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STATIONARY SOLUTIONS, BLOW UP AND CONVERGENCE

TO STATIONARY SOLUTIONS FOR SEMILINEAR PARABOLIC

EQUATIONS WITH NONLINEAR BOUNDARY CONDITIONS

M. CHIPOT, M. FILA AND P. QUITTNER

1. Introduction

Consider the problem

(1.1)


ut = 4u− aup x ∈ Ω, t > 0

∂u

∂n
= uq x ∈ ∂Ω, t > 0

u(x, 0) = uo(x) ≥ 0 x ∈ Ω,

with p, q > 1, a > 0, Ω – bounded domain in RN , uo 6≡ 0.
If a = 0 then it follows from [F] that any solution blows up in finite time. The

starting point of our investigations was the question whether the damping term in
the equation can prevent blow up if a > 0.

For N = 1 we give the following complete answer:

(i) If p < 2q − 1 or p = 2q − 1, a < q then there are initial data for which
blow up occurs.

(ii) If p > 2q − 1 or p = 2q − 1, a > q then any solution exists globally and
stays uniformly bounded.

(iii) If p = 2q−1, a = q then any solution exists globally but it is not uniformly
bounded. More precisely, any solution tends pointwise (as t→∞) to the
unique function v which satisfies

vxx − qv
2q−1 = 0 in Ω

v =∞ on ∂Ω.

For N > 1 and Ω a ball we also show that (i), (ii) hold. For general domains the
answer is far from being complete. We show global existence and boundedness
only for

q <
N + 1

N − 1
, p >

N − q(N − 2)

N + 1− q(N − 1)
(q + 1)− 1
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and blow up of solutions starting from initial functions with negative energy for
p ≤ q. For p ≤ q and q subcritical (q < N/(N − 2) if N > 2) we give also another
sufficient condition for blow up. Namely, u blows up provided uo ≥ v, uo 6≡ v, v
is any positive stationary solution. Positive stationary solutions exist if p < q or

p = q, a > aΩ :=
|∂Ω|

|Ω|
. If p = q, q is subcritical and a < aΩ then any solution

blows up.
If Ω is a ball and p, q, a are as in (i) then we prove blow up of solutions which

emanate from radial subsolutions that are sufficiently large on ∂Ω.
For N = 1 and p, q, a as in (i), a sufficient condition for blow up is that uo lies

above an arbitrary maximal stationary solution. If q ≤ p ≤ 2q − 1 then we shall
see below that for any interval Ω there exists ao = ao(Ω, p, q) > 0 such that for
a < ao the maximal stationary solution is 0, which means that any solution blows
up.

For N = 1 we also show that for suitable initial functions blow up occurs only
on the boundary of the interval Ω.

Since we are interested in all possible types of behavior of solutions, we are led to
the question if there are global unbounded solutions for p, q, a as in (i). For N = 1
or p ≤ q, q subcritical, the answer is no. Therefore, there are only two possibilities
in this case: blow up in finite time or global existence and boundedness. The
latter possibility means that the ω–limit set is nonempty and consists of stationary
solutions.

Let us now give a sketch of our results concerning the stationary solutions. For
N = 1 (Ω = (−l, l)) our description of the set of (positive) stationary solutions is
almost complete.

Denote the set of positive stationary solutions by E and the subset of symmetric
positive stationary solutions by Es. For fixed l > 0 we distinguish five cases:

(i) If p > 2q − 1 then
cardE = 1, E = Es for any a > 0.

(ii) If p = 2q − 1 then
E = ∅ for 0 < a ≤ q,
cardE = 1, E = Es for a > q.

(iii) If q < p < 2q − 1 then there are 0 < ao < a1 such that
E = ∅ for 0 < a < ao,
cardE = 1, E = Es for a = ao,
cardE = 2, E = Es for ao < a ≤ a1,
cardE ≥ 4, cardE is even, cardEs = 2 for a > a1.

If, in addition, p ≤ 4 or p > 4, q ≥ p− 1− 1
p−2 , then

cardE = 4 for a > a1.
(iv) If p = q then there is an a1 > 0 such that

E = ∅ for 0 < a ≤ 1/l,
cardE = 1, E = Es for 1/l < a ≤ a1,
cardE = 3, cardEs = 1 for a > a1.

(v) If p < q then there is an a1 > 0 such that
cardE = 1, E = Es for 0 < a ≤ a1,
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cardE = 3, cardEs = 1 for a > a1.

Our results are summarized in the following bifurcation diagrams:

ao = 0 a

u(l; a)

a1

Fig.1: p < q

0 a

u(l; a)

ao = 1/l a1

Fig.2: p = q

0 a

u(l; a)

ao a1

Fig.3: 2q−1 > p > q

0 a

u(l; a)

ao = q

Fig.4: p = 2q − 1

ao = 0 a

u(l; a)

Fig.5: p > 2q − 1

In higher space dimension we have also some existence, nonexistence and mul-
tiplicity results for the stationary problem on general domains and more precise
results for the radially symmetric problem on a ball. These results confirm that
several facts indicated in Figures 1–5 hold also for N > 1. See Theorems 2.1, 2.2
for more details.

We mentioned above that for N = 1 a sufficient condition for blow up is that
uo lies above an arbitrary maximal stationary solution. This leads to the question
how are the stationary solutions ordered. We show that for N = 1 any positive
stationary solution is maximal except for the case q < p < 2q − 1, a > ao, when
there is a v ∈ Es such that v < w for any w ∈ E, w 6= v. Any w ∈ E, w 6= v is
maximal.
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To give a description of the local semiflow generated by the problem (1.1) we
determine the stability properties of stationary solutions. For N = 1 we show
that positive stationary solutions which do not correspond to a = ao or a = a1

are hyperbolic, i.e. zero is not an eigenvalue of the linearization (if q < p < 2q− 1
then also the smaller solution corresponding to a = a1 is hyperbolic). Then we
compute the Morse indices of the hyperbolic stationary solutions. This will be
used to draw the picture of the flow, more precisely, to find orbits which connect
the stationary solutions.

For N = 1, p < q, a > a1 the flow is depicted in the following figure.

0

v1 v3v2

Figure 6. The flow for N = 1, p < q, a > a1.

In Figure 6, the function v1 is the symmetric positive stationary solution, v2

and v3 are nonsymmetric stationary solutions. The zero solution is stable, the
unstable manifolds of v2, v3 are one–dimensional, the unstable manifold of v1 is
two–dimensional. Any positive stationary solution is connected by an orbit to 0,
v1 is connected to v2 and v3.

Moreover, if N = 1, p < q, then for any uo there is a λo > 0 such that the
solution u(t, λuo) starting from λuo tends to 0 in W 1,2(Ω) as t → ∞ if λ < λo;
u(t, λouo) tends to a positive stationary solution; while u(t, λuo) blows up in finite
time if λ > λo.

A weaker result is proved in a more general situation. Denote the set of initial
nonnegative data for which the solutions exist globally by G. Then G is star–
shaped with respect to zero and closed in C+ := {v ∈ W 1,2(Ω) ; v ≥ 0 a.e. }
provided N > 1, p < q < (N + 1)/(N − 1) or p = q < min(2, (N + 2)/N).

The paper is organized as follows. Section 2 contains results on the N–di-
mensional stationary problem. The bifurcation diagrams for the 1–dimensional
stationary problem are established in Section 3. In Section 3 also the Morse
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indices of the stationary solutions for N = 1 are computed. In Section 4 we give
sufficient conditions for blow up and global existence. In Section 5 we establish
the connecting orbits and study the behavior of u(t, λuo), λ > 0.

2. Stationary solutions for N≥1

Throughout this section1 we shall suppose that Ω ⊂ RN is a bounded domain

with the smooth boundary ∂Ω, a > 0 and p, q > 1 are subcritical, i.e. p <
N + 2

N − 2

and q <
N

N − 2
if N > 2. Then we have the compact imbedding of the Sobolev

space W 1,2(Ω) into Lp+1(Ω) and the trace operator Tr : W 1,2(Ω) → Lq+1(∂Ω) is
also compact.

We shall look for (weak) solutions of the problem

(2.1)


4u = a |u|p−1u in Ω

∂u

∂n
= |u|q−1u on ∂Ω

By standard Lp regularity theory (see e.g. [A1, Theorem 3.2]) we get that any
solution of (2.1) is in C1(Ω) ∩ C2(Ω). Moreover, the maximum principle (see
[GT, Theorem 3.5, Lemma 3.4]) implies that any nonnegative solution u 6≡ 0 of
(2.1) is positive in Ω. In what follows, by |∂Ω| we denote the (N -1)–dimensional
measure of ∂Ω, by |Ω| we mean the N–dimensional measure of Ω. Finally, we put

aΩ =
|∂Ω|

|Ω|
and cΩ = |Ω|−1/2.

The main result of this section are the following two theorems.

Theorem 2.1.

(i) Let p ≤ q and let a > ao, where ao := 0 if p < q and ao := aΩ if p = q.
Then there exists a positive solution of (2.1). The zero solution is sta-
ble, any positive solution is unstable (both from above and from below) in
W 1,2(Ω) in the Lyapunov sense. The graphs of any two positive solutions
intersect.

(ii) Let p = q and a < aΩ. Then (2.1) does not have positive solutions. The
zero solution is unstable.

(iii) Let p > q. Then the zero solution is unstable and there exists ao ∈ [0,∞)
such that (2.1) has a positive stable solution for a > ao and (2.1) does not
have positive solutions for 0 < a < ao.

(iv) Let q < p < 2q−1 and put ζ =
(p+ 1

2

)(p−1)/(q−1)

. If ã > 0 is sufficiently

large, then there exists a ∈ (ã, ãζ) such that (2.1) has at least two positive
solutions.

1except of Remark 2.6 where supercritical p, q are considered
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(v) 2 Let q <
N + 1

N − 1
and p + 1 > (q + 1)q∗, where q∗ =

N − q(N − 2)

N + 1− q(N − 1)
.

Then p > 2q − 1 and ao = 0, i.e. (2.1) has a positive stable solution for
any a > 0.

Theorem 2.2. Let Ω be a ball in RN .

(i) If p < q or p = q and a > aΩ, then there exists a positive symmetric solu-
tion of (2.1). This solution is unique among positive symmetric functions.

(ii) If q < p < 2q− 1 then there exists aso > 0 such that (2.1) has a symmetric
positive solution iff a ≥ aso. If a > aso, then (2.1) has et least 2 symmetric
positive solutions.

(iii) Let p = 2q−1. If a > q then (2.1) has a symmetric positive stable solution.
If a ≤ q then (2.1) does not have symmetric positive solutions.

(iv) If p > 2q−1 then there exists a symmetric positive stable solution of (2.1)
for any a > 0.

We shall use the variational formulation of (2.1), i.e. we shall look for critical
points of the C2 functional

Φ : X → R : u 7→ I(u) + aP(u)−Q(u),

where
X = W 1,2(Ω) is endowed with the scalar product

〈u, v〉 =

∫
Ω

∇u∇v dx+

∫
Ω

uv dx,

I(u) =
1

2

∫
Ω

|∇u(x)|2dx,

P(u) =
1

p+ 1

∫
Ω

|u(x)|p+1dx and

Q(u) =
1

q + 1

∫
∂Ω

|u(x)|q+1dS.

Hence ‖u‖2 := 〈u, u〉 = 2I(u) + 2K(u), where K(u) =
1

2

∫
Ω

u(x)2dx. By F ,

P , Q and K we denote the Fréchet derivatives of Φ, P , Q and K, respectively.
Notice that K, P and Q are compact C1 operators in X and the problem (2.1) is
equivalent to the problem

(2.2) F (u) = 0,

where F = Fa : X → X : u 7→ u−K(u) + aP (u)−Q(u).
If u is an isolated solution of (2.2), we shall denote by d(u) or da(u) the local

Leray–Schauder degree of F at u with respect to 0, i.e. d(u) = deg(F, 0, Bε(u))
for ε sufficiently small (where Bε(u) = {v ∈ X ; ‖v − u‖ ≤ ε}).

2cf. also Remark 2.5(i)
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If C is a closed convex set in X, we denote by PC the orthogonal projection in
X onto C and we put FC(u) = u− PC

(
K(u)− aP (u) +Q(u)

)
i.e. the solutions

of FC(u) = 0 correspond to the solutions of the variational inequality

(2.3) u ∈ C : 〈F (u), ϕ− u〉 ≥ 0 for any ϕ ∈ C

which are the critical points of Φ with respect to C. If C = C+ := {u ∈ X ;

u ≥ 0 a.e.}, then we write briefly F+ instead of FC
+

and we denote by d+(u) the
local Leray–Schauder degree of F+ at u with respect to 0. We call u a subsolution
of (2.2) if Φ′(u)ϕ ≤ 0 for any ϕ ∈ C+. Analogously we define a supersolution of
(2.2).

Following [H2], we call an operator T : X → X E–regular, if there exists a

finite sequence {Ei}
n+1
i=0 of real Banach spaces such that E = E0⊂ E1⊂ . . .⊂

En⊂ En+1 = X and T induces continuous operators Ti ∈ C(Ei, Ei−1) for i =
1, . . . , n + 1. The Lp regularity for (2.1) implies that the operators K, P and Q
are W 1,r(Ω)–regular for any r ≥ 2. Moreover, one can easily prove the following
Lemma (cf. [H2, Lemma 2]).

Lemma 2.1. Let Tj : X → X be E–regular operators for j = 1, . . . ,m and let
the corresponding Ei spaces in the definition of E–regularity be independent of j.

Let {α(j)
k }
∞
k=1 be a sequence of real numbers converging to α(j) for j = 1, . . . ,m.

Let vk ∈ X, vk → v ∈ E in X and let vk =
m∑
j=1

α
(j)
k Tj(vk). Then vk ∈ E and

vk → v in E.

In the following two lemmas we study solutions which are close to zero.

Lemma 2.2. Let p, q > 1 be fixed, ∞ > A ≥ ak ≥ 0 (k = 1, 2, . . . ), Fak(uk) =
0, 0 6= ‖uk‖ → 0. Then one of the following assertions is true

(i) p < q, ak → 0, ak > 0 for k large enough.
(ii) p = q, ak → aΩ.

Moreover,
|uk|

‖uk‖
→ cΩ in X ∩ C(Ω).

Proof. Putting vk =
|uk|

‖uk‖
we may suppose that vk converges weakly in X to

some element v ∈ X (otherwise we choose a suitable subsequence). Dividing the
equation Fak(uk) = 0 by ‖uk‖ we obtain

(2.4) vk = Kvk − akP (vk)‖uk‖
p−1 +Q(vk)‖uk‖

q−1.

Passing to the limit in (2.4) and using the compactness of K we get vk → v =
Kv (strong convergence), ‖v‖ = 1, which implies v ≡ ±cΩ. Lemma 2.1 and

the imbedding W 1,r(Ω)⊂ C(Ω) for r > N imply vk → v in C(Ω), hence vk >
0 (or vk < 0) for k large enough. Without loss of generality we may suppose
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vk > 0. Integrating the equation4uk = aku
p
k over Ω and multiplying the resulting

equation by ‖uk‖−q we get

(2.5) ak

∫
Ω

vpkdx ‖uk‖
p−q =

∫
∂Ω

vqkdS → |∂Ω| |Ω|−q/2,

which implies p ≤ q, ak > 0, ak → 0 if p < q and ak → aΩ if p = q. �

Remark 2.1. By Theorem 2.1(ii) it will follow that ak ≥ aΩ for k large enough
in the case of Lemma 2.2(ii). If Ω is a ball, then using (2.5) one can even prove
ak > aΩ, since 4(upk) > 0.

Lemma 2.3.

(i) If p < q and a > 0 or if p = q and a > aΩ, then u = 0 is a strict local
minimum of Φ, d(0) = 1.

(ii) If a = 0 or p = q and 0 ≤ a < aΩ or if p > q and a ≥ 0, then d(0) = −1.

Proof. (i) We shall argue by contradiction. Suppose there exist 0 6= uk → 0 (in
X) such that Φ(uk) ≤ 0. Since Φ is bounded on bounded sets and weakly lower
semicontinuous, there exists 0 6= uk such that Φ(uk) = min

‖v‖≤1/k
Φ(v) ≤ 0. Hence,

there exists a Lagrange multiplier λk ≥ 0 such that F (uk) + λkuk = 0, i.e.

(2.6) uk =
1

1 + λk

(
Kuk − aP (uk) +Q(uk)

)
.

We may suppose that vk :=
uk

‖uk‖
⇀ v,

1

1 + λk
→ µ ∈ [0, 1]. Dividing (2.6) by

‖uk‖ and passing to the limit we get vk → v = µKv, ‖v‖ = 1, which yields µ = 1,
|v| ≡ cΩ. By Lemma 2.1 we get vk → v in C(Ω). Now

(2.7)
Φ(uk)

‖uk‖p+1
≥ aP(vk)−Q(vk) ‖uk‖

q−p,

where the right-hand side converges to aP(v) for q > p or to aP(v) − Q(v) for
p = q. Since in both cases the limit is positive, we have a contradiction. Hence
u = 0 is a (strict) local minimizer for Φ and by [A2] d(0) = 1.

(ii) Using the homotopies Ht(u) = Fta(u), t ∈ [0, 1], and Hα(u) = u−Q(u) −
(1 + α)Ku, α ∈ [0, αo], we obtain d(0) = deg(Hα, 0, Bε(u)) = −1, since the
operator H ′α(0) is regular and has exactly one negative eigenvalue for α > 0 small.
We have to verify Ht(u) 6= 0 and Hα(u) 6= 0 for ‖u‖ = ε small and α ≥ 0 small.
The condition Ht(u) 6= 0 and H0(u) 6= 0 follows from Lemma 2.2. Hence suppose

Hαk(uk) = 0 for 0 6= uk → 0 and αk > 0, αk → 0. Putting vk =
uk

‖uk‖
we

get similarly as in Lemma 2.2 vk → v ≡ ±cΩ in X ∩ C(Ω) and we may assume

vk > 0 for k large. Then 4uk = −αkuk < 0,
∂uk

∂n
= uqk > 0, which yields a

contradiction. �
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Remark 2.2 It can be shown that in the situation of Lemma 2.3(ii) the critical
point u = 0 is of mountain–pass type in the sense of [H1].

Lemma 2.4. Let 0 ≤ u ≤ u ≤ M < ∞, where u and u are a subsolution and
a supersolution of (2.2), respectively. Then there exists a solution u of (2.2) with
u ≤ u ≤ u.

Moreover, if u, u ∈ C1(Ω) ∩ C2(Ω) are not local minimizers of Φ with respect
to C := {v ∈ X ; u ≤ v ≤ u} and u < u in Ω, then there exists a solution u lying
strictly between u and u and being a local minimizer of Φ.

Proof. In the first part of the proof we shall proceed similarly as in [St, The-
orem I.2.4.]. The set C is convex and (weakly) closed and Φ : C → R is lower
bounded and weakly lower semicontinuous, hence there exists u ∈ C such that
Φ(u) = min

v∈C
Φ(v). Consequently, u solves (2.3).

Choose ϕ ∈ C1(Ω), ε > 0 and put

vε = min{u,max{u, u+ εϕ}} = u+ εϕ− ϕε + ϕε ∈ C,

where ϕε = max{0, u+ εϕ− u} ≥ 0 and ϕε = −min{0, u+ εϕ− u} ≥ 0. We have
0 ≤ 〈Φ′(u), vε − u〉 = ε〈Φ′(u), ϕ〉 − 〈Φ′(u), ϕε〉+ 〈Φ′(u), ϕε〉, so that

(2.8) 〈Φ′(u), ϕ〉 ≥
1

ε

(
〈Φ′(u), ϕε〉 − 〈Φ′(u), ϕε〉

)
.

Since u is a supersolution, we have

〈Φ′(u), ϕε〉 ≥ 〈Φ′(u)− Φ′(u), ϕε〉

=

∫
Ωε

(
∇(u− u)∇(u+ εϕ− u) + a(up − up)(u+ εϕ− u)

)
dx

−

∫
Γε

(uq − uq)(u+ εϕ− u) dS

≥ ε

∫
Ωε

(
∇(u− u)∇ϕ+ a(up − up)ϕ

)
dx− ε

∫
Γε
|uq − uq| |ϕ| dS,

where Ωε or Γε are the sets of all x ∈ Ω or x ∈ ∂Ω, for which u(x)+εϕ(x) ≥ u(x) >
u(x), respectively. Since |Ωε| → 0 and |Γε| → 0 as ε→ 0, we get 〈Φ′(u), ϕε〉 ≥ o(ε).
Analogously we get 〈Φ′(u), ϕε〉 ≤ o(ε), hence (2.8) implies 〈Φ′(u), ϕ〉 ≥ 0 for all
ϕ ∈ C1(Ω), so that Φ′(u) = 0.

Suppose now the additional assumptions on u and u and let u be as above.

Then 4u ≤ aup,
∂u

∂n
≥ uq. Putting w = u − u one obtains w 6≡ 0, w ≥ 0,

4w ≤ a(up − up) ≤ cw, where c = apMp−1. By [GT, Theorem 3.5] w > 0 in

Ω. If w(xo) = 0 for some xo ∈ ∂Ω, then [GT, Lemma 3.4] implies
∂w

∂n
(xo) < 0.

However,
∂w

∂n
(xo) ≥ uq(xo) − u

q(xo) ≥ 0, a contradiction. Hence, w = u− u > 0

in Ω. Similarly one gets also u− u > 0 in Ω.
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Now suppose that u is not local minimum of Φ. Similarly as in the proof of
Lemma 2.3 we find uk → u such that Φ(u) > Φ(uk) = min

‖v−u‖≤1/k
Φ(v), F (uk) +

λk(uk − u) = 0 for some λk ≥ 0. The last equation is equivalent to

uk =
1

1 + λk
(K − aP +Q)(uk) +

λk

1 + λk
u,

which together with Lemma 2.1 implies uk → u in C(Ω). However, this is a
contradiction with Φ(uk) < Φ(u) = min

u≤v≤u
Φ(v). �

Lemma 2.5. Any solution of the variational inequality (2.3) with C = C+

solves also the problem (2.2).

Proof. Proof is based on the same arguments as the first part of the proof of
Lemma 2.4. Choosing ϕ ∈ C1(Ω) and putting vε = max{0, u+ εϕ} one gets

0 ≤
1

ε
〈Φ′(u), vε − u〉 = 〈Φ′(u), ϕ〉+ o(1),

hence Φ′(u) = 0. �

Lemma 2.6. If u ∈ C+ is an isolated solution of (2.2), then the degree d+(u)
is well defined. If N = 1 and u 6= 0, then d+(u) = d(u). Moreover, except for the
case p = q, a = aΩ, we have (for any N)

(i) d+(0) = 1 if d(0) = 1,
(ii) d+(0) = 0 if d(0) = −1.

Proof. If u ∈ C+ is an isolated solution of (2.2) then u is an isolated solution
of (2.3) by Lemma 2.5. If N = 1, then u lies in the interior of C+ ⊂ X, hence
F+ = F in a neighbourhood of u.

If p < q and a > 0 or p = q and a > aΩ, then 0 is a strict local minimum of Φ by
Lemma 2.3, hence it is a (strict) local minimum of Φ with respect to C+. Now [Q2]
implies d+(0) = 1. Now it is sufficient to show d+(0) = 0 for a = 0, since then (ii)
follows from the homotopy invariance property of the degree. Hence suppose a = 0.
Then we may use the homotopies Ht

α(u) = u−P+
(
(1+α)Ku+tQ(u)

)
, α ∈ [0, αo],

t ∈ [0, 1], to derive d+(0) = deg(H1
αo , 0, Bε(0)) = deg(H0

α0
, 0, Bε(0)) = 0, where

the last equality follows from [Q1, Theorem 2(i)]. The admissibility of Ht
α follows

from the fact the the solutions of Ht
α(u) = 0 correspond to the solutions of the

inequality u ≥ 0, −4u ≥ αu,
∂u

∂n
≥ tuq. �

Proof of Theorem 2.1(i). Suppose p < q and a > 0 or p = q and a > aΩ.
Then 0 is a strict local minimum of Φ by Lemma 2.3(i). Choosing u > 0 such
that aP(u) < Q(u) we simply get Φ(tu) < 0 for t > 0 sufficiently large. Put
Φ+(u) = Φ(u) for u ∈ C+, Φ+(u) = +∞ for u /∈ C+. We show that the functional
Φ+ fulfils the Palais–Smale condition introduced by Szulkin [Sz], hence by the
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corresponding mountain–pass theorem [Sz, Theorem 3.2] there exists a nontrivial
solution u of the variational inequality (2.3) with C = C+. By Lemma 2.5 u is a
positive solution of (2.2).

Thus suppose uk ∈ C+, εk ↓ 0, Φ(uk)→ d and

(2.9) 〈Φ′(uk), v − uk〉 ≥ −εk‖v − uk‖ for any v ∈ C+.

Put wk := P+(uk − F (uk)), then

(2.10) 〈uk − F (uk)− wk, wk − v〉 ≥ 0 for any v ∈ C+.

To prove the relative compactness of the sequence {uk} it is sufficient to show its
boundedness, since then {wk} is relatively compact and putting v = wk in (2.9),
v = uk in (2.10) and adding the resulting inequalities one simply gets ‖uk−wk‖ ≤
εk. Now using (2.9) with v = 2uk we get for k sufficiently large
(2.11)
(q+1)(d+1)+εk‖uk‖ ≥ (q+1)Φ(uk)−〈Φ′(uk), uk〉 = (q−1)I(uk)+a(q−p)P(uk).

If q > p, then the right-hand side in (2.11) can be estimated below by c‖uk‖2 for
some c > 0, hence the assertion follows. Let p = q and suppose ‖uk‖ → ∞. Using
the decomposition uk = ck+u⊥k , where

∫
Ω u
⊥
k dx = 0 and ck is constant, (2.11) and

[N, Theorem 7.1] yield ‖u⊥k ‖ ≤ MI(u⊥k ) = o(ck) for some M > 0, which implies
uk/‖uk‖ → cΩ. Therefore,

Φ(uk)

‖uk‖p
→ aP(cΩ)−Q(cΩ) =

cp+1
Ω

p+ 1
(a|Ω| − |∂Ω|) > 0,

which gives a contradiction with the assumption Φ(uk)→ d.
To see that any positive solution u is unstable (both from above and from below)

notice that

(2.12) Φ′′(u)(u, u) = q〈Φ′(u), u〉+ (1− q)2I(u) + a(p− q)(p+ 1)P(u) < 0

and suppose e.g. that u is stable from above. Choosing ε > 0 we may find δ > 0
such that the solution uδ of (1.1) starting from (1 + δ)u fulfils ‖uδ(t)− u‖ < ε for
any t > 0. Moreover, choosing δ sufficiently small we have Φ

(
uδ(0)

)
< Φ(u) and

due to the compactness and monotonicity of the flow (see Proposition 5.1) we get
uδ(t) → uδ as t → +∞, where uδ is a stationary solution fulfilling ‖uδ − u‖ ≤ ε,
uδ ≥ u and Φ(uδ) < Φ(u); the last inequality follows from the fact that the function
Φ
(
uδ(·)

)
is nonincreasing. The maximum principle implies uδ > u in Ω and

Lemma 2.4 together with (2.12) (used both for u and for uδ) yield a contradiction.
The last argument shows also the nonexistence of two positive solutions u1, u2

with u1 ≤ u2. �

Remarks 2.3. Let us briefly mention some other possibilities how to prove
Theorem 2.1(i).
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(i) One can use the standard mountain–pass theorem for the functional Φ to
get a critical point u which is either a local minimum or of mountain–pass type
(see [H1, Theorem]). If u changes sign in Ω, one gets similarly as in (2.12)
Φ′′(u)(w,w) < 0 for any 0 6= w ∈ span{u+, u−} (where u+(x) = max{u(x), 0},
u−(x) = −min{u(x), 0}) and using this information it is not difficult to show that
u is neither local minimum nor of mountain–pass type.

(ii) If one is able to prove suitable apriori estimates for the positive solutions of
(2.2), then one can use the degree theory: if ‖u‖ < R for any solution u of (2.2)
with 0 ≤ a ≤ A, then

0 = d+
0 (0) = deg(F+

0 , 0, BR(0)) = deg(F+
A , 0, BR(0)) 6= d+

A(0) = 1,

hence there exists a nontrivial solution for a = A.
The apriori estimates can be easily found e.g. for symmetric solutions on a ball (see
the proof of Theorem 2.2). For a general domain we have the following assertion:

Let p < q and let q <
N − 1

N − 2
if N > 2. Then for any A > 0 there exists R > 0 such

that any positive solution u of (2.2) with 0 ≤ a ≤ A fulfils ‖u‖ < R. Moreover, the
solutions tend to zero if a→ 0+.

Proof. Denote by ‖ · ‖r or ||| · |||r the norm in Lr(Ω) or Lr(∂Ω), respectively.
By R we denote various constants, which may vary from step to step.
We have ‖u‖2 ≤ R(I(u) +Q(u)) + η for any u ∈ X, where η > 0 and R = R(η).
If u is a solution, then obviously 2I(u) ≤ (q + 1)Q(u). Choosing ε > 0 such that

the trace operator Tr : X → Lr(∂Ω), where r = q
2− ε

1− ε
, is continuos, we obtain

using Hölder inequality

−η + ‖u‖2 ≤ RQ(u) ≤ R|||u|||2−εr |||u|||q−1+ε
q ≤ R‖u‖2−ε|||u|||q−1+ε

q ,

hence

(2.13) ‖u‖ε ≤ η′ +R|||u|||q−1+ε
q ,

where η′ → 0 as η → 0. Now 4(up) ≥ 0, hence ||up||1 ≤ R|||up|||1, where R
does not depend on u. Using this inequality, Hölder inequality and the equation
4u = aup integrated over Ω, we obtain

||u||qp ≤ R|||u|||
q
p ≤ R|||u|||

q
q = Ra||u||pp,

hence ||u||p ≤ Ra1/(q−p) and |||u|||q ≤ Ra1/(q−p). Now (2.13) implies ‖u‖ ≤ R and
‖u‖ → 0 if a→ 0+. �

Let us also note that using the degree theory and Lemmas 2.3, 2.6 one can
easily prove (without apriori estimates) the following assertion:

(2.14)
(∀ε > 0)(∃δ > 0)(∀η ∈ (0, δ))(∃a ∈ (ao, ao + ε))(∃u ∈ X)

u is a positive solution of (2.1) and ‖u‖ = η.
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(iii) In Section 4 we show that under the assumptions of Theorem 2.1(i) there
exists a positive bounded initial condition uo, for which the solution of the par-
abolic problem (1.1) blows up in a finite time, and that any global solution of
(1.1) with bounded initial condition is globally bounded. Since zero is a stable
stationary solution, we may use Theorem 5.1 to show the existence of α ∈ (0, 1)
such that the solution with the initial condition αuo tends to a positive stationary
solution as time tends to infinity. However, this dynamical proof of the existence
of stationary solution has (similarly as in the case (ii)) one disadvantage: we have
to impose some additional assumptions on p and q (see Theorem 5.1).

Proof of Theorem 2.1(ii). Let p = q, a < aΩ, and suppose there exists a positive
solution u of (2.2). Choose ã ∈ (a, aΩ). Then u is a supersolution for the operator
Fã, 0 is a solution of Fã(v) = 0 and neither u nor 0 is a minimizer of Φ = Φã with
respect to C = {v ∈ X ; 0 ≤ v ≤ u}. By Lemma 2.4 the equation Fã(v) = 0 has
a solution ũ ∈ C, which is a local minimizer of Φã. However, this a contradiction
with the estimate (2.12). �

Proof of Theorem 2.1(iii). Let p > q, a > 0. If there exists a positive solution
u of (2.2) and ã > a, then similarly as in the proof of Theorem 2.1(ii) we get
a positive solution ũ of Fã(v) = 0, which is a local minimizer of Φã and fulfils
0 < ũ < u in Ω. Hence to prove the assertion (iii), it is sufficient to prove the
existence of a positive solution for some a > 0.

Choose p̃ ∈ (1, q), ã > 0 and let ũ be a positive solution of (2.1) with p and a
replaced by p̃ and ã, respectively (its existence follows from Theorem 2.1(i)). It is
easily seen that ũ is a supersolution for our problem if a is sufficiently large, since
then aũp > ãũp̃. Hence Lemma 2.4 yields the assertion. �

Proof of Theorem 2.1(iv). Choose b > 0 and put

Λb(u) = I(u) + bP(u), M = {u ∈ X ; Q(u) = 1}.

Due to the compactness of the trace operator Tr : X → Lq+1(∂Ω), the set M
is weakly closed. The C1 functional Λb : X → R is convex and coercive, hence
there exists ub ∈ M such that Λb(ub) = inf

u∈M
Λb(u). We may suppose 0 6≡ ub ≥ 0

(otherwise we put ũb = |ub|). The minimizer ub fulfils the equation

Λ′b(ub) = νbQ
′(ub),

where

(2.15) νb =
〈Λ′b(ub), ub〉

〈Q′(ub), ub〉
=

2I(ub) + b(p+ 1)P(ub)

q + 1
> 0

is the corresponding Lagrange multiplier. Putting tb = ν
1/(q−1)
b and u = tbub one

can easily show that u is a positive solution of (2.2) with

(2.16) a =
b

tp−1
b

= bν
−(p−1)/(q−1)
b =: f(b),
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where the function f depends not only on b but also on ub.
It is easily seen that the function g : b 7→ Λb(ub) is continuous (and does not

depend on ub, of course). Moreover, (2.15) implies

(2.17) 2g(b) ≤ (q + 1)νb ≤ (p+ 1)g(b),

so that (2.16) yields the estimate

(2.18)
(q + 1

2

)(p−1)/(q−1)

h(b) > f(b) >
(q + 1

p+ 1

)(p−1)/(q−1)

h(b),

where h(b) := b
(
g(b)

)−(p−1)/(q−1)
is continuous. Now (2.18) and the continuity of

h will imply our assertion if we show lim
b→+∞

f(b) = +∞ and ‖u‖ = ‖tbub‖ → ∞

for the corresponding solutions, since the solutions that we found in the proof of
(iii) were bounded (in L∞ and, consequently, in X). Hence, suppose b→ +∞. If

we put vb(x) = d max{0, 1−
√
b dist(x, ∂Ω)}, where d =

(q + 1

|∂Ω|

)1/(q+1)

, we have

Q(vb) = 1, hence

(2.19) g(b) ≤ Λb(vb) ≤ c
√
b,

where c is some constant independent of b. This implies

h(b) ≥ b(c
√
b)−(p−1)/(q−1) = c̃ b(2q−p−1)/(2q−2) →∞,

hence by (2.18) also f(b) → ∞. Now (2.15), (2.17) and (2.19) imply P(ub) ≤
c/
√
b, so that ub → 0 in L2(Ω). Now choose ξ < 1 such that the trace operator

Tr : W ξ,2(Ω) → Lq+1(∂Ω) is continuous. Using an interpolation inequality we
obtain

(2.20) 1 = Q(ub) ≤ c‖ub‖
q+1
ξ,2 ≤ c‖ub‖

ξ(q+1)‖ub‖
(1−ξ)(q+1)
2 ,

where ‖ · ‖ξ,2 and ‖ · ‖2 is the norm in W ξ,2(Ω) and L2(Ω), respectively. Since
‖ub‖2 → 0, (2.20) implies ‖ub‖ → ∞. �

Remark 2.4. If we could choose ub such that f(b) became continuous, then
this would imply in the case of Theorem 2.1(iv) the existence of two positive
solutions for any a large. If one could prove Palais-Smale condition in this case,
this would also lead to the proof of two positive solutions for a large. Another way
how to prove this existence is to prove corresponding apriori estimates and to use
the degree theory – this will be done for the symmetric solutions on the ball.

In the proof of Theorem 2.1(v) we will need the following lemma from [FK].

Lemma 2.7. Let q, q∗ be as in Theorem 2.1(v), let ε > 0 and r > q∗. Then
there exists a constant c = c(ε, r) such that

(2.21)

∫
∂Ω

|u|q+1dS ≤ ε‖u‖2 + c
(∫

Ω

|u|q+1dx
)r
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for any u ∈ X.

Proof. Proof is based on the continuity of the trace operator Tr : W θz,q+1(Ω)→
Lq+1(∂Ω), on an interpolation inequality and the continuity of the imbedding

X ⊂ W z,q+1(Ω) for suitable z, θ ∈ (0, 1). A detailed proof can be found in [FK].�
Proof of Theorem 2.1(v). Let a > 0 be fixed. Our assumptions imply p + 1 >

(q + 1)r for suitable r > q∗. Choosing ε > 0 and using Lemma 2.7 and Hölder
inequality we obtain for any u ∈ X (and suitable c > 0 varying from step to step)

〈Q(u), u〉 =

∫
∂Ω

|u|q+1dS

≤ ε

∫
Ω

|∇u|2dx+ c
(∫

Ω

|u|p+1dx
) 2
p+1

+ c
(∫

Ω

|u|p+1dx
) r(q+1)

p+1

≤ ε

∫
Ω

|∇u|2dx+ εa

∫
Ω

|u|p+1dx+ c

= ε〈u−Ku+ aP (u), u〉+ c

which implies a uniform apriori bound for the solutions t ∈ [0, 1], u ∈ C+ of the
inequality

(2.22) 〈u−Ku+ aP (u)− tQ(u), v − u〉 ≥ 0 ∀v ∈ C+.

Consequently, denoting Ht(u) = u− P+
(
Ku− aP (u) + tQ(u)

)
we get

(2.23) deg(F+, 0, Bc(0)) = deg(H1, 0, Bc(0)) = deg(H0, 0, Bc(0)) = 1,

where the last equality follows from [Q2, Corollary 1], since the functional Λa(u) =
I(u)+aP(u) corresponding toH0 is coercive. On the other hand, Lemma 2.6 yields

(2.24) deg(F+, 0, Bε(0)) = d+(0) = 0.

The existence of a positive solution follows from (2.23), (2.24) and Lemma 2.5. �

Remarks 2.5.
(i) According to the results for Ω being a ball, the condition on p, q in Theo-

rem 2.1(v) does not seem to be optimal. In fact, a finer apriori estimate can lead
to weaker assumptions. Suppose e.g. that p, q fulfil the following assumptions:

q <
N + 1

N − 1
, p ≥ q+ 1 and p+ 1 +

p− 1

p+ 1
> (q+ 1)q∗ (so that p, q need not fulfil the

condition from Theorem 2.1(v)). We show that this condition is also sufficient for
the apriori bound and, consequently, also for the existence.

Let u be a solution of (2.22), i.e. it solves the problem 4u = aup,
∂u

∂n
= tuq.

Choosing a test function ϕd(x) = min{1, 1
d

dist(x, ∂Ω)} for d > 0 small and putting
Ωd = {x ∈ Ω ; ϕd(x) = 1} we get

(2.25) a

∫
Ωd

updx ≤ a

∫
Ω

upϕdx = −

∫
Ω

∇u∇ϕdx ≤ ‖u‖ ‖ϕ‖ ≤
c
√
d
‖u‖
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and using Hölder inequality we obtain

(2.26)

∫
Ω\Ωd

updx ≤ c
(∫

Ω

up+1dx
) p
p+1

d
1
p+1 .

Choosing d =
(∫

Ω
up+1dx

)−ν
, where ν = (p − 1)/(p + 3), and using (2.25) and

(2.26) in Lemma 2.7 we get the desired apriori estimate for u.
Similar improvements can be made also for p < q + 1.

(ii) In order to prove Theorem 2.1(v) one can use also the function f(b) intro-
duced in the proof of Theorem 2.1(iv) and show lim inf

b→∞
f(b) = 0. However, this

leads to estimates which are close to those already used in the proof of Theo-
rem 2.1(v).

(iii) The investigation of the function f(b) gives an information for the existence
of solutions also in other cases; however, in these cases other methods turned out
to be more powerfull. Nevertheless, the likely behaviour of f (indicated in the
figures below) gives us a good insight on the stationary solutions. To support the
figures below, let us only mention that it is easy to show that f(b)→∞ if p > q,
b→ 0, or if p < q, b→∞. In both cases one can use a simple estimate νb ≤ cb.

b

f

p < q

b

f

p = q

b

f

2q − 1 > p > q

b

f

p = 2q − 1

b

f

p > 2q − 1

Figure 7. The graphs of f .
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Proof of Theorem 2.2(i). Let Ω = BR(0). The existence of a positive symmetric
solution to (2.1) follows by the same way as in Theorem 2.1(i); we have only to
restrict ourselves to the space Xs of all radially symmetric functions in X =
W 1,2(Ω). Hence it suffices to prove the uniqueness. Denote r = |x|. Any positive
symmetric solution of (2.1) fulfils the O.D.E.

(2.27) urr +
N − 1

r
ur = aup, r ∈ (0, R)

together with the boundary conditions

(2.28) ur(0) = 0, ur(R) = uq(R).

If u1, u2 are two different positive symmetric solutions, then the uniqueness of the
solution of the initial problem for (2.27) implies u1(0) 6= u2(0). Hence we may
suppose u1(0) < u2(0). Since w := u2 − u1 fulfils

wrr +
N − 1

r
wr = a(up2 − u

p
1), wr(0) = 0, w(0) > 0,

it is easily seen that w(r) > 0 for any r ∈ [0, R], so that u2 > u1 in Ω. By (2.12)
neither u1 nor u2 is a local minimum of Φ with respect to C := {u ; u1 ≤ u ≤ u2},
hence Lemma 2.4 implies the existence of a local minimizer of Φ between u1 and
u2, which contradicts (2.12). �

Proof of Theorem 2.2(ii). Let Ω = BR(0). Considering only the space Xs

of symmetric functions we get similarly as in the proof of Theorem 2.1(iii) the
existence of aso ≥ 0 such that the problem (2.1) has a stable symmetric positive
solution if a > aso and (2.1) does not have symmetric positive solution if a < aso.

To show the rest of the assertion we need some apriori estimates for symmetric
positive solutions. Hence suppose that u is such solution. Multiplying (2.27) by
ur and integrating resulting equation over (0, R) we get using (2.28)

1

2
u2q(R) =

1

2
u2
r(R) ≤

1

2
u2
r(R) +

∫ R

0

N − 1

r
u2
r(r) dr

=
a

p+ 1

(
u(R)p+1 − u(0)p+1

)
<

a

p+ 1
u(R)p+1

which implies

(2.29) u(R)2q−p−1 <
2a

p+ 1
.

Moreover, (2.27) implies urr > 0 whenever ur ≤ 0, hence ur ≥ 0 and (2.29) yields
an apriori bound for u, which is independent of a ∈ [0, A] for any A <∞ fixed.

Denoting by ds+ the local degree corresponding to F+/Xs
and using apriori

estimates (2.29) we obtain for R > 0 sufficiently large

(2.30) deg
(
F+
a /Xs

, 0, BR(0)
)

= deg
(
F+

0 /Xs
, 0, BR(0)

)
= ds+0 (0) = 0 = ds+a (0),
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where the last two equalities follow analogously as the corresponding equality in
Lemma 2.6(ii).

Now if a > aso, then we have a positive symmetric solution u1 which is a
local minimizer of Φ in Xs (cf. the proof of Theorem 2.1(iii)), hence [Q2] implies
ds+(u1) = 1. If this were the only positive symmetric solution, (2.30) would imply

0 = deg
(
F+
a /Xs

, 0, BR(0)
)

= ds+a (u1) + ds+a (0) = 1,

a contradiction. Hence there exist at least two symmetric positive solutions for
a > aso.

Now we show the existence of a positive symmetric solution for a = aso and
this will also imply aso > 0, since the equation F0(u) = 0 does not have positive
solutions. Thus let un be positive symmetric solutions of (2.1) with a = an ↓ aso.
Then

(2.31) un = Kun − anP (un) +Q(un)

and the boundedness of un implies that we may suppose un ⇀ u (weak conver-
gence). Now (2.31) implies

un → u = Ku− asoP (u) +Q(u),

hence u is a nonnegative symmetric solution for a = aso. It is now sufficient to
notice that u 6= 0 by Lemma 2.2. �

Proof of Theorem 2.2(iii), (iv). If p > 2q − 1 or p = 2q − 1 and a > q, then the
proof of Theorem 4.1 yields a positive symmetric supersolution to our problem,
hence the existence follows from Lemma 2.4 (used for the space Xs). If p =
2q−1, a ≤ q and u were a positive symmetric solution, then (2.29) yields a simple
contradiction. �

Remark 2.6. If p > 1 or q > 1 is not subcritical, then one can still expect
similar results as in Theorems 2.1, 2.2. More precisely,

(i) if p > q, then there exists ao ∈ [0,∞) such that (2.1) has a classical positive
solution for a > ao and (2.1) does not have classical positive solutions for
0 < a < ao. If Ω is a ball and p > 2q − 1, then ao = 0.

(ii) If Ω is a ball, p ≤ q and a > ao (where ao is defined in Theorem 2.1(i)),
then (2.1) has a classical positive symmetric solution. If Ω is a ball and
q < p < 2q − 1, then the conclusions of Theorem 2.2(ii) are true.

Proof. (i) Let p > q > 1, let u be a classical positive solution of (2.1) and let
ã > a. Then u is a supersolution of (2.1) in which a is replaced by ã and the
nonlinearities vp and vq are suitably modified for v > maxu (so that the corre-
sponding functional is well defined and differentiable). An obvious modification of
Lemma 2.4 implies now the existence of a solution ũ for the problem (2.1) with a
replaced by ã. Hence the existence of ao ∈ [0,∞] follows.
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To see that ao < ∞, choose subcritical p̃, q̃ > 1 such that q̃ < min(p̃, q). If
ã > 0 is large enough, we have a positive solution ũ of (2.1) with p, q and a
replaced by p̃, q̃ and ã, respectively. The proof of Theorem 2.1(iii) shows that we
may suppose 0 < ũ < 1 in Ω, hence ũq̃ > ũq. Moreover, choosing a > 0 large
enough we have aũp > ãũp̃, so that ũ is a supersolution for the problem (2.1)
(with the nonlinearities vp, vq modified for v > 1), which implies the existence of
a solution for a large.

If Ω is a ball and p > 2q − 1, we may use the supersolution from Theorem 4.1.
(ii) Replacing the nonlinearities up and uq by m(u) = umin(u,C)p−1 and

n(u) = u1+ε min(u,C)q−1−ε, respectively (where ε > 0 is small and C > 0 is
large) we obtain similarly as in (2.29) the following apriori bound for the positive
symmetric solutions of the modified problem:

(2.32)
n2
(
u(R)

)
M
(
u(R)

) < 2a,

where M(u) =
∫ u
o
m(v) dv. If u(R) > C, then (2.32) yields

2a >
u(R)2+2εC2q−2−2ε

u(R)2−C2

2 Cp−1 + Cp+1

p+1

>
u(R)2+2εC2q−2−2ε

u(R)2Cp−1
> C2q−p−1,

which is a contradiction for C large. Consequently, any positive symmetric solution
of the modified problem is a solution of our original problem for C large enough.

The existence of a positive symmetric solution for the modified problem for
p ≤ q and a > ao follows from the mountain pass theorem similarly as in Theorems
2.1(i), 2.2(i) or from the degree theory (see Remark 2.3(ii)). The existence of aso
(as in Theorem 2.2(ii)) for q < p < 2q− 1 follows from an obvious modification of
the proof of Theorem 2.2(ii). �

Finally let us note, that if Ω is a general domain in RN and p ≤ q, then one
can easily show that (2.14) is true also for supercritical p, q.

3. Stationary solutions for N=1

Consider the O.D.E.

(3.1) uxx = aup for x > 0,

with the initial conditions

(3.2) u(0) = m > 0, ux(0) = 0.

We are looking for L > 0 such that

(3.3) ux(L) = uq(L).
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This will provide a symmetric solution to

(3.4)


uxx = aup on (−l, l),

∂u

∂n
= uq at − l, l,

with l = L. If for given m there are two values L1, L2 such that (3.3) is satisfied,
then by shift and reflection we obtain a pair of nonsymmetric solutions u1, u2 to
the problem (3.4) with l = (L1 + L2)/2, u1(x) = u2(−x).

Multiplying (3.1) by ux and integrating we see that

(3.4a)
1

2
u2
x −

a

p+ 1
up+1 = const = −

a

p+ 1
mp+1.

Note that uxx ≥ 0, hence ux is nondecreasing and since ux(0) = 0 we have that
ux ≥ 0. Therefore

(3.4b) ux =

√
2a

p+ 1

√
up+1 −mp+1

and integrating this equation we obtain

(3.5)

∫ u(x)

m

dv
√
vp+1 −mp+1

=

√
2a

p+ 1
x.

For m given, the solvability of (3.1)–(3.3) is equivalent to finding L such that∫ u(L)

m

dv
√
vp+1 −mp+1

=

√
2a

p+ 1
L,

uq(L) =

√
2a

p+ 1

√
up+1(L)−mp+1.

The last equation may be written in the form

p+ 1

2a
u2q(L)− up+1(L) +mp+1 = 0.

If we now denote by R(m) a root of the equation

(3.6)
p+ 1

2a
x2q − xp+1 +mp+1 = 0

and assume that R(m) > m, then (3.5) gives us a solution to (3.4) on the interval(
−L(m), L(m)

)
with

L(m) =

√
p+ 1

2a

∫ R(m)

m

dv
√
vp+1 −mp+1

.
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Setting V =
v

m
we get

(3.7) L(m) =

√
p+ 1

2a
m−(p−1)/2

∫ R(m)
m

1

dV
√
V p+1 − 1

.

Theorem 3.1. Assume that p > 2q − 1. Then for any l the problem (3.4) has
a unique nontrivial solution. This solution is symmetric.

Proof. Consider the function

(3.8) F(x) =
p+ 1

2a
x2q − xp+1 +mp+1.

One has

F ′(x) = (p+ 1)
( q
a
x2q−1 − xp

)
.

Hence F ′ vanishes only for

(3.9) x =
(a
q

)1/(2q−p−1)

.

Thus F is increasing up to this value and decreasing next. Hence (3.6) has only
one root

R(m) ≥
(a
q

)1/(2q−p−1)

,

in particular

(3.10) lim
m→0

R(m)

m
= +∞.

Since

(3.11) 0 <

∫ +∞

1

dV
√
V p+1 − 1

< +∞,

we deduce from (3.7), (3.10) that

(3.12) lim
m→0

L(m) = +∞.

Combining (3.7), (3.11) we have also

(3.13) lim
m→∞

L(m) = 0
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and the range of L is (0,+∞). Now we show that L is a decreasing function.
Indeed, from (3.7) we have

(3.14)

L′(m) =−
p− 1

2

√
p+ 1

2a
m−(p+1)/2

∫ R(m)
m

1

dV
√
V p+1 − 1

+

√
p+ 1

2a
m−(p−1)/2 1√(R(m)

m

)p+1
− 1

(R(m)

m

)′
.

But since R(m) is the only root to (3.6), it follows from the implicit function
theorem that R is differentiable and by differentiation one gets

(3.15) R′(m) =
mp

R(m)p − q
a
R(m)2q−1

.

It follows that(R(m)

m

)′
= −

1

m2
R(m) +

1

m
R′(m) = −

1

m2

(
R(m) +

mp+1

q
a
R(m)2q−1 −R(m)p

)
=−

1

m2

( q
a
R(m)2q−1 −R(m)p

)−1( q
a
R(m)2q −R(m)p+1 +mp+1

)
<−

1

m2

( q
a
R(m)2q−1 −R(m)p

)−1(p+ 1

2a
R(m)2q −R(m)p+1 +mp+1

)
= 0,

the last inequality follows from the fact, that

q

a
R(m)2q−1 −R(m)p = F ′

(
R(m)

)
< 0.

Recalling (3.14) we obtain that

(3.16) L′(m) < 0.

(3.12), (3.13) and (3.16) yield the assertion. �

Theorem 3.2. Assume that p = 2q − 1.

(i) If a ≤ q then the problem (3.4) cannot have nontrivial solutions.
(ii) If a > q then for any l the problem (3.4) has a unique nontrivial solution.

This solution is symmetric.

Proof. (i) The boundary value u(L) must be a solution to (3.6). But (3.6)
reduces to

mp+1 = xp+1
(

1−
q

a

)
≤ 0.



BLOW UP FOR PARABOLIC EQUATIONS 57

(ii) In this case (3.6) has a unique root R(m) which is given by the explicit
formula

R(m) = m
(

1−
q

a

)− 1
2q
.

Hence
(R(m)

m

)′
= 0 and it is easily seen from (3.14) that L′(m) < 0. (3.7)

immediately yields (3.12) and (3.13). �
Next we turn to the case p < 2q − 1. Considering F given by (3.8) we see that

F has an absolute minimum given by (3.9). So, in order for (3.6) to have a root
we need

F
((a

q

) 1
2q−p−1

)
≤ 0

which reads also

(3.17) m ≤ c(a) := a
1

2q−p−1 c(p, q),

where

c(p, q)p+1 =
(1

q

) 1
2q−p−1

(2q − p− 1

2q

) 1
p+1

.

Then for m satisfying (3.17), the graph of F looks like

0

mp+1

F

R1(m)

(aq )
1

2q−p−1

R2(m) x

Figure 8. The graph of F .

and (3.6) has two roots R1(m), R2(m) which are equal to
(a
q

) 1
2q−p−1

when

m = c(a). Note that if m satisfies (3.17) then

m ≤
(a
q

) 1
2q−p−1

.
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Since F(m) ≥ 0, one has
m ≤ R1(m) ≤ R2(m).

Let us now study the two curves

(3.18) Li(m) =

√
p+ 1

2a
m−(p−1)/2

∫ Ri(m)
m

1

dV
√
V p+1 − 1

i = 1, 2

on the interval (0, c(a)).

Lemma 3.1. Assume that p < 2q − 1. Then we have

(3.19) L1(m) ≤ L2(m),

and L2(m) is decreasing for m ∈ (0, c(a)). Moreover,

(3.20) lim
m→c(a)

Li(m) =

√
p+ 1

2a
c
−p−1

2
(a)

∫ d(p,q)

1

dV
√
V p+1 − 1

=: L(a),

where d(p, q) =
1

c(p, q)

(1

q

) 1
2q−p−1

.

Proof. (3.19) and (3.20) are obvious. In order to show that L′2 < 0 it is sufficient

to prove that
(R2(m)

m

)′
< 0 (see (3.14)). From (3.15) we get

(Ri(m)

m

)′
=

1

m2

( q
a
Ri(m)2q −Ri(m)p+1 +mp+1

Ri(m)p − q
a
Ri(m)2q−1

)
.

According to (3.6), the last equality implies that

(3.21)
(Ri(m)

m

)′
=

1

am2

(
q −

p+ 1

2

) Ri(m)2q

Ri(m)p − q
a
Ri(m)2q−1

.

Since R2(m) ≥
(a
q

) 1
2q−p−1

, R2(m) is in the region where

1

p+ 1
F ′(x) =

q

a
x2q−1 − xp > 0.

Hence, the right hand side of (3.21) is negative for i = 2. �

Lemma 3.2. Assume that p ≤ q. Then L1(m) is increasing.

Proof. To prove that L′1 > 0 means (see (3.14)) to prove that

m−
p−1

2

(R1(m)
m

)′√(R1(m)
m

)p+1
− 1

>
p− 1

2
m−

p+1
2

∫ R1(m)
m

1

dV
√
V p+1 − 1

.
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The last inequality is equivalent to the following one:
(3.22)

ΨL(m) := m
(R1(m)

m

)′
>
p− 1

2

√(R1(m)

m

)p+1

− 1

∫ R1(m)
m

1

dV
√
V p+1 − 1

=: ΨR(m).

Using (3.21) we get

ΨL(m) =
1

a

R1(m)

m
R1(m)2q−p−1

(
q −

p+ 1

2

) 1

1− q
a
R1(m)2q−p−1

.

But

0 < 1−
q

a
R1(m)2q−p−1 < 1−

p+ 1

2a
R1(m)2q−p−1 =

(R1(m)

m

)−(p+1)

,

the last equality follows from (3.6). Hence

(3.23) ΨL(m) >
1

a

(
q −

p+ 1

2

)(R1(m)

m

)p+2

R1(m)2q−p−1.

On the other hand,

ΨR(m) <
p− 1

2

√(R1(m)

m

)p+1

− 1

∫ R1(m)
m

1

V pdV
√
V p+1 − 1

=
p− 1

p+ 1

((R1(m)

m

)p+1

− 1

)
.

According to (3.6) we have

p− 1

p+ 1

((R1(m)

m

)p+1

− 1

)
=
p− 1

2a

(R1(m)

m

)p+1

R1(m)2q−p−1.

Our assumption on p, q implies now that

ΨR(m) <
1

a

(
q −

p+ 1

2

)(R1(m)

m

)p+1

R1(m)2q−p−1.

Recalling the inequality R1(m) ≥ m, we obtain

(3.24) ΨR(m) <
1

a

(
q −

p+ 1

2

)(R1(m)

m

)p+2

R1(m)2q−p−1.

(3.23) and (3.24) yield (3.22). �

Lemma 3.3. Assume that p < 2q − 1. Then

lim
m→0

L2(m) = +∞,(3.25)

lim
m→0

aL1(m)

mq−p
= 1.(3.26)
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Proof. First remark that if R is a limit point (as m → 0) of R1(m) or R2(m)
one must have (see (3.6))

p+ 1

2a
R2q −Rp+1 = 0,

which means that R = 0 or R =
( 2a

p+ 1

) 1
2q−p−1

. Since

R1(m) ≤
(a
q

) 1
2q−p−1

<
( 2a

p+ 1

) 1
2q−p−1

and (a
q

) 1
2q−p−1

< R2(m),

the only limit point of R2(m) is
( 2a

p+ 1

) 1
2q−p−1

and the only limit point of R1(m)

is 0. Thus we have

lim
m→0

R2(m)

m
= +∞.

One concludes like in (3.12) that (3.25) holds.
Since R1(m) → 0 and (3.6) implies that

mp+1 = R1(m)p+1
(

1−
p+ 1

2a
R1(m)2q−p−1

)
,

we have

(3.27) lim
m→0

R1(m)

m
= 1.

In the sequel it will be convenient for us to use the following notation: “f(x) ∼ g(x)

when x→ xo” means that lim
x→xo

f(x)

g(x)
= 1. When h→ 0+, we have

∫ 1+h

1

dV
√
V p+1 − 1

=

∫ h

0

dV√
(V + 1)p+1 − 1

∼

∫ h

0

dV√
(p+ 1)V

=
2

√
p+ 1

√
h.

Using (3.18), (3.27) it follows that

(3.28) L1(m) ∼

√
p+ 1

2a
m−

p−1
2

2
√
p+ 1

√
R1(m)

m
− 1 =

√
2

amp

(
R1(m)−m

)
.

From (3.6) we deduce

p+ 1

2a
R1(m)2q−p−1 = 1−

( m

R1(m)

)p+1

∼
(

1−
m

R1(m)

)
(p+ 1),
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hence

R1(m)−m ∼
1

2a
R1(m)2q−p ∼

1

2a
m2q−p.

Going back to (3.28) we get

L1(m) ∼

√
2

a
m−

p
2

1
√

2a
mq−p2 =

1

a
mq−p

and (3.26) is shown. �

Lemma 3.4. Assume that p < 2q − 1. Then

lim
m→c(a)

L′1(m) = +∞,

lim
m→c(a)

L′2(m) =−∞.

Proof. From (3.14), (3.7) we have

(3.29) L′i(m) = −
p− 1

2m
Li(m) +Gi(m),

where

Gi(m) :=

√
p+ 1

2a
m−

p−1
2

((Ri(m)

m

)p+1

− 1

)−1
2(Ri(m)

m

)′
.

According to (3.6) we get

(3.30)

((Ri(m)

m

)p+1

− 1

)−1
2

=

√
2a

p+ 1
Ri(m)−qm

p+1
2 .

(3.21) and (3.30) imply that

(3.31) Gi(m) =
1

am

(
q −

p+ 1

2

)
Ri(m)q−p

(
1−

q

a
Ri(m)2q−p−1

)−1

.

The first term on the right hand side of (3.29) tends to a finite limit as m→ c(a)

(see (3.20)), while

G1(m)→ +∞, G2(m)→ −∞ as m→ c(a)

since

R1(m) ≤
(a
q

) 1
2q−p−1

≤ R2(m),

Ri(m)→
(a
q

) 1
2q−p−1

as m→ c(a).

�
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Lemma 3.5. Assume that q < p < 2q− 1. Then L1 has a unique minimum in
(0, c(a)).

Proof. It suffices to prove that L′′1(m) > 0 at any point m where L′1(m) = 0.
We first rewrite (3.14) in the following form:

(3.32)

√
2a

p+ 1
m
p+1

2 L′1(m) = −
p− 1

2
I(m) + J(m),

where

I(m) :=

∫ %

1

dV
√
V p+1 − 1

, J(m) :=
m%′√
%p+1 − 1

, % :=
R1(m)

m
.

Differentiating (3.32) and multiplying the result by m, we get

(3.33)

√
2a

p+ 1
m
p+3

2 L′′1(m) =
p2 − 1

4
I(m)+J(m)

(
1−p+

m%′′

%′
−

(p+ 1)%pm%′

2(%p+1 − 1)

)
.

Let us now compute m%′,
m%′′

%′
. From (3.6) we obtain that

R1(m)2q−p−1 =
2a

p+ 1

%p+1 − 1

%p+1
.

(3.15) and the last equality yield

(3.34)

m%′ = R′1(m)−
R1(m)

m
=

1

%p
1

1− q
a
R1(m)2q−p−1

− %

=
%(%p+1 − 1)

k − %p+1
, k :=

2q

2q − p− 1
.

Further (m%′)′ = %′ +m%′′, hence

(3.35)
m%′′

%′
= −1 +

(p+ 2)%p+1 − 1

k − %p+1
+

(p+ 1)%p+1(%p+1 − 1)

(k − %p+1)2
.

If L′1(m) = 0, then

(3.36) J(m) =
p− 1

2
I(m).

Using (3.34)–(3.36) we obtain from (3.33) that√
2a

p+ 1
m
p+3

2 L′′1(m) = J(m)
(1− p

2
+

(p+ 3)σ − 2

2(k − σ)
+

(p+ 1)σ(σ − 1)

(k − σ)2

)
, σ := %p+1.
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We will be done if we show that the expression in big brackets is positive. It can
be easily seen that this holds if and only if

(3.37) σ(3kp− 2p+ k) > k2(p− 1) + 2k.

To prove (3.37) we need the following lower bound for σ:

(3.38) σ ≥
p− 1

2p
k if L′1(m) ≥ 0.

To derive (3.38) we use successively (3.34), the nonnegativity of L′ and an obvious
inequality:

%(%p+1 − 1)

(k − %p+1)
√
%p+1 − 1

=
m%′√
%p+1 − 1

≥
p− 1

2

∫ %

1

dV
√
V p+1 − 1

≥
p− 1

p+ 1

√
%p+1 − 1

%p
.

Now an easy calculation yields (3.38). According to (3.38) it is sufficient to prove
that

p− 1

2p

(
2kp− 2p+ k(p+ 1)

)
> k(p− 1) + 2.

Writing this inequality in the form

k(p− 1)− (p− 1) + k
p2 − 1

2p
> k(p− 1) + 2

we see that it holds if k >
2p

p− 1
. But k =

1

1− p+1
2q

>
1

1− p+1
2p

=
2p

p− 1
, since

q < p. �
The results of Lemmas 3.1–3.5 are summarized in the following figures.

0 c(a) m

L

L1(m)

L2(m)

p < q

0 c(a) m

L

L1(m)

L2(m)

1
a

p = q

0 c(a) m

L

L1(m)

L2(m)

L∗

q < p < 2q − 1

Figure 9. The graphs of Li(m).
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Concerning symmetric solutions to (3.4) we have the following theorem.

Theorem 3.3.

(i) If p < q, then for any l > 0 the problem (3.4) has a unique positive
symmetric solution.

(ii) If p = q, then for any l > 1/a the problem (3.4) has a unique positive
symmetric solution, while for l ≤ 1/a there are no positive solutions.

(iii) If q < p < 2q − 1, then there is a number L∗ (depending on (a, p, q) such
that for l > L∗ there are exactly two positive symmetric solutions, for
l = L∗ there is a unique positive symmetric solution and for l < L∗ there
are no positive solutions.

Proof. It is an immediate consequence of Lemmas 3.1–3.5. We only remark that
the nonexistence results in (ii), (iii) hold also for nonsymmetric solutions (recall
the observations at the beginning of this section). �

Now we turn to the study of nonsymmetric solutions. From the fact that for
p < 2q − 1 and 0 < m < c(a) there are two values L1(m), L2(m) such that
(3.3) holds it follows that there is at least one pair of nonsymmetric solutions
for l = 1

2 (L1(m) + L2(m)). The following lemma is motivated by the question,
whether this pair is unique.

Lemma 3.6. Assume that p < 2q − 1 and either p ≤ 4 or p > 4, q ≥

p− 1−
1

p− 2
. Then

(3.39) L′1(m) + L′2(m) < 0 for m ∈ (0, c(a)).

Proof. According to (3.29) a sufficient condition for (3.39) is that

(3.40) G1(m) +G2(m) ≤ 0.

By (3.31) this is equivalent to

F ′
(
R1(m)

)
R1(m)q

+
F ′
(
R2(m)

)
R2(m)q

≤ 0,

where F is defined by (3.8). Setting

H(y) :=
p+ 1

2a
y

2q
q+1 − y

p+1
q+1 +mp+1,

we obtain that (q + 1)H ′(y) = x−qF ′(x) if y = xq+1, hence (3.40) holds if and
only if

(3.41) H ′(y1) +H ′(y2) ≤ 0, yi := Ri(m)q+1, i = 1, 2.
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Now we show that if H ′′′(y) < 0 for y ∈ [y1, y2], then (3.41) holds. To do this
we first observe that

(3.42) yo − y1 ≤ y2 − yo,

where yo is the unique point where H ′(yo) = 0. Indeed, from Taylor’s theorem we
have

(3.43) 0 = H(yi) = H(yo) +
1

2
H ′′(θi)(yi − yo)

2,

θi lies between yi and yo. From (3.43) it is easily seen that

yo − y1 =

√
H ′′(θ2)

H ′′(θ1)
(y2 − y1)

and (3.42) follows from the assumption on H ′′′. Suppose now that H ′(y2) >
−H ′(y1). Then

(3.44) H ′(y2 − η) > −H ′(y1 + η) for η ∈ [0, yo − y1]

since
H ′′(y2 − η) < H ′′(y1 + η).

But (3.44) leads to
H
(
y2 − (yo − y1)

)
< H(yo)

what is a contradiction.
Suppose now that there is a point m such that L′1(m) + L′2(m) ≥ 0 (hence

L′1(m) ≥ 0). For such m we get using (3.34) and the fact that
(R2(m)

m

)′
< 0 that

%
√
%p+1 − 1

k − %p+1
=

m%′√
%p+1 − 1

>
p− 1

2

(∫ %

1

dV
√
V p+1 − 1

+

∫ R2(m)
m

1

dV
√
V p+1 − 1

)
≥ (p− 1)

∫ %

1

dV
√
V p+1 − 1

≥ 2
p− 1

p+ 1

√
%p+1 − 1

%p
.

This implies that

%p+1 ≥
2(p− 1)

3p− 1
k =

4(p− 1)q

(3p− 1)(2q − p− 1)
.

By (3.6) we have

%p+1
(

1−
p+ 1

2a
R1(m)2q−p−1

)
= 1,
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hence

(3.45) y
2q−p−1
q+1

1 = R1(m)2q−p−1 ≥
2a

p+ 1

(
1−

(3p− 1)(2q − p− 1)

4q(p− 1)

)
.

If we show that H ′′′(y) < 0 for y ∈ [y1, y2] then we arrive at a contradiction. A
straightforward calculation yields that

(3.46)
(q + 1)3

p+ 1
y
q+3
q+1H ′′′(y) = −

2q

a
(q − 1) + (p− q)(2q − p+ 1)y

−2q−p−1
q+1 .

Taking (3.45) into account we see, that we need only to consider

y
−2q−p−1

q+1 ≤
2q(p− 1)

a(3p− 2q − 1)
.

The right hand side of (3.46) is then nonpositive if

(p− q)(2q − p+ 1)
p− 1

3p− 2q − 1
≤ q − 1.

By straightforward calculations it can be shown that the last inequality holds if
and only if

(2q − p− 1)(p2 − pq + 2q − 3p+ 1) ≤ 0.

The first term is positive and the second one is nonpositive if and only if

(3.47) q(p− 2) ≥ p2 − 3p+ 1.

If p > 4 and q ≥ p − 1 − 1
p−2 , then (3.47) is easily seen to hold. Consider now

p ≤ 4. If p ≤ 2, then q(p − 2) ≥ p(p − 2) > p2 − 3p + 1. If 2 < p ≤ 4, then
q(p− 2) > 1

2 (p+ 1)(p− 2) ≥ p2 − 3p+ 1. �

Remark 3.1. The method of proof of Lemma 3.6 does not work for any
p < 2q − 1, since for q > 3 there exists p ∈ (q, 2q − 1) such that H ′′′(yo) > 0.

Theorem 3.4. Assume that p < 2q − 1. Then the following holds:

(i) There is a number L∗∗ ∈ (0, L(a)] (which depends on a, p, q) such that for
any l > L∗∗ the problem (3.4) has at least one pair of positive nonsym-
metric solutions u1, u2, u1(x) = u2(−x) for x ∈ [−l, l], while for l < L∗∗

there are no positive nonsymmetric solutions.
(ii) If p ≤ 4 or p > 4, q ≥ p − 1 − 1

p−2 , then L∗∗ = L(a) and the pair of

nonsymmetric positive solutions is unique.

Proof. In order to prove (i) we need only to show that the range of 1
2 (L1 +L2)

contains the interval (L(a),∞). This follows from (3.20), (3.25).
Lemma 3.6 implies (ii). �
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In sections 4 and 5 it will be important to know how are the stationary solutions
ordered. For p ≥ 2q− 1 we have shown that there is at most one positive solution,
for p ≤ q it follows from Theorem 2.1(i) that any two positive solutions cross each
other. Concerning the remaining case q < p < 2q− 1 we have the following result.

Proposition 3.1. Assume that q < p < 2q − 1, l > L∗. Let u1, u2 be the two
symmetric solutions from Theorem 3.3(iii), m1 = u1(0) < u2(0) = m2. Then

(i) u1 < v (i.e. u1(x) < v(x), x ∈ [−l, l]) for any positive solution v, v 6≡ u1,
(ii) any nonsymmetric positive solution crosses u2,
(iii) any two nonsymmetric positive solutions cross each other.

Proof. (i) We show first that u1 < u2. Suppose there is a point xo ∈ (0, l] such
that u1(xo) = u2(xo), u1(x) < u2(x) for x ∈ [0, xo). Set w := u2 − u1. Then
wx(0) = 0 and wxx(x) > 0 for x ∈ [0, xo), hence wx(x) > 0 for x ∈ (0, xo). But
then w(xo) > w(0) > 0, a contradiction.

Let now v be an arbitrary nonsymmetric solution. If v ≥ u1 then v > u by the
maximum principle. Suppose there is a point xo ∈ [−l, l] such that u1(xo) > v(xo).
Set w(x) := min

(
v(x), u1(x)

)
. Then

(3.47a) w ≤ u1, w 6≡ u1, w is a supersolution.

The problem (1.1) generates a strongly monotone compact local semiflow in C+ :=
{v ∈ W 1,2(Ω) ; v ≥ 0} (see Proposition 5.1) and it is easily seen that the subset
C+
s := {v ∈ C+ ; v(x) = v(−x)} is invariant. The zero solution is unstable from

above (Theorem 2.1(iii)), the W 1,2–norm of any orbit can be estimated in terms of
its sup–norm (see (4.10)), therefore there is an orbit lying in C+

s which connects 0
to u1 ([M, Theorem 8]), a contradiction to (3.47a). (It is not difficult to see that
Theorem 8 from [M] is applicable in our case, although it was formulated in [M]
only for semiflows on whole Banach spaces.)

(ii) Let v be an arbitrary nonsymmetric solution. Suppose v does not cross u2,
i.e. either v ≥ u2 or v ≤ u2. In both cases we arrive at a contradiction, because
according to [M, Theorem 8] there are orbits (in C+

s ) which connect u2 to u1 and
to ∞.

(iii) Let v1, v2 be nonsymmetric solutions, v1 6≡ v2. If v1(x) = v2(−x), then they
cross at x = 0. Assume now that there is a point xo such that v1(xo) 6= v2(−xo).
Then v1, v2 lie on two different trajectories of the planar system

u′ = w,

w′ = aup.

The phase portrait for this problem is depicted in Figure 10.
Trajectories going through the points (m, 0), m < c(a) (cf. (3.17)), cross both of

the curves u′ = uq, u′ = −uq exactly twice. The trajectory going through (c(a), 0)
hits any of the curves u′ = uq, u′ = −uq exactly once. Trajectories going through
the points (m, 0), m > c(a), cannot yield solutions to (3.4).
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0

u

u′

c(a)

u′ = uq

u′ = −uq

Figure 10. The phase portrait for u′ = v, v′ = aup.

If a pair of nonsymmetric solutions is not unique, then there are two trajectories
that need the same “time” to go from the first intersection with u′ = −uq to the
first intersection with u′ = uq. It is easy to see that it is sufficient to consider
v1, v2 as depicted in the following Figure 11.

u

u′

v1

v2

u

u′

v1

v2

Figure 11. Two nonsymmetric solutions v1, v2.

In both cases v1(−l) > v2(−l) and v1(l) < v2(l), i.e. v1, v2 cross each other. �

Now we turn to the investigation of the Morse indices of the stationary solutions.
These results will be used in Section 5.



BLOW UP FOR PARABOLIC EQUATIONS 69

Theorem 3.5

(i) The symmetric stationary solutions are hyperbolic except of the cases

p < 2q − 1, m = c(a) or q < p < 2q − 1, l = L∗.

(ii) The nonsymmetric stationary solutions are hyperbolic if they correspond
to m such that L′1(m) + L′2(m) 6= 0 (cf. Lemma 3.6).

Proof. Let v(x;µ) be a solution of (3.1) with

v(−l, µ) = µ > 0, vx(−l, µ) = −µq.

We have to show that the linearized problem

w′′ = apvp−1w, x ∈ (−l, l)(3.48)

w′(−l) = − qv(−l)q−1w(−l)(3.49)

w′(l) = qv(l)q−1w(l)(3.50)

cannot have a nontrivial solution, if µ is such that

vx(l;µ) = vq(l, µ).

Obviously, w(x) = vµ(x;µ) satisfies (3.48), (3.49). Since (3.48) is a linear second
order equation, any solution of (3.48), (3.49) must be a scalar multiple of vµ(x;µ).

Assume now that v corresponds to a symmetric solution u, hence l = Li(m) for
i = 1 or 2 (or l = L(m)). The numbers m = v(0;µ) and µ are related (cf. (3.6))
by the equation

mp+1(µ) = µp+1 −
p+ 1

2a
µ2q.

Differentiating the equality

vx(Li(m);µ) = vq(Li(m);µ)

with respect to µ, we obtain that

(3.51) vxµ − qv
q−1vµ =

−1

mp
L′i(µ

p −
q

a
µ2q−1)(vxx − qv

q−1vx).

Since

vxx(Li(m);µ)− qvq−1vx(Li(m);µ) = avp(Li(m);µ)− qv2q−1(Li(m);µ),

we see that the right hand side of (3.51) is nonzero under the assumptions of the
first part of the theorem (L′1 vanishes if and only if q < p < 2q − 1, l = L∗;
aµp−qµ2q−1 = avp(Li(m);µ)−qv2q−1(Li(m);µ) vanishes if and only if m = c(a)).
Hence, (3.48)–(3.50) has no nontrivial solution.
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To prove (ii) we can argue exactly as before with the only difference that now
2l = L1(m) + L2(m). �

In the remainder of this section we shall work with a fixed length l, we shall
vary the parameter a and we shall use the notations introduced in Section 2. We
want to use the bifurcation diagrams shown in Section 1; their correctness is shown
(except of the case 2q − 1 > p > max(4, q + 1 + 1

p−2 )) by Theorems 3.1–3.4 and

by the following lemma:

Lemma 3.7. Let ua be (any) positive solution of (3.4) and let L(a) be as in
(3.20) (if p < 2q − 1). Then we have

(i) If p < 2q − 1, then
d

da
L(a) < 0, lim

a→∞
L(a) = 0, lim

a→0+
L(a) = +∞.

(ii) If p < q and a→ 0+ or if p = q and a→ 1
l
+, then ‖ua‖ → 0.

(iii) If q < p < 2q − 1 and m ∈ (0, c(a)) is fixed, then
d

da
L1(m) < 0,

lim
a→0+

(
min

0<m<c(a)

L1(m)
)

= +∞.

(iv) If p > 2q − 1 (or if p = 2q − 1 and a > q), then lim
a→0+

‖ua‖ = +∞ (or

lim
a→q+

‖ua‖ = +∞) and lim
a→∞

‖ua‖ = 0.

(v) If p < 2q − 1, then ua → ua1 in W 1,2(Ω) as a → a1+, where ua1 is the
maximal positive solution of (3.4) and a1 is as in Figs. 1–3.

Proof. (i) Follows immediately from (3.10) and (3.17).
(ii) By the same way as in (2.29) we obtain

(3.52) u2q−p−1(l) ≤
2a

p+ 1
,

hence ‖ua‖ → 0 if a→ 0+ and ‖ua‖ is bounded if a→ 1
l+. If p = q, a→ 1

l+ and

ua 6→ 0, choose a sequence an ↓
1
l such that ‖un‖ → c > 0 (where un := uan). We

may suppose un ⇀ u (weak convergence) and passing to the limit in the equality

un = Kun − anP (un) +Q(un)

we get un → u = Ku+ 1
l
P (u) +Q(u), which contradicts Theorem 3.3(ii).

(iii) Using (3.7) we obtain

d

da
L1(m) = −

1

2a
L1(m) +

√
p+ 1

2a
m−(p+1)/2 1√(R1(m)

m

)p+1
− 1

d

da
R1(m)

and differentiating (3.6) we get

d

da
R1(m) =

p+ 1

2a2

R1(m)2q

F ′
(
R1(m)

) < 0,
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hence
d

da
L1(m) < 0.

Now suppose ak → 0 and min
0<m<ck

L1(m) < l < +∞, where ck = cak . Then

ck → 0 by (3.17), hence there exists a sequence uk of positive solutions of (3.4)
with a = ak and uk(0) = mk → 0. Since ak → 0, this implies ‖uk‖ → 0, which
contradicts Lemma 2.2.

(iv) The estimate (3.52) implies ‖ua‖ → +∞ for a → 0+ and p > 2q − 1. If
p = 2q − 1, ak → q+ and ‖uk‖ < c (where uk = uak and c is a constant), then
choosing a weakly convergent subsequence we get (as in the proof of (ii)) uk → u,
where u is a positive solution corresponding to a = q. Now Theorem 3.2(i) and
Lemma 2.2 yield a contradiction.

Finally, choose ε > 0 and choose any positive function u : [−l, l] → (0, ε)
fulfilling the boundary conditions in (3.4). Then uxx ≤ aup for sufficiently large
a, hence ua ≤ u < ε, which implies ‖ua‖ → 0 for a→∞.

(v) This follows from the continuous dependence of Li(m), L(a) and c(a) on a
and from the continuous dependence of the solution of (3.1)–(3.2) on m. �

If u is a solution of (3.4) (or, equivalently, (2.2)), then the number of the negative
or zero eigenvalues of the operator F ′(u) = I − K + aP ′(u) − Q′(u) (where I
denotes the identity), will be denoted by M−(u) or Mo(u), respectively. Recall
that any eigenvalue λ 6= 1 of F ′(u) is simple since the corresponding eigenvector
is a solution of a second order linear differential equation with a fixed boundary
condition. Moreover, the variational characterization of eigenvalues of F ′(u) gives
us immediately the continuous dependence of these eigenvalues on the solution u,
which implies

M−(un)→M−(u) if un → u and Mo(u) = 0(3.53)

0 ≤ lim
n→∞

(
M−(un)−M−(u)

)
≤ 1 if un → u and Mo(u) 6= 0(3.54)

Finally, if Mo(u) = 0, then the degree d(u) is well defined and d(u) = (−1)M
−(u).

Theorem 3.6. Let ao and a1 be as in Figs. 1–5.

(i) Let p ≤ q. If u is a positive symmetric solution of (3.4), then M−(u) = 1
for a ≤ a1 and M−(u) = 2 for a > a1. Moreover, Mo(u) = 0 if a 6= a1. If
u is a positive nonsymmetric solution of (3.4), then M−(u) = 1, Mo(u) =
0.

(ii) Let q < p < 2q− 1 and let the assumptions of Theorem 3.4(ii) be fulfilled.
Let a > ao and let u1 < u2 be the two corresponding symmetric positive
solutions of (3.4). Then M−(u1) = Mo(u1) = 0, M−(u2) = 1 for a < a1,
M−(u2) = 2 for a > a1 and Mo(u) = 0 if a 6= a1. If u is a positive
nonsymmetric solution of (3.4), then M−(u) = 1, Mo(u) = 0.

(iii) Let p ≥ 2q − 1 and let u be a positive solution of (3.4). Then M−(u) =
Mo(u) = 0.

(iv) M−(0) = 0 and Mo(0) = 1 for any p, q.
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Proof. (i) Choose a > ao sufficiently close to ao. Using Lemma 2.6, Lemma 2.3
and the homotopy invariance property of the degree one easily gets

0 = d+
ao(0) = d+

a (u) + d+
a (0) = d+

a (u) + 1,

where u is the unique positive solution of (3.4), hence d+
a (u) = da(u) = −1. Since

u → 0 for a → ao and M−(0) = 0 6= Mo(0), we get using (3.54) (which is easily
seen to hold also for varying a) and Theorem 3.5 that M−(u) = 1 and Mo(u) = 0.
By Theorem 3.5 this will hold for any a < a1.

Now choose a− < a1 < a+ close to a1 and let u−, u+ be the corresponding
positive symmetric solutions and u+

1 , u
+
2 the corresponding positive nonsymmetric

solutions (for a = a+). Using the homotopy invariance of the degree we get

(3.55) −1 = da−(u−) = da+(u+) + da+(u+
1 ) + da+(u+

2 ) = da+(u+) + 2da+(u+
1 )

due to the symmetry u+
1 (x) = u+

2 (−x). Theorem 3.5 implies

|da+(u+)| = |da+(u+
1 )| = 1,

so that (3.55) yields da+(u+) = 1, da+(u+
1 ) = −1.

Repeating our considerations with a close to ao for F/Xs
, where Xs is the

space of symmetric functions from X, we get dsa(u) = −1 and (Ms)−(u) = 1
for any a > ao and any positive symmetric solution u (where ds and Ms is
the degree and the Morse index corresponding to F/Xs

, respectively), hence

M−(u+) ≥ (Ms)−(u+) = 1. Since da+(u+) = 1 and M−(u+) ≤ 2 by (3.54),
we have M−(u+) = 2. Finally, (3.54) and da+(u+

1 ) = da+(u+
2 ) = −1 imply

M−(u+
1 ) = M−(u+

2 ) = 1.
(ii) We have Mo(u1) = 0 by Theorem 3.5. If M−(u1) > 0, then this would

imply the existence of a positive (symmetric) solution lying between 0 and u1

(see Lemma 2.4 and the proof of Theorem 2.2(ii)). Hence M−(u1) = 0, d(u1) =
da(u1) = 1. Let uo be the unique positive solution for a = ao and choose a− <

ao < a+ sufficiently close to ao, ε > 0 small. If u+
1 < u+

2 are the positive solutions
corresponding to a+, we have

0 = deg(Fa− , 0, Bε(uo)) = deg(Fa+ , 0, Bε(uo)) = da+(u+
1 ) + da+(u+

2 )

= 1 + da+(u+
2 ),

hence da+(u+
2 ) = −1 and using (3.54) and Theorem 3.5 we get M−(u+

2 ) = 1. The
rest of the assertion can be proved analogously as in (i).

(iii) The assertion can be proved by the same way as the equality M−(u1) =
Mo(u1) = 0 in the proof of (ii).

(iv) This is trivial. �

Corollary. If p < 2q − 1 and u is a maximal non-negative solution, then u is
unstable from above.
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Proof. If M−(u) > 0, then the instability from above of u follows by the same
way as in the proof of Theorem 2.1(i), since the eigenvector corresponding to the
first eigenvalue of F ′(u) is positive.

If M−(u) = 0, then p ≥ q, a ≤ ao and either u = 0 or p > q, a = ao. In
both cases d(u) 6= 1, hence u is unstable (see [Q3]). Assume now that u is stable
both from above and from below and choose ε > 0. Then there exists δ > 0 such
that the solution u(t, uo) of (1.1) stays in Bε(u) = {v ∈W 1,2(−l, l) ; ‖v− u‖ < ε}
whenever uo ∈ Bδ(u) and either uo ≥ u or uo ≤ u. Choosing u−, u+ ∈ Bδ(u) such
that u− < u < u+ in [−l, l] we can find ν > 0 such that u− < v < u+ for any

v ∈ Bν(u), since W 1,2(−l, l)⊂ C([−l, l]). The monotonicity of the flow (see the
proof of Proposition 5.1) implies

‖u(t, v)−u‖L∞(−l,l) ≤ ‖u(t, u+)−u(t, u−)‖L∞(−l,l) ≤ c‖u(t, u+)−u(t, u−)‖ ≤ 2εc

for any v ∈ Bν(u), and the variation-of-constants formula from [A1] implies

(3.56) ‖u(t, v)− u‖ ≤ C(%) sup
t−%≤τ≤t

‖u(τ, v)− u‖L∞(−l,l) ≤ 2εcC(%)

for any v ∈ Bν(u), where C(%) → +∞ as % → 0+. Fix % > 0. Taking ν > 0
smaller, if necessary, we may suppose u(t, v) ∈ Bε(u) for v ∈ Bν(u) and t ∈ [0, %]
(see Proposition 5.1). This estimate together with (3.56) imply u(t, v) ∈ Bε̃(u)
for v ∈ Bν(u) and any t > 0 (where ε̃ = εmax(1, 2cC(%))), which gives us a
contradiction with the instability of u.

Consequently, u is unstable from above or from below. If u = 0 then the
instability from above follows from the fact that the functional Φ corresponding
to (2.1) is even. If p > q, a = ao, then u is stable from below by [M, Theorem 8],
hence it is unstable from above. �

4. Blow up and global existence

In this section we consider the problem

(4.1)


ut =4u− aup x ∈ Ω, t > 0,

∂u

∂n
= uq x ∈ ∂Ω, t > 0,

u(x, 0) = uo(x) ≥ 0 x ∈ Ω,

with p, q > 1, a > 0, Ω ⊂ RN is a smoothly bounded domain. We assume that

uo ≥ 0 is smooth enough and that the compatibility condition
∂uo

∂n
= uqo, x ∈ ∂Ω

is satisfied. By a solution we mean a nonnegative classical solution.

Theorem 4.1. If Ω is the unit ball B1(0) and

p > 2q − 1 or p = 2q − 1 and a > q
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then the solution u exists globally and stays uniformly bounded for any uo.

Proof. For any uo there is a smooth function vo satisfying the compatibility
condition and such that

uo(x) ≤ vo(x) = Vo(|x|) for |x| ≤ 1.

We shall construct a sequence {wn(r)} such that for n large enough

(4.2) wn(r) ≥ Vo(r)

and

w′′n(r) +
N − 1

r
w′n(r) − awpn(r) ≤ 0, r ∈ (0, 1),(4.3)

w′n(0) = 0, w′n(1) = wqn(1).(4.4)

The maximum principle implies then that the solution emanating from uo stays
below wn for t > 0.

Put wn(r) :=
(
Cn −

q − 1

n
rn
)1/(1−q)

, Cn :=
q − 1

n
+ εn, εn > 0, εn → 0 as

n→∞. Then wn(r) ≥ C1/(1−q)
n , hence (4.2) holds for n large enough.

Set ϕn(r) := Cn −
q − 1

n
rn. Then

w′n(r) = ϕn(r)q/(1−q)rn−1

and (4.4) follows. Since

w′′n(r) = qϕn(r)(2q−1)/(1−q)r2n−2 + (n− 1)ϕn(r)q/(1−q)rn−2

it suffices to show that

(4.5) qϕn(r)(2q−1)/(1−q)r2n−2 + (n+N − 2)ϕn(r)q/(1−q)rn−2 ≤ aϕn(r)p/(1−q).

Multiplying (4.5) by ϕn(r)p/(q−1), we obtain

(4.6) qϕn(r)(p−2q+1)/(q−1)r2n−2 + (n+N − 2)ϕn(r)(p−q)/(q−1)rn−2 ≤ a.

If p > 2q − 1, then the left hand side of (4.6) is easily seen converge to zero as
n→∞.

If p = 2q − 1, a > q then (4.6) has the form

(4.7)
(

1−
N − 2

n
(q − 1)

)
r2n−2 + nCn

(
1 +

N − 2

n

)
rn−2 ≤ a.
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It is obvious that it is sufficient to prove (4.7) for r = 1. But for r = 1, (4.7)
reduces to

q + εn(n+N − 2) < a,

therefore we only need to choose εn <
a− q

n+N − 2
and we are done. �

In what follows we show that Theorem 3.1 is sharp. More precisely, we prove
that for Ω = B1(0), p < 2q − 1 or p = 2q − 1, a < q blow up occurs, while for
N = 1, p = 2q − 1, a = q all solutions are global but unbounded.

We are also interested in all possible types of behaviour of solutions to (4.1).
Three possibilities are conceivable:

(i) global existence and boundedness,
(ii) blow up in finite time,
(iii) global existence without uniform boundedness.

In several cases we will be able to prove that the third possibility cannot occur.

Theorem 4.2. Assume that N = 1 (Ω = (−l, l)) and

p < 2q − 1 or p = 2q − 1, a < q.

Then

(i) any global solution is uniformly bounded in X = W 1,2, i.e.
sup
t>0
‖u(·, t)‖X <∞.

(ii) If uo ≥ v, uo 6≡ v, where v is any maximal stationary solution, then u
blows up in a finite time.

Remark 4.1. Under the assumptions of Theorem 4.2 we have the following
list of maximal stationary solutions.

The trivial solution is maximal if

p = q, a > 0, l ≤
1

a
(Theorem 3.3(ii)),

or q < p < 2q − 1, a > 0, l < L∗ (Theorem 3.3(iii)),

or p = 2q − 1, a < q, l > 0 (Theorem 3.2(i)).

Any positive solution is maximal if

p < q, a > 0, l > 0 (Theorem 3.3(i)),

or p = q, a > 0, l >
1

a
(Theorem 3.3(ii)),

or q < p < 2q − 1, a > 0, l = L∗ (Theorem 3.3(iii)).

Except of the minimal symmetric solution, any nontrivial solution is maximal if

q < p < 2q − 1, a > 0, l > L∗ (Proposition 3.1).
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Proof of Theorem 4.2. (i) We proceed by contradiction. Suppose that u is a
global solution which is unbounded in the W 1,2–norm (which we denote similarly
as in Section 2 by ‖ · ‖). Then one of the following possibilities must occur:

(4.8) lim
t→∞

‖u(·, t)‖ =∞

or

(4.9) lim sup
t→∞

‖u(·, t)‖ =∞, lim inf
t→∞

‖u(·, t)‖ <∞.

Exactly in the same manner as in [F], the variation of constants formula from
[A1] can be used to prove that for any constant C large enough, (4.9) implies
the existence of a positive stationary solution v with ‖v‖ = C. This is impossible,
since under our assumptions we have an apriori bound for stationary solutions due
to (2.29), (3.52) and Theorem 3.2(i).

Suppose now that (4.8) holds. The solution u satisfies the well known energy
identity

(4.10)

∫ t

0

∫ l

−l
u2
t dxdt+ Φ

(
u(·, t)

)
= Φ(uo), t > 0,

where Φ is the energy functional introduced in Section 2, i.e.

Φ(v) =

∫ l

−l

(1

2
v2
x +

a

p+ 1
vp+1

)
dx−

1

q + 1

(
v(l)q+1 + v(−l)q+1

)
.

If we set
F(v) := v(l)2q + v(−l)2q

for v ∈ C([−l, l]), then we get from (4.10) and (4.8) that

F
(
u(·, t)

)
→∞ as t→∞.

Our next aim is to show that there is a constant co > 0 such that

(4.11) F
(
u(·, t)

)
≤ co

∫ l

−l
u2
tdx

for t large enough. To do this we first choose for any t > 0 a point xo = xo(t) such
that ux(xo, t) = 0 and observe that

(4.12)

∫ l

xo

utuxdx ≥
1

2
u(l, t)2q −

a

p+ 1
u(l, t)p+1,

since utux =
(

1
2u

2
x −

a
p+1u

p+1
)
x
.
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Analogously,

(4.13) −

∫ xo

−l
utuxdx ≥

1

2
u(−l, t)2q −

a

p+ 1
u(−l, t)p+1.

Adding (4.12) to (4.13) and using the assumption on p, q, a we get, that for t large
enough (t > 0 if p = 2q − 1, a < q) there exists an ε > 0 such that

(4.14)

εF
(
u(·, t)

)
≤

∫ l

−l
|utux| dx ≤

(∫ l

−l
u2
t dx

)1/2(∫ l

−l
u2
x dx

)1/2

≤
ε

8l

∫ l

−l
u2
x dx+ Cε

∫ l

−l
u2
t dx.

But

ux(l, t)− ux(x, t) =

∫ l

x

uxxdx ≥

∫ l

x

ut dx ≥ −
(

2l

∫ l

−l
u2
t dx

)1/2

,

hence

ux(x, t) ≤ u(l, t)q +
(

2l

∫ l

−l
u2
t dx

)1/2

and

(4.15)

∫ l

−l
u2
x dx ≤ 4l

(
u(l, t)2q + 2l

∫ l

−l
u2
t

)
.

Using (4.14) and (4.15) we obtain (4.11). If we now set

f(t) :=

∫ t

0

F
(
u(·, s)

)
ds,

then (4.11) and (4.10) yield that

f(t) ≤ co

∫ t

0

∫ l

−l
u2
t dxdt = co

(
Φ(uo)− Φ

(
u(·, t)

))
≤ c1 + c2

(
F
(
u(·, t)

)) q+1
2q

for some positive constants c1, c2. But this means that there is a constant c3 > 0
such that

f ′(t) ≥ c3f(t)
2q
q+1

for t large enough. Hence f blows up in a finite time what is a contradiction.
(ii) We show that (ii) is a consequence of (i). We recall from Section 3 (Corollary

of Theorem 3.6) that under our assumptions any maximal solution v is unstable
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from above. By [A1], (4.1) defines a local semiflow in X = W 1,2(−l, l). The maxi-
mum principle implies the strong monotonicity of this semiflow. Hence, according
to [M, Theorem 5] there is a function w defined on [−l, l]× (−∞, T ), T > 0, with
the following properties: w satisfies the equation

wt = wxx − aw
p in (−l, l)× (−∞, T ),

together with the boundary condition

wx(±l, t) = ±wq(±l, t) for t ∈ (−∞, T ),

further

(4.16) w(x, t1) < w(x, t2) for x ∈ [−l, l], −∞ < t1 < t2 < T,

and

(4.17) w(·, t)→ v in X as t→ −∞.

Suppose that T =∞. Then

sup
t>0
‖w(·, t)‖ <∞,

hence w tends to a stationary solution which is by (4.16), (4.17) greater than v —
a contradiction. By the maximum principle u(·, t) > v for t > 0, therefore (4.17)
implies the assertion. �

Concerning the localization of blow up points we have the following result.

Theorem 4.3. Assume that N = 1, Ω = (−1, 1) and

p < 2q − 1 or p = 2q − 1, a < q.

Let uo 6≡ 0 satisfy the conditions :

uo(x) = uo(−x) for x ∈ [−1, 1],

u′o(x) ≥ 0 for x ∈ [0, 1].

If p > q assume further that uo is a subsolution, i.e.

u′′o − au
p
o ≥ 0 for x ∈ (−1, 1),

u′o(±1) = ± uqo(±1).

Let u blow up. Then u blows up only at the points −1, 1.

Proof. We shall use an idea from [FML]. We set

J(x, t) := ux(x, t)− ϕ(x)uq(x, t)
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and show that J ≥ 0 in [0, 1] × [0, T ) for a suitably chosen function ϕ; T is the
blow up time of u. For given uo we choose ϕ smooth as follows:

ϕ = 0 on [0, 1− ε], 0 < ε < 1,

ϕ, ϕ′, ϕ′′ > 0 on (1− ε, 1], ϕ(1) = ε,

u′o ≥ ϕu
q
o on (1− ε, 1].

With this choice of ϕ we have

J(x, 0) ≥ 0 for x ∈ [0, 1],

J(0, t) = 0, J(1, t) > 0 for t ∈ [0, T ).

If we derive for J a linear parabolic inequality such that the maximum principle
enables us to conclude that J ≥ 0 in [0, 1]× [0, T ) then we are done, since then

ux(x, t) ≥ ϕ(1−
ε

2
)uq(x, t) for x ∈ [1−

ε

2
, 1)

and integrating this, we obtain

u(x, t) ≤ k(1− x)1/(1−q) for x ∈ [1−
ε

2
, 1), k :=

(
(q − 1)ϕ(1−

ε

2
)
)1/(1−q)

.

Obvious calculations yield

Jt−Jxx

= uxt − uxxx − qϕu
q−1(ut − uxx) + ϕ′′uq + 2qϕ′uq−1ux + q(q − 1)ϕuq−2u2

x

= − apup−1ux + aqϕup+q−1 + ϕ′′uq + 2qϕ′uq−1ux + q(q − 1)ϕuq−2u2
x.

From the definition of J we have

−apup−1ux + aqϕup+q−1 = −aqup−1J − a(p− q)up−1ux.

If p ≤ q, then
Jt − Jxx + aqup−1J ≥ 0

and we are done.
If p > q, then we obtain

−a(p−q)up−1ux = −(p−q)
ux

u
Jx+(p−q)

ux

u
ut−(p−q)ϕ′uq−1ux−(p−q)qϕuq−2u2

x.

Since ut ≥ 0 by the maximum principle, we arrive at

Jt − Jxx + (p− q)
ux

u
Jx + aqup−1J ≥

≥ (3q − p)ϕ′uq−1ux + q(2q − 1− p)ϕuq−2u2
x ≥ 0
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and the proof is finished. �

Remark 4.2. If a = 0, Ω = (−1, 1) and uo ≥ 0 fulfils some additional assump-
tions, then one can use the similarity variables

w(y, s) = (T − t)λu(x, t), y =
1− x
√
T − t

, s = − log(T − t), λ =
1

2(q − 1)

(where T is the blow up time) in order to show that for any y ≥ 0,

(T − t)λu(1− y
√
T − t, t)→ wo(y) as t→ T,

where wo is the unique positive bounded solution of

w′′ =
y

2
w′ + λw in (0,∞),

w′(0) = − wq(0),

see [FQ]. Repeating formally these considerations also for a > 0, we get the same
result if p < 2q − 1, while for p = 2q − 1 we obtain

(T − t)λu(1− y
√
T − t, t)→ wa(y) as t→ T,

where wa is a positive solution of

w′′ =
y

2
w′ + λw + awp in (0,∞),

w′(0) = − wq(0).

The existence of such a solution for small a > 0 can be shown e.g. by investigation
of critical points of the functional

E(v) :=

∫ ∞
0

(1

2
%v2
y +

λ

2
%v2 +

a

p+ 1
%vp+1

)
dy −

1

q + 1
vq+1(0),

where %(y) = e−y
2/4 (cf. [FQ]). Notice also that this problem does not have positive

solution for a > 0 large, since in this case we have E′(v)v > 0 for any v 6= 0.

Next we turn to the higher dimensional radially symmetric case.

Theorem 4.4. Assume that N > 1, Ω = B1(0) and

p < 2q − 1 or p = 2q − 1, a < q.

(i) If uo (=uo(r)) is such that

u′′o +
N − 1

r
u′o − au

p
o ≥ 0 for r ∈ (0, 1),(4.18)

u′o(0) = 0, u′o(1) = uqo(1),(4.19)

uo(1) > 1 and uo(1) >
( 2a

p+ 1

) 1
2q−p−1

if p < 2q − 1,(4.20)

then u blows up in a finite time.
(ii) Initial data uo with the properties required in (i) exist.
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Proof. (i) According to the maximum principle it follows from (4.18),(4.19) that
ut ≥ 0. On the other hand, (4.18) yields that

(rN−1u′o)
′ ≥ arN−1up ≥ 0,

hence u′o ≥ 0 on [0, 1] because u′o(0) = 0. The maximum principle implies then
that ur ≥ 0.

We want to show that U(t) :=
∫ 1

0
u(r, t) dr satisfies an O.D.E. which has the

property that all its positive solutions blow up in finite time. To do this we first
derive some estimates.∫ 1

0

utur dr ≥

∫ 1

0

(
urrur − au

pur
)
dr

=

∫ 1

0

(1

2
u2
r −

a

p+ 1
up+1

)
r
dr

≥
1

2
u2q(1, t)−

a

p+ 1
up+1(1, t).

If p = 2q − 1, a < q, then

1

2
u2q(1, t)−

a

p+ 1
up+1(1, t) = δu2q(1, t), δ :=

1

2

(
1−

a

q

)
.

If p < 2q − 1, then we use (4.20) to obtain

1

2
u2q(1, t)−

a

p+ 1
up+1(1, t) ≥ δu2q(1, t)

for some δ > 0. In both cases

(4.21)

∫ 1

0

utur dr ≥ δu
2q(1, t).

On the other hand
(4.22)∫ 1

0

utur dr ≤
uq(1, t)

εN−1

∫ 1

ε

ut dr +

∫ ε

0

ut

(∫ r

0

ut dr
)
dr +

∫ ε

0

ut

(∫ r

0

aup dr
)
dr

=: I1 + I2 + I3,

where we used the facts that

ur ≤
ur(1, t)

rN−1
, since

(
rN−1ur

)
r

= (ut + aup)rN−1 ≥ 0,

and that

ur =

∫ r

0

urr dr ≤

∫ r

0

(ut + aup) dr.
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Put now

ε := u−α(1, t), α =
q − 1− η

N − 1
, 0 < η < q − 1.

Then

I1 ≤ u
2q−1−η(1, t)

∫ 1

0

ut dr,

I2 ≤
(∫ 1

0

ut dr
)2

,

I3 ≤ aεu
p(1, t)

∫ ε

0

ut dr ≤ au
p−α(1, t)

∫ 1

0

ut dr

≤ au2q−1−α(1, t)

∫ 1

0

ut dr,

hence

I1 + I2 + I3 ≤
(
2Au2q−1−ξ(1, t) +

∫ 1

0

ut dr
) ∫ 1

0

ut dr,

A := max{1, a}, ξ := min{α, η}.

For t such that

2Au2q−1−ξ(1, t) ≤

∫ 1

0

ut dr

we obtain

I1 + I2 + I3 ≤ 2
(∫ 1

0

ut dr
)2

.

If

2Au2q−1−ξ(1, t) ≥

∫ 1

0

ut dr,

then

I1 + I2 + I3 ≤ 4Au2q−1−ξ(1, t)

∫ 1

0

ut dr.

In both cases we get from (4.21), (4.22) that

d

dt
U(t) ≥ λU(t)µ

for some λ > 0, µ > 1 which means that u must blow up in a finite time.
(ii) We show that there is a number ã > a such that a solution of the equation

(4.23) u′′o = ãupo, x ∈ (0, 1)

satisfies (4.19), (4.20).
Consider first the case p < 2q− 1. By Lemma 3.7 we have L(a) → 0 as a→∞.

Hence, for any ã large enough the equation

L2(m; ã) = 1
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has a solution m̃. The value at 1 of the solution to (4.23), (4.19) which corresponds
to m̃ is equal to R2(m̃). But

R2(m̃) >
( ã
q

) 1
2q−p−1

and the assertion follows.
If p = 2q − 1, a < q, then the assertion follows from Lemma 3.7(iv). �
For general domains we have the following result.

Theorem 4.5. Assume that p ≤ q. Then

(i) u blows up if Φ(uo) < 0.
(ii) If u is global, then

sup
t≥0
‖u(·, t)‖C(Ω) <∞,(4.24)

sup
t≥0
‖u(·, t)‖X <∞,(4.25)

provided

(4.26) N ≤ 2 or N > 2, q <
N

N − 2
.

In the case p = q we assume in addition that a 6= aΩ.
(iii) Assume that (4.26) holds. If p = q and a < aΩ then any solution blows

up.
(iv) Assume that (4.26) holds. If p = q assume in addition that a > aΩ. Then

u blows up provided uo ≥ v, uo 6≡ v, v is any positive stationary solution.

Remark 4.3. Under the assumption (4.26), the assertion (i) was proved
already in [E, Theorem 1.1(a)]. The proof there is similar to ours, it is based on
the classical concavity method (see [L]).

Proof of Theorem 4.5. We prove first the assertion (ii). Observe that (4.25)
implies (4.24), since the trace operator Tr : W 1,2(Ω) → Lq+1(∂Ω) is continuous
and according to [Fo]

‖u(·, t)‖C(Ω) ≤ c(‖uo‖C(Ω), sup
0≤s≤t

‖u(·, s)‖Lr(∂Ω))

if r > (q − 1)(N − 1), N > 1.
Exactly by the same reasoning as at the beginning of the proof of Theorem 4.2,

it can be seen that we have only to prove that (4.8) leads to a contradiction.
To do this we proceed similarly as in [F, Lemma 1]. Put

M(t) :=

∫ t

0

∫
Ω

u2 dxdt.



84 M. CHIPOT, M. FILA and P. QUITTNER

Then

M ′(t) =

∫
Ω

u2dx =

∫ t

0

∫
Ω

(u2)t dxdt+

∫
Ω

u2
o dx.

Assuming that p < q and setting ε := p− 1 we obtain that

(4.27)
1

2
M ′′(t) = −(2 + ε)Φ(u) +

ε

2

∫
Ω

|∇u|2dx+
q − 1− ε

q + 1

∫
∂Ω

uq+1dS.

In what follows, positive constants depending only on a, p, q,Ω, uo will be denoted
by ci (i = 1, 2, . . . ). From (4.27) we get

(4.28) M ′′(t) ≥ c1‖u(·, t)‖2X − c2,

therefore

(4.29) M ′(t)→∞ as t→∞.

On the other hand, using (4.10) we obtain from (4.27) that

M ′′(t) ≥ 2
(

(2 + ε)

∫ t

0

∫
Ω

u2
t dxdt+ c3M

′(t)− c4
)
,

hence

MM ′′−
(

1 +
ε

2

)(
M ′
)2
≥

≥ 2(2 + ε)

((∫ t

0

∫
Ω

u2 dxdt
)(∫ t

0

∫
Ω

(ut)
2 dxdt

)
−
(∫ t

0

∫
Ω

uut dxdt
)2
)

+

+ 2M(c3M
′ − c4)− c5M

′.

The first term on the right hand side is nonnegative according to the Cauchy
inequality and the second one tends to infinity as t→∞. Thus, there is a to ≥ 0
such that the right hand side is positive for t ≥ to. This implies that

(4.30)
(
M−ε/2

)′′
< 0 for t ≥ to.

Since M−ε/2 is decreasing, it must have a root – a contradiction. This proves (ii)
for p < q.

Let us now prove (i) for p < q. From (4.27) and (4.10) we obtain that

M ′′(t) ≥ −2(2 + ε)Φ(uo).

This again yields (4.29), hence also (4.30) and (i) follows.
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Now we turn to the case p = q. We again prove first (ii) showing that (4.8)

leads to a contradiction. Choose 0 < ε < p− 1 and set ε̃ = 1−
2 + ε

p+ 1
. Then

1

2
M ′′(t) =− (2 + ε)Φ(u) +

ε

2

∫
Ω

|∇u|2dx− aε̃

∫
Ω

up+1dx+ ε̃

∫
∂Ω

up+1dS

=− (2 + ε)Φ(u) +
(ε

2
+ ε̃
)∫

Ω

|∇u|2dx+
ε̃

2
M ′′(t),

hence

(4.31)
1− ε̃

2
M ′′(t) ≥ −(2 + ε)Φ(u) +

(ε
2

+ ε̃
)∫

Ω

|∇u|2 dx.

Using (4.10) we get
(4.32)

1− ε̃

2
M ′′(t) ≥ −(2 + ε)Φ(uo) + (2 + ε)

∫ t

0

∫
Ω

(ut)
2dxdt+

(ε
2

+ ε̃
)∫

Ω

|∇u|2 dx.

Our next aim is to show by contradiction that M ′′(t)→∞ as t→∞. Suppose
that there exist a c > 0 and a sequence {tn}, tn →∞, such that

(4.33) M ′′(tn) ≤ c for n ∈ IN.

Set d(t) :=
1

|Ω|

∫
Ω

u(x, t) dx and write u in the form u = d+u⊥, where u⊥ belongs

to the subspace of functions in X which are orthogonal to constants. From [N,
Theorem 7.1] it follows that (

∫
Ω
|∇v|2dx)1/2 is an equivalent norm for v from this

subspace. Thus, (4.32) yields that ‖u⊥(·, tn)‖X is bounded because∫
Ω

|∇u⊥|2dx =

∫
Ω

|∇u|2dx.

Therefore (4.8) implies that d(tn) → ∞. Now (4.10) yields that Φ(u(·, tn)) is
bounded from above and according to (4.31) it is also bounded from below. Thus

(4.34)
Φ
(
u(·, tn)

)
d(tn)p+1

→ 0.

Setting vn :=
u(·, tn)

d(tn)
we have that vn → 1 in X since

‖vn − 1‖X =
‖u⊥(·, tn)‖X

d(tn)
.
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Under our assumption on p, X = W 1,2(Ω) is continuously embedded into Lp+1(Ω)
and the trace operator Tr : X → Lp+1(∂Ω) is also continuous. Hence, (4.34)
implies that

0 = lim
n→∞

(
a

∫
Ω

vp+1
n dx−

∫
∂Ω

vp+1
n dS

)
= a|Ω| − |∂Ω|

what is a contradiction with our assumption on a.
Since M ′′(t) → ∞ as t→ ∞, it is possible to find for any C > 0 a τ ≥ 0 such

that

(4.35) M ′(t) ≥ Ct, M(t) ≥ Ct for t ≥ τ.

From (4.32) it follows that

M ′′(t) ≥
(
2(2 + ε) + c6

) ∫ t

0

∫
Ω

(ut)
2dxdt− c7,

thus

(4.36) MM ′′ −
(

1 +
ε

2

)(
M ′
)2
≥M

(
c6

∫ t

0

∫
Ω

(ut)
2dxdt− c7

)
− c8M

′.

We want to show that the right hand side of (4.36) is positive for t large enough.
To do this, we use the estimate

(4.37) M ′(t) =

∫
Ω

u2 dx ≤ 2
(∫

Ω

u2
o dx+ t

∫ t

0

∫
Ω

(ut)
2dxdt

)
which follows from the next simple observation:

u(x, t) = uo(x) +

∫ t

0

ut(x, s) ds ≤ uo(x) +
√
t
(∫ t

0

(
ut(x, s)

)2
ds
) 1

2
.

According to (4.37) we obtain

M
(
c6

∫ t

0

∫
Ω

(ut)
2 − c7

)
− c8M

′ ≥
c9

t
MM ′ − c10M − c8M

′

= M ′
(c9

2t
M − c8

)
+M

(c9
2t
M ′ − c10

)
.

Now (4.35) yields that the right hand side of (4.36) is positive for t large enough
and the proof of (ii) for p = q can be finished in the same way as in the case p < q.

To prove (i) for p = q we recall (4.32). It implies now that

M ′′(t) ≥
(
2(2 + ε) + c6

) ∫ t

0

∫
Ω

(ut)
2dxdt+ c7.
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Hence, for any C > 0 there is a τ ≥ 0 such that

(4.38) M(t) ≥ Ct for t ≥ τ.

The right hand side of (4.36) reads now

M
(
c6

∫ t

0

∫
Ω

(ut)
2dxdt+ c7

)
− c8M

′

and using (4.37) we get

M
(
c6

∫ t

0

∫
Ω

(ut)
2dxdt+ c7

)
− c8M

′ ≥M
(
c7 −

1

t
c6

∫
Ω

u2
o dx

)
+M ′

(c6
2t
M − c8

)
.

The estimate (4.38) ensures positivity of the last expression for large t. This
completes the proof of (i) and (ii).

Proof of (iii). Suppose there is a global solution u. According to (ii) it is
bounded, hence its ω–limit set consist of stationary solutions. But the only sta-
tionary solution is the unstable trivial solution (see Theorem 2.1(ii)), a contradic-
tion.

To prove (iv) we argue similarly. If u were global then its ω–limit set would con-
sist of stationary solutions. But according to Theorem 2.1(i) there is no stationary
solution larger than v and v is unstable from above. �

Remark 4.4. If p ≤ q then initial functions uo with Φ(uo) < 0 always exist.
If p < q then for any v (Tr v 6≡ 0), Φ(λv) < 0 provided λ is large enough. If p = q
then we choose v such that

a

∫
Ω

vp+1dx <

∫
∂Ω

vp+1dS.

Concerning global existence for general domains we have the following result.

Theorem 4.6. Let p, q be such as in Theorem 2.1(v). Then all solutions are
global and bounded.

Proof. Using the energy identity (4.10), we derive an apriori estimate for
‖u(·, t)‖X . This implies (by the same argument as at the beginning of the proof
of Theorem 4.5) that ‖u(·, t)‖C(Ω) is bounded, too.

By Lemma 2.7 and Hölder inequality we have that for any ε > 0 small there
exists a constant Cε such that

(4.39)

∫
∂Ω

uq+1dS ≤ ε‖u‖2 + Cε‖u‖
p+1−ε
q+1 ≤ ε‖u‖2 + ε‖u‖p+1

p+1 + Cε,

where ‖ · ‖r denotes the norm in Lr(Ω). Since Hölder inequality implies also

‖u‖22 ≤ ε‖u‖
p+1
p+1 + Cε,
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we get using (4.39)

(4.40) Φ(u) ≥
(1

2
− ε
)
‖u‖2 − Cε.

Since Φ(u) ≤ Φ(uo), the estimate (4.40) proves our assertion. �

Let us now turn to the interesting case p = 2q − 1, a = q.

Theorem 4.7. Assume that p = 2q − 1, a = q, N = 1, Ω = (−1, 1). Then
there exists a unique function w which satisfies the equation

(4.41) w′′ − qw2q−1 = 0 in (−1, 1)

together with the boundary condition

(4.42) w(±1) =∞.

All nontrivial solutions of (4.1) are global and tend pointwise to w as t→∞.

Remark 4.5. It is known (see [KN] and the references there), that positive
solutions of the problem

4u = aup x ∈ Ω,(4.43)

u =∞ x ∈ ∂Ω(4.44)

exist for a > 0, p > 1.
In [KN] it is shown that u(x) behaves near ∂Ω like

(4.45)
(a(p− 1)2

2(p+ 1)

) 1
1−p (

dist(x, ∂Ω)
) 2

1−p .

From this it follows that solutions to (4.43), (4.44) are not singular stationary

solutions to the problem (1.1), except of the case a = q, p = 2q − 1, when
∂u

∂n
behaves like uq near ∂Ω.

In [KN] also uniqueness of solutions to (4.43), (4.44) is shown for p ≥ 3.

We prove Theorem 4.7 in the following series of lemmas.

Lemma 4.1. There is a unique function w which satisfies (4.41), (4.42). More-
over,

(4.46) w(x) = w(−x) for x ∈ [−1, 1].

Proof. Denote by ϕα the solution of the initial value problem

ϕ′′ = qϕ2q−1

ϕ(0) =α > 0

ϕ′(0) = 0.
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Then ϕα is given by the formula (cf. (3.5))

(4.47)

∫ ϕα(x)

α

dv
√
v2q − α2q

= |x|.

The function ϕα exists for |x| ≤ Lmax(α) <∞, Lmax(α) is given by the formula

Lmax(α) =

∫ ∞
α

dv
√
v2q − α2q

=
1

αq−1

∫ ∞
1

dz
√
z2q − 1

.

Lmax(α) is decreasing, it tends to zero as α → ∞ and there is a unique αo such
that Lmax(αo) = 1, namely

αo =

(∫ ∞
0

dz
√
z2q − 1

) 1
q−1

.

Hence, w = ϕαo is the unique solution to (4.41), (4.42) with w′(0) = 0. The
function ϕαo obviously satisfies (4.46).

Suppose there is a nonsymmetric solution. Let m be its minimum attained at
0 6= xo ∈ (−1, 1). Instead of (4.47) we obtain now the formula∫ ϕm(x)

m

dv
√
v2q −m2q

= |x− xo|.

(4.42) implies that ∫ ∞
m

dv
√
v2q −m2q

= |1− xo| = | − 1− xo|

what is a contradiction. �

Lemma 4.2. Let p, q, a,N be as in Theorem 4.7 and let αo, ϕα be as in Lemma
4.1. If 0 ≤ uo ≤ w, uo 6≡ 0, then there exist α1, α2 ∈ (0, αo) and functions g1, g2

such that ψi = ϕαi + gi satisfy the conditions

ψ1(x) ≤ u(x, to) ≤ ψ2(x) for some to > 0,(4.48)

ψ′′i − qψ
2q−1
i ≥ 0 in (−1, 1),(4.49)

ψ′i(±1) = ± ψqi (±1),(4.50)

ψi(x) = ψi(−x) for |x| ≤ 1,(4.51)

ψ′i(x) ≥ 0 for x ∈ [0, 1].(4.52)

Proof. By the maximum principle

0 < u(x, to) < w(x) for any to ∈
(
0, tmax(uo)

)
,
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where tmax(uo) is the maximal existence time. From (4.47) it is easily seen that
ϕα(1) → 0 as α → 0. Therefore, there is a α1 > 0 such that ϕα1 < u(·, to). On
the other hand ϕα(1)→∞ as α→ αo and ϕα(x) → ϕαo(x) pointwise in (−1, 1),
hence, there is a α2 > 0 such that ϕα2 > u(·, to). The functions ϕαi satisfy all
conditions except of (4.50). We shall show that it is possible to find functions gi
such that ψi = ϕαi + gi satisfies (4.48)–(4.52). Observe first that ϕ′α(1) < ϕqα(1)
for any α ∈ (0, αo). This is easy to see if α is small, because then ϕα(1) is small,
let us say ϕα(1) = ε and

ϕ′α(1) =

∫ 1

0

ϕ′′α(x) dx < qε2q−1 < εq = ϕqα(1).

But the mapping α 7→ ϕ′α(1) − ϕqα(1) is continuous, therefore its values must be
negative for all α ∈ (0, αo) since there is no β with ϕ′β(1)− ϕqβ(1) = 0.

Set

gη,n(x) =

{
0 for |x| ≤ 1− η, 0 < η < 1(
|x| − 1 + η

)n
for 1− η < |x| ≤ 1

Taking gi = gηi,ni with ni sufficiently large and suitable ηi (ηi small), it is not
difficult to check that the conditions (4.48)–(4.52) are satisfied. �

Lemma 4.3. Assume that p, q, a,Ω are as in Theorem 4.7. Let

uo(x) = uo(−x) for |x| ≤ 1,

u′o(x) ≥ 0 for x ∈ [0, 1].

Assume further that

u(0, t) ≤ K on [0, tmax(uo)) for some K > 0

and either

(i) ut ≥ 0 in [−1, 1]× [0, tmax)
or

(ii) for any t ∈ [0, tmax) there is a unique point y(t) ∈ (0, 1) such that

ut(x, t) < 0 for 0 ≤ x < y(t), ut(x, t) > 0 for y(t) < x ≤ 1.

Then tmax =∞.

Proof. Consider the case (ii). Since ux(0, t) = 0 and ux(x, t) ≥ 0 for x ∈ (0, 1],
we have uxx(0, t) ≥ 0, hence

ut(0, t) ≥ −qu
2q−1(0, t) ≥ −qK2q−1.

By the maximum principle, there is a constant c1 > 0 such that

ut(x, t) ≥ −c1 for |x| ≤ 1, t ∈ [0, tmax).
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Therefore, for z ∈ (0, 1) we get

(4.53)

∫ z

0

utux dx ≥ −c1

∫ z

0

ux dx = −c1u(z, t).

Further,

(4.54)

∫ 1

0

utux dx =
1

2

∫ 1

0

(
u2
x − u

2q
)
x
dx =

1

2
u2q(0, t) ≤

1

2
K2q

and

(4.55)

∫ 1

z

utux dx =

∫ 1

0

utux dx−

∫ z

0

utux dx ≤ c2
(
1 + u(z, t)

)
.

The inequalities (4.53)–(4.55) will be used to derive an apriori estimate of u(1, t).
Using (4.55) we get

u2
x(z, t) = u2q(z, t)− 2

∫ 1

z

utux dx ≥ u
2q(z, t)− 2c2

(
u(z, t) + 1

)
≥

1

2
u2q(z, t)− c3.

Hence

(4.56) ux(z, t) ≥
1

2
uq(z, t)− c4.

Using (4.54), (4.53) we get

(4.57)
1

2
K2q ≥

∫ 1

0

utux dx ≥ −c1u
(
y(t), t

)
+

∫ 1

y(t)

utux dx.

By (4.56) we have∫ 1

y(t)

utux dx ≥

∫ 1

y(t)

(1

2
uq−c4

)
ut dx =

∫ 1

0

(1

2
uq−c4

)
ut dx−

∫ y(t)

0

(1

2
uq−c4

)
ut dx.

Since −c1 ≤ ut(x, t) ≤ 0 for x ∈ [0, y(t)), we obtain∫ y(t)

0

(1

2
uq − c4

)
ut dx ≤ c1c4

thus

(4.58)

∫ 1

y(t)

utux dx ≥
d

dt

∫ 1

0

( uq+1

2(q + 1)
− c4u

)
dx− c5.
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Combining (4.57), (4.58) we get

(4.59)
d

dt

∫ 1

0

( uq+1

2(q + 1)
− c4u

)
dx ≤ c6

(
1 + u(1, t)

)
.

Integrating from 0 to T < tmax and taking into account that ut(1, t) > 0, it follows
that

(4.60)
1

2(q + 1)

∫ 1

0

uq+1(x, T ) dx− c4

∫ 1

0

u(x, T ) dx ≤ c6
(
1 + u(1, T )

)
T + c7.

By Hölder and Young inequalities

c4

∫ 1

0

u(x, T ) dx ≤ η

∫ 1

0

uq+1(x, T ) dx+ cη, η > 0.

If we take η <
1

2(q + 1)
, then (4.60) yields

∫ 1

0

uq+1(x, T ) dx ≤ c8
(
1 + u(1, T )

)
T + c9 for T ∈ (0, tmax).

Suppose that tmax < ∞. Then u(1, t) → ∞ as t → tmax. Therefore, there is a
τ ∈ (0, tmax) such that

(4.61)

∫ 1

0

uq+1(x, T ) dx ≤ c10Tu(1, T ) for T ∈ (τ, tmax).

Using (4.53), let us now estimate ux from above in the following way:

u2
x(z, t) = u2q(z, t)− 2

∫ 1

z

utux dx ≤ u
2q(1, t) + 2c2

(
1 + u(z, t)

)
≤ 2u2q(1, t) + c11,

hence
ux(z, T ) ≤ 2uq(1, T )

if u(1, T ) is large enough. By the mean value theorem

u(1, T )− u(1− ε, T ) = εux(ξ, T ) ≤ 2εuq(1, T ),

thus

(4.62) u(1− ε, T ) ≥ u(1, T )− 2εuq(1, T ) ≥
1

2
u(1, T )
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if ε := 1
4u

1−q(1, T ). Using (4.61), (4.62) we obtain

c10Tu(1, T ) ≥

∫ 1

0

uq+1(x, T ) dx ≥

∫ 1

1−ε
uq+1(x, T ) dx

≥

∫ 1

1−ε

(u(1, T )

2

)q+1

dx =
u2(1, T )

2q+3
.

This means that
u(1, T ) ≤ c11T,

c11 does not depend on T . This is a contradiction.
In the case (i), the proof is slightly simpler. We only mention that c1 = 0, hence

(4.57), (4.58) are not needed to derive (4.59). The estimate

d

dt

∫ 1

0

( uq+1

2(q + 1)
− c4u

)
dx ≤ c6

follows from (4.54), (4.56) in the following way:

1

2
K2q ≥

∫ 1

0

utux dx ≥

∫ 1

0

ut

(1

2
uq − c4

)
=

d

dt

∫ 1

0

( uq+1

2(q + 1)
− c4u

)
dx.

�

Lemma 4.4 Let p, q, a,Ω be as in Theorem 4.7. Then u is global and u(·, t)→ w
pointwise as t→∞, provided 0 ≤ uo ≤ w, uo 6≡ 0.

Proof. According to Lemma 4.2 we need only to prove that u is global and
tends to w if uo = ϕα + gη,n, α ∈ (0, αo) (with suitable η, n). We first show that
the assumptions of Lemma 4.3 are fulfilled. We have

u(0, t) ≤ αo for t ∈ (0, tmax)

since

(4.63) u(x, t) ≤ w(x) for |x| ≤ 1, t ∈ [0, tmax)

according to the maximum principle. We have also

(4.64) ut ≥ 0 in [−1, 1]× [0, tmax),

because
u′′o − qu

2q−1
o ≥ 0 in (−1, 1),

u′o(±1) = ± uqo(±1).

Hence, u is global.
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From the fact that there are no stationary solutions it follows that u cannot be
bounded. By (4.63), (4.64) the pointwise limit V exists in (−1, 1). But V must
satisfy (4.41), (4.42), hence V = w. �

Lemma 4.5. Let p, q, a,Ω be as in Theorem 4.7. Then u is global and u(·, t)→
w pointwise as t → ∞, provided uo = k + gη,n, where k is any positive constant
and gη,n is from Lemma 4.2, η, n are suitably chosen.

Proof. According to Lemma 4.4, we need only to consider k > αo. Obviously,
u′o(x) ≥ 0 for x ∈ [0, 1] and it is not difficult to verify that there are η, n such that
u′′o − qu

2q−1
o has exactly one sign change in [0, 1] and uo satisfies the compatibility

condition. From the maximum principle it follows that there is at most one sign
change of ut(·, t) in (0, 1) for t ∈ (0, tmax). Take any t1 ∈ (0, tmax).

If ut(x, t1) ≥ 0 for x ∈ [0, 1], then u(·, t1) ≤ w by the maximum principle and
Lemma 4.4 yields the assertion.

If ut(x, t1) ≤ 0 for x ∈ [0, 1], then ut ≤ 0 in [0, 1]× [t1, tmax), hence tmax = ∞
and u tends to a stationary solution from above. But the only stationary solution
is 0 and 0 is unstable from above, a contradiction.

We only need to consider the case when there is a function y(t) such that

ut(x, t) < 0 for x < y(t), ut(x, t) > 0 for x > y(t), t ∈ [0, tmax).

Lemma 4.3(ii) can be applied if we show that

u(0, t) ≤ K on [0, tmax) for some K > 0.

Take any to < tmax and choose xo such that w(xo) > u(1, t) for t ≤ to. By the
maximum principle

max
0≤x≤xo
0≤t≤to

(u− w) = max
x=0

0≤t≤to

(u− w).

If u(0, t)−w(0) = max
τ≤t

(
u(0, τ)−w(0)

)
, then we use the fact that ux(0, t)−wx(0) = 0

which implies uxx(0, t)− wxx(0) ≤ 0 and

uxx(0, t) ≤ wxx(0) = qw2q−1(0).

This yields

ut(0, t) = uxx(0, t)− qu2q−1(0, t) ≤ q
(
w2q−1(0)− u2q−1(0, t)

)
< 0.

This means that max
t≤to

(
u(0, t)−w(0)

)
= uo(0)−w(0) = k−αo, therefore u(0, t) ≤ k

for t ∈ [0, tmax). �
Proof of Theorem 4.7. Theorem 4.7 is an immediate consequence of Lemma 4.5,

since for any uo ≥ 0, uo 6≡ 0 and any to small, there are constants k1, k2 > 0 and
functions g1, g2 as in Lemma 4.2 such that k1 + g1 ≤ u(·, to) ≤ k2 + g2. �
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5. Convergence to equilibria

The aim of this section is to study the problem (1.1) from the point of view of
dynamical systems.

The solution starting from uo will be often denoted by u(t, uo), by ‖ ·‖ we mean
the norm in X = W 1,2(Ω).

Proposition 5.1. The problem (1.1) defines a compact local semiflow in C+ =
{v ∈ W 1,2(Ω) ; v ≥ 0 a.e.} provided N = 1, 2 or N > 2, q < N/(N − 2), p <
(N + 2)/(N − 2). This local semiflow is monotone in the following sense: if
uo ≤ ũo a.e., uo 6≡ ũo, then u(t, uo) < u(t, ũo) in Ω for any t ∈ (0, tmax(ũo)). If
N = 1, this is the strong monotonicity (u(t, ũo) − u(t, uo) lies in the interior of
C+).

Proof. A straightforward modification of [A1, Lemma 14.3] in virtue of [A1,

Remark 14.7(b)] shows that [A1, Theorem 12.3] is applicable for Wβ
B = W 1,2(Ω),

i.e. (1.1) (where up := |u|p−1u and uq := |u|q−1u) defines a local semiflow in
W 1,2(Ω). Moreover, a repeated use of the variation-of-constants formula [A1,

Corollary 12.2] with suitable W β
B = W 1,ri(Ω), 2 =: ro < r1 < · · · < rm =: r > N

shows the continuity and boundedness on bounded sets of u(t, ·) : W 1,ri(Ω) →

W 1+ε,ri(Ω)⊂ W 1,ri+1(Ω), hence u(t, ·) : W 1,2(Ω) → W 1,r(Ω) is continuous and
the flow in W 1,2(Ω) is compact.

Suppose now uo ≤ ũo. It can be easily shown that we may find un, ũn ∈ C2(Ω)
such that un ≤ ũn, un → uo, ũn → ũo in W 1,2(Ω) and un, ũn fulfil the boundary

condition
∂u

∂n
= |u|q−1u. Using the maximum principle we get u(t, un) ≤ u(t, ũn)

for t small enough. The continuous dependence on initial values implies now
u(t, uo) ≤ u(t, ũo).

If uo ≥ 0, uo 6≡ 0, then u1 := u(τ, uo) ∈ W 1,r(Ω)⊂ C(Ω) is nonnegative and
u1 6≡ 0 for τ > 0 small enough, hence we may find ϕ1 ∈ D(Ω) (a smooth function
with compact support in Ω) such that ϕ1 6≡ 0, 0 ≤ ϕ1 ≤ u1. The maximum
principle implies u(t, ϕ1) > 0 for t ∈ (0, tmax(ϕ1)), hence

u(t+ τ, uo) = u(t, u1) ≥ u(t, ϕ1) > 0.

Consequently, u(t, uo) is positive for t ∈ (0, tmax(uo)) and [A3, Corollary 9.3 or
9.4] implies that u(·, uo) is a classical solution of (1.1) for t ∈ (0, tmax(uo)).

Finally, let 0 ≤ uo ≤ ũo, uo 6≡ ũo. Then we have u(τ, uo) ≤ u(τ, ũo) and
u(τ, uo) 6≡ u(τ, ũo) for τ small enough. Moreover, u(·, uo), u(·, ũo) are classical
solutions, hence the maximum principle implies u(t + τ, uo) < u(t + τ, ũo) on
the time interval where both solutions exist. (4.10) implies then that tmax(uo) ≥
tmax(ũo) and the assertion follows. �

Remark 5.1. The problem (1.1) defines a strongly monotone compact local
semiflow in C+ ∩W 1,r(Ω) for any r > N .
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Theorem 5.1.Denote the set of initial nonnegative data for which the solutions
exist globally by G. Then G is star-shaped with respect to zero. Moreover, G is
closed in C+ provided one of the following conditions holds:

(i) p < q and q <
N + 1

N − 1
if N > 1,

(ii) p = q < min
(

2,
N + 2

N

)
.

Proof. The fact that G is star-shaped follows from Proposition 5.1. To prove
that G is closed we proceed by contradiction. Suppose that u(t, uo) blows up in a
finite time T and that there is a sequence {un} ⊂ G, un → uo in X. By continuous
dependence on initial values, it is possible to choose for any K > 0 a t1 < T and
an no such that

(5.1) ‖u(t1, uno)‖ = max
t≤t1
‖u(t, uno)‖ > K.

Differentiating the equation with respect to t, multiplying it by ut and integrating,
we obtain
(5.2)
1

2

d

dt

∫
Ω

u2
t dx =

∫
Ω

uttut dx = −

∫
Ω

|∇ut|
2dx− ap

∫
Ω

up−1u2
t dx+ q

∫
∂Ω

uq−1u2
t dS.

By Hölder inequality we have
(5.3)∫
∂Ω

uq−1u2
t dS ≤

(∫
∂Ω

u2s
t dS

) 1
s
(∫

∂Ω

us
′(q−1) dS

) 1
s′ for s, s′ > 1,

1

s
+

1

s′
= 1.

Consider first the case N > 1 or N = 1 and p = q.

If N > 1, set s :=
N − 1

N − 2θ
, θ := 1

2 + ε. Then the trace operator Tr : W θ,2(Ω)→

L2s(∂Ω) is continuous, s′ =
N − 1

2θ − 1
and the trace operator Tr : W 1,2(Ω) →

Ls
′(q−1)(∂Ω) is continuous provided N = 2 or N > 2, s′(q − 1) ≤ 2

N − 1

N − 2
, i.e.

θ ≥
1

2
+

(N − 2)(q − 1)

4
. Hence, if N > 2, then we take ε =

(N − 2)(q − 1)

4
.

If N = 1, then we choose arbitrary s > 1.
With this choice of s, ε, we obtain∫

∂Ω

uq−1u2
t dS ≤ c1‖u‖

q−1‖ut‖
2
θ,2 ≤ c2‖u‖

q−1‖ut‖
2θ‖ut‖

2(1−θ)
2 ,

where ‖ · ‖θ,2 or ‖ · ‖2 denotes the norm in W θ,2(Ω) or L2(Ω), respectively. Using
Young inequality we obtain∫

∂Ω

uq−1u2
t dS ≤ c2‖u‖

q−1
(
η‖ut‖

2 + η
− θ

1−θ

∫
Ω

u2
t dx

)
.
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Now (5.2) yields that
(5.4)

1

2

d

dt

∫
Ω

u2
t dx ≤− ‖ut‖

2 +

∫
Ω

u2
t dx+ c2‖u‖

q−1
(
η‖ut‖

2 + η
− θ

1−θ

∫
Ω

u2
t dx

)
≤−

1

2
‖ut‖

2 + c3‖u‖
q−1
1−θ

∫
Ω

u2
t dx

if we put η :=
(
2c2‖u‖q−1

)−1
. Since u is global, we know from Theorem 4.5(i)

that Φ
(
u(·, t)

)
≥ 0 for t ≥ 0, hence

(5.5)

∫ t

0

∫
Ω

u2
t dxdt = Φ

(
u(·, 0)

)
− Φ

(
u(·, t)

)
≤ Φ

(
u(·, 0)

)
.

Therefore, integrating (5.4) we get

(5.6)

∫ τ

0

‖ut(·, t)‖
2 dt+

∫
Ω

u2
t (x, τ) dx ≤ c4

(
max
t≤τ
‖u(·, t)‖

q−1
1−θ + 1

)
.

Estimating both
∫

Ω u
2dx and

∫
Ω |∇u|

2dx as in (4.37) we see that

‖u(·, τ)‖2 ≤ 2
(
‖u(·, 0)‖2 + τ

∫ τ

0

‖ut(·, t)‖
2dt
)
.

Hence, (5.6) yields

(5.7) ‖u(·, τ)‖2 ≤ 2τc4

(
max
t≤τ
‖u(·, t)‖

q−1
1−θ + 1

)
+ c5.

In the case p = q it is easy to check that
q − 1

1− θ
< 2 if N = 1, 2 and ε <

2− q

2

or if N > 2, ε =
(N − 2)(q − 1)

4
. Therefore (5.1), (5.7) yield a contradiction if we

choose K large enough and τ = t1, u(·, 0) = uno .
In the case N > 1, p < q, we proceed slightly differently. According to (4.28)

(5.8) ‖u‖2 ≤ c6M
′′ + c7 = 2c6

∫
Ω

uut dx+ c7.

By Hölder inequality, (4.37) and (5.5), we obtain∫
Ω

uut dx ≤
√

2
(∫

Ω

u2
o dx+ t

∫ t

0

∫
Ω

u2
t dxdt

)1/2(∫
Ω

u2
t dx

)1/2

≤ (c8 + c9t)
1/2
(∫

Ω

u2
t dx

)1/2

.
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Now (5.8) implies that

(5.9) ‖u(·, τ)‖2 ≤ c10

(∫
Ω

u2
t (x, τ) dx

)1/2

+ c7,

where c10 depends on τ . But taking u(·, 0) = uno , τ = t1 we obtain from (5.6),
(5.9) that

(5.10) ‖u(t1, uno)‖
2 ≤ c11

(
‖u(t1, uno)‖

q−1
2(1−θ) + 1

)
what is a contradiction to (5.1), since

q − 1

2(1− θ)
< 2 under the assumption N > 1,

p < q <
N + 1

N − 1
.

Consider now the case N = 1, p < q. From (4.10) it follows that

c12‖u‖ ≤
1

2

∫
Ω

|∇u|2 dx+
a

p+ 1

∫
Ω

up+1 dx ≤ Φ(uo) +
1

q + 1

∫
∂Ω

uq+1 dS

hence
‖u(·, t)‖ ≤ c13

(
sup
x∈Ω

u(x, t) + 1
)
.

This means that for K large enough max
0≤t≤t1

‖u(t, uno)‖C(Ω) cannot be attained for

t = 0. Therefore, there is a t2 ∈ (0, t1] for which

max
x∈Ω

0≤t≤t1

u(x, t) = max
x∈Ω

u(x, t2) = max
x∈∂Ω

u(x, t2) =: U.

If U >
(
a
q + 1

p+ 1
|Ω|
) 1
q−p

then there is a δ ∈ (0, 1) such that

(5.10a)
a

p+ 1

∫
Ω

up+1(x, t2) dx ≤
δ

q + 1

∫
∂Ω

uq+1(x, t2) dS.

Since Φ(u) ≥ 0 by Theorem 4.5(i), we obtain from (5.10a) that

(5.11)
1− δ

q + 1

∫
∂Ω

uq+1(x, t2) dS ≤
1

2

∫
Ω

|∇u(x, t2)|2 dx.

Taking s′ =
q + 1

q − 1
, (5.11) yields

(∫
∂Ω

us
′(q−1)(x, t) dS

) 1
s′ ≤ c14

(∫
Ω

|∇u(x, t2)|2 dx
) q−1
q+1

≤ c14 max
t≤t1
‖u(·, t)‖

2
q−1
q+1 for t ≤ t1.
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By (5.3) we have∫
∂Ω

uq−1u2
t dS ≤ c14

(∫
∂Ω

uq+1
t dS

) 2
q+1

max
t≤t1
‖u(·, t)‖

2
q−1
q+1

≤ c15‖ut‖
2
θ,2 max

t≤t1
‖u(·, t)‖

2
q−1
q+1 , θ =

1

2
+ ε.

Instead of (5.10) we obtain now by the same arguments as before that

‖u(t1, uno)‖
2 ≤ c16

(
‖u(t1, uno)‖

1
1−θ

q−1
q+1 + 1

)
,

where
1

1− θ

q − 1

q + 1
< 2 if ε <

1

q + 1
and we arrive at a contradiction.

The proof is trivial if U ≤
(
a
q + 1

p+ 1
|Ω|
) 1
q−p

, since then

∫
∂Ω

us
′(q−1) dS ≤ c17.

�

Theorem 5.2. Assume that N = 1 and p < q. Then for any uo ∈ C+, uo 6≡ 0
on ∂Ω, there is a λo > 0 such that u(t, λuo) → 0 in X as t → ∞ for λ < λo;
u(t, λouo) tends to a positive stationary solution as t → ∞, while u(t, λuo) blows
up in finite time for λ > λo.

Proof. Set
λo = sup{λ > 0 ; u(t, λuo) exists globally}.

From Theorem 4.5(i) and Remark 4.2 it follows that λo <∞. Set

λ1 = sup{λ > 0 ; u(t, λuo)→ 0 in X as t→∞}.

According to Theorem 2.1(i), zero is a stable stationary solution, therefore λ1 >
0. Obviously, λ1 ≤ λo. The domain of attraction of 0 is open in X, hence
u(t, λ1uo) cannot tend to zero. By Theorem 5.1, u(t, λ1uo) is global and according
to Theorem 4.5(ii), it is bounded in X. Therefore the ω–limit set ω(λ1uo) is
nonempty and consists of positive stationary solutions. Since ω(λ1uo) is connected
and the positive stationary solutions are isolated (Theorems 3.3(i) and 3.4(ii)),
ω(λ1uo) = {v}, where v is a positive stationary solution.

The proof will be finished if we show that λ1 = λo.
Suppose λ1 < λo. By Theorem 5.1, u(t, λouo) is global, hence u(t, λouo) → w

as t→∞, where w is a positive stationary solution. Since

(5.13) u(t, λouo) > u(t, λ1uo) for t > 0,
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we have that w = v, because any two positive stationary solutions must intersect
(Theorem 2.1(i)). The stationary solution v is hyperbolic (Theorem 3.5) and un-
stable (Theorem 3.6(i)). Its stable manifold W s(v) is an immersed submanifold of
X with codimension ≥ 1, therefore it cannot contain an open set – a contradiction
to (5.13). (For the existence of the local (un)stable manifold see [S, Theorem 5.2],
for the globalization see [H, Theorem 6.1.9].) �

Let v1 and v2 be stationary solutions. We say that v1 connects to v2, iff there
is an orbit {u(t) ; t ∈ R} such that u(t)→ v1 in X as t→ −∞, u(t)→ v2 in X as
t→ +∞.

For semilinear parabolic equations with homogeneous Dirichlet or Neumann
boundary conditions, the connecting orbits problem was solved completely in
[BF1],[BF2]. But nonlinear boundary conditions were not considered there.

Theorem 5.3. Assume that N = 1, p ≤ q and a > a1. Let v1 denote the sym-
metric positive stationary solution and v2, v3 the nonsymmetric positive stationary
solutions. Then

(i) vi connects to 0 for i = 1, 2, 3;
(ii) v1 connects to v2 and v3.

Proof. (i) follows from [M, Theorem 8] and Theorem 2.1(i).
To prove (ii) we first recall that M−(v1) = 2 (Theorem 3.6(i)) and that there

exists an orbit w lying in the unstable manifold Wu(v1) such that w blows up in
a finite time T (see the proof of Theorem 4.2(ii)).

Let Γ = {γ(s) ; s ∈ [0, 1]} be a Jordan curve in Wu(v1) around v1 such that
γ(0) = γ(1) =: γo lies on the orbit which connects v1 to 0. Set

so := sup{s ; u(t, γ(σ))→ 0 for σ ∈ [0, s]}.

Then so > 0, because the domain of attraction of 0 is open. There is a s1 ∈ (0, 1)
such that γ(s1) ∈ w, hence so < s1. By Theorem 5.1, u(t, γ(so)) exists for t ≥ 0
and u(t, γ(so)) converges to a stationary solution vo. The semiflow is gradient like
with respect to the functional Φ, therefore vo 6= v1. This means that v1 connects
to v2 or v3. But if {u(x, t) ; t ∈ R} is an orbit connecting v1 to v2, then {u(−x, t) ;
t ∈ R} connects v1 to v3. �

Theorem 5.4. Assume that N = 1, q < p < 2q− 1, a > ao. Let u1 denote the
smaller symmetric positive stationary solution. Then the following holds.

(i) Any positive stationary solution v (v 6≡ u1) connects to u1.
(ii) Let v be a stationary solution, v > u1. If 0 ≤ uo ≤ v, uo 6≡ 0, uo 6≡ v,

then u(t, uo)→ u1.
(iii) Let all nonsymmetric positive stationary solutions be hyperbolic. Then for

any uo ∈ C+, uo > 0, there is a λo > 0 such that u(t, λuo)→ u1 as t→∞
for λ < λo; while u(t, λuo) blows up in finite time for λ > λo.

Remark 5.2. The nonsymmetric positive stationary solutions are hyperbolic
if e.g. p ≤ 4 or p > 4, q ≥ p− 1− 1

p−2 (see Theorem 3.5 and Lemma 3.6).
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Proof of Theorem 5.4. (i) Since u1 is stable (see the proof of Theorem 3.6(i)),
the assertion follows from Proposition 3.1 and [M, Theorem 8].

(ii) is an immediate consequence of (i).
To prove (iii) we define λo, λ1 as in the proof of Theorem 5.2. Since the set

of stationary solutions is bounded in L∞(Ω) (cf. (2.29), (3.52)), Theorem 4.2(ii)
implies that λo <∞. Obviously, λ1 ≤ λo and according to (ii), λ1 > 0.

Suppose that λ1 < λo. Take λ2 ∈ (λ1, λo). Then u(t, λ1uo) and u(t, λ2uo)
converge to the same stationary solution by Proposition 3.1. But this stationary
solution is unstable and hyperbolic. Hence, we arrive at a contradiction as in the
proof of Theorem 5.2. �

We formulate our next (and last) result as a remark, since we only indicate
some possible proofs. To give a complete proof is out of the scope of this paper.

Remark 5.3. If N = 1, p, q are as in Lemma 3.6 and a > a1 then the larger
symmetric stationary solution u2 connects to both of the nonsymmetric stationary
solutions.

There are several possibilities to prove this fact. We shall sketch two of them.
(i) ∂W s(u1) (the boundary of the domain of attraction of the smaller symmet-

ric stationary solution u1) is an invariant Lipschitz manifold with codimension
one. (This might be shown in the same way as Theorem 5.5 in [P], see also [T,
Propositions 1.2 and 1.3].) From Theorem 5.4(i) it follows that u2 ∈ ∂W s(u1).
Since Wu(u2) contains initial data for which blow up occurs and also initial data
for which the corresponding solutions tend to u1 and dimWu(u2) = 2, there is
a uo ∈ Wu(u2) ∩ ∂W s(u1), uo 6≡ u2. Analogously as in [P, Theorem 5.4(v)] it
could be shown that any two functions in ∂W s(u1) cross each other. Hence, if we
denote by z(f) the number of sign changes (zero number) of f ∈ C([−l, l]), then
z(uo − u2) ≥ 1. But we also know that

lim
t→−∞

z
(
u(t, uo)− u2

)
= 1,

since

lim
t→−∞

u(t, uo)− u2

‖u(t, uo)− u2‖
= ±ϕ2,

ϕ2 being the second eigenfunction of the linearized (at u2) stationary problem
(which is a Sturm–Liouville problem). It is well known that z

(
u(t, uo) − u2

)
is

nonincreasing in t for t ∈ (−∞, T ), T ≤ ∞ being the maximal existence time.
Therefore

(5.14) z
(
u(t, uo)− u2

)
= 1 for t ∈ (−∞, T ).

Assume that

(5.15) u(−l, t;uo) > u2(−l), u(l, t;uo) < u2(l)
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for t close to −∞. From (5.14) it follows that

(5.16) u(l, t;uo) ≤ u2(l) for t ∈ (−∞, T ).

Let v1 be the nonsymmetric stationary solution with

v1(−l) > u2(−l), v1(l) < u2(l).

Since z(v1 − u2) = 1, we have z
(
u(t, uo)− v1

)
= 1 for t close to −∞. But then

(5.17) u(−l, t;uo) ≤ v1(−l) for t ∈ (−∞, T )

according to the nonincrease of z.
(5.16), (5.17) and (4.10) imply that ‖u(t, uo)‖ is bounded for t ∈ (−∞, T ) which

means that T =∞ and u(t, uo)→ v1 as t→∞.
If the inequalities in (5.15) are reversed, we can argue exactly as before to prove

that u2 connects to v2, v2(x) = v1(−x).
(ii) Another possibility to prove the connections is to use the y–map (see [BF1,

Section 2]). This tool enables us to show the existence of an orbit {w(t) ; t ∈
(−∞, T )} lying in Wu(u2) with z

(
w(t) − u2

)
= 1 for t ∈ (−∞, T ). As before,

we can conclude that T = ∞ and w(t) converges to a nonsymmetric stationary
solution as t→∞.
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