∪f0,1∪

⋃∞
k,n=1 fk,n. It is obvious that f is measurable bijection from I onto I.

Since f is quasi-continuous on the open set ∪∞k,n=1Jk,n, we shall focus on points
x ∈ C and verify that f is even bilaterally quasi-continuous at any of these points.
According to the quasi-continuity of fk,n on the whole Jk,n, for x being a right-
(left-) hand sided accumulation point of C we need to show only quasi-continuity
from the right (left). Let us assume that x is a righ-hand sided accumulation
point of C, V is an open neighbourhood of f(x) and ε is a fixed positive number.
Then In ⊂ V for some n ∈ N and Jk,n ⊂ (x, x + ε) for some k ∈ N . Therefore
f(Jk,n) = fk,n(Jk,n) ⊂ Ck,n ⊂ In ⊂ V . On the other hand, C0 ∩ [0, 1/2] is a Borel
measurable set and f(C0 ∩ [0, 1/2]) = A is non-measurable and without the Baire
property. Thus f−1 is non-measurable and does not have the Baire property. �

Theorem 1. Let us suppose that X and Y are topological spaces and f is a
quasi-continuous bijection from X onto Y . If int Y (f(V )) is non-empty for each
non-empty open set V ⊂ X, then f−1 is quasi-continuous.

Proof. If y is an isolated point of Y then f−1 is continuous at y. Let y be
an accumulation point of Y . Let us fix open neighbourhoods U of y and V of
x = f−1(y). Since f is quasi-continuous at x, there is a non-empty open subset
W of V such that f(W ) ⊂ U . So U0 = int f(W ) is a non-empty open subset of U
and f−1(U0) ⊂ V . Thus f−1 is quasi-continuous at y. �

Let us recall that a function f : X → Y is said to be somewhat continuous
if int (f−1(V )) is non-empty for any open set V ⊂ Y with f−1(V ) 6= ∅ [2]. It is
known that quasi-continuity implies somewhat continuity but there exist somewhat
continuous functions which are not quasi-continuous [4]. Thus from Theorem 1
it follows that for a quasi-continuous bijection f the quasi-continuity and the
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somewhat continuity of f−1 are equivalent. The analogous theorem does not hold
for cliquish functions.

Proposition 2. There exists a cliquish, measurable bijection f from I onto I
such that int f(V ) is non-empty for every non-empty open set V ⊂ I, and f−1 is
non-measurable and without the Baire property.

Proof. Let C ⊂ I be the Cantor ternary set. For each n ∈ N let In denote
the open interval (1/(n + 1), 1/n). Let {A0, A1} be a decomposition of I1 into
non-measurable sets of the cardinality of the continuum and without the Baire
property,

f0 : C ∩ [0, 1/2]→ A0 ∪ { 0, 1, 1/2, . . .} and f−1 : C ∩ [1/2, 1]→ A1

be bijections. Let (Jn)∞n=1 be a one-to-one sequence of all components of the set
I\C. For each n ∈ N let fn be a linear function from Jn onto In+1 and let
f = ∪∞n=−1 fn. Evidently the function f is measurable bijection from I onto I.
Since f is continuous at each point of I\C, it is cliquish. Moreover, int f(V ) ⊃
int f(V \C) 6= ∅ for each non-empty, open set V ⊂ I. Finally, the set C ∩ [1/2, 1]
is closed and f(C ∩ [1/2, 1]) is non-measurable and without the Baire property
(hence f−1 is not cliquish). �

Let us remark that from Propositions 1 and 2 it follows that for a cliquish
bijection f from I onto I neither of the conditions:

1. int f−1(V ) 6= ∅ for non-empty open sets V ,
2. int f(V ) 6= ∅ for non-empty open sets V ,

is not sufficient for cliquishness of the inverse function f−1. On the other hand we
have the following result.

Theorem 2. Let us suppose that X and Y are metric spaces and f is a bijection
from X onto Y . If int Y f(U) and intXf

−1(V ) are non-empty for each non-empty
open sets U in X and V in Y , then the functions f and f−1 are cliquish.

Proof. It is enough to prove that f is cliquish. Let us fix a point x of X, an
open neighbourhood U of x and ε > 0. Since int f(U) is non-empty, we can find a
non-empty, open set V ⊂ f(U) with the diameter less than ε. Since f−1(V ) 6= ∅,
there exists a non-empty open set W ⊂ f−1(V ) ⊂ U . Evidently, oscW (f) ≤ ε,
what finishes the proof. �

The following example proves that the assumptions of Theorem 2 do not imply
the quasi-continuity of f . Let f : I → I be the function defined by

f(x) = x for x ∈ (0, 1) and f(x) = 1− x for x ∈ {0, 1}.

Then f satisfies all assumptions of Theorem 2 but f (and f−1) are not quasi-
continuous at x ∈ {0, 1}.

Let us assume that f : X → Y is a bijection and f, f−1 are quasi-continuous.
It is natural to ask whether f is a homeomorphism. It is not difficult to find an
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example a bijection from I onto I which answers this question in the negative (e.g.
f(x) = x for x ∈ [0, 1/2) and f(x) = 3/2− x for x ∈ [1/2, 1]). But this example
leads in a natural way to the question whether a bijection f from I onto I is a
homeomorphism if f and f−1 are bilaterally quasi-continuous.

Proposition 3. There exists a bilaterally quasi-continuous bijection f from I
onto I for which the inverse function f−1 is equal to f and which is not continuous
(hence f is not a homeomorphism).

Proof. Let C ⊂ I be the Cantor ternary set and let C0 be the set consisting of
0, 1, and all bilaterally accumulation points of C. We can arrange all connected
components of I\C in a one-to-one sequence (In)∞n=1 such that both sets A0 =
∪∞k=1I2k and A1 = ∪∞k=1I2k−1 are dense in C and that for any x ∈ [0, 1], j ∈ {0, 1},
x ∈ Aj iff 1− x ∈ Aj . Let f be the function defined by

f(x) = x for x ∈ A0 ∪ C0 and f(x) = 1− x for x ∈ A1.

Obviously f is a bijection from I onto I and f is discontinuous e.g. at x = 0.
Moreover, it is easy to see that f is bilaterally quasi-continuous and the inverse
function f−1 is equal to f , so f satisfies all conditions of Proposition 3. �
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