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ROOTS OF CONTINUOUS PIECEWISE MONOTONE MAPS

OF AN INTERVAL

A. BLOKH, E. COVEN, M. MISIUREWICZ AND Z. NITECKI

1. Introduction

At the Third Czechoslovak Summer School on Dynamical Systems, K. Simon
raised the following question.

If a continuous piecewise linear interval map has a continuous square root, must
it have a continuous piecewise linear square root?

We shall consider slightly more general problems. Namely, we shall investigate
the existence of continuous: piecewise monotone, piecewise strictly monotone, and
piecewise linear n-th roots of interval maps which have a continuous n-th root.

Here by an n-th root of f we mean a map g such that f = gn (gn is the
n-th iterate of g). A continuous map f : I → J , where I, J are closed intervals, is
piecewise monotone (resp. piecewise strictly monotone, resp. piecewise
linear) if there are finitely many points a0 < a1 < · · · < am in I such that
I = [a0, am] and f is monotone (resp. strictly monotone, resp. affine) on [ai−1, ai]
for i = 1, . . . ,m. We shall denote the class of these maps by M(I, J) (resp. S(I, J),
resp. L(I, J)). We shall also denote the class of all continuous maps from I into J
by C(I, J). In addition, the class of all closed intervals will be denoted by I, the
set of all positive integers by Z+ and the set of all continuous n-th roots of f by
n
√
f . For an interval J we shall denote its boundary (i.e. the set of its endpoints)

by bdJ .

Clearly, any iterate of a map fromM(I, I), S(I, I) or L(I, I) has to belong to the
same class. Therefore if we look for piecewise monotone (resp. piecewise strictly
monotone, resp. piecewise linear) roots of f then we can restrict our attention to
piecewise monotone (resp. piecewise strictly monotone, resp. piecewise linear) f .
We obtain the following results.

Theorem A. Let I ∈ I, n ∈ Z+ and let f : I → I be a continuous piecewise
monotone map. Assume that n

√
f 6= ∅. Then:

(a) There is a piecewise monotone map in n
√
f .

(b) If f(I) = I then every map in n
√
f is piecewise monotone.
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(c) If f is piecewise strictly monotone then every map in n
√
f is piecewise

strictly monotone.

Theorem B. For each I ∈ I and n ∈ Z+ with n ≥ 2, there exists a continuous
piecewise linear map f : I → I such that n

√
f 6= ∅, but no element of n

√
f is

piecewise linear.

On our way to prove Theorem B, we shall investigate roots of horseshoe maps.
By a lap of a piecewise strictly monotone map we mean a maximal interval of
monotonicity of this map. If I ∈ I then a map f ∈ S(I, I) is called a horseshoe
map, if it has more than one lap and each lap is mapped by f onto the whole I.
We shall call a horseshoe map strict if it has no homtervals (intervals on which all
iterates of the map are monotone). The type of a horseshoe map f will be a pair
(m,σ), where m is the number of laps of f and σ indicates whether f is increasing
(then σ = +) or decreasing (then σ = −) on the leftmost lap.

Our main theorem on the roots of strict horseshoe maps is the following.

Theorem C. Let I ∈ I, n ∈ Z+ and let f : I → I be a strict horseshoe map
of type (m,σ).

(1) If n
√
m is not an integer, then n

√
f = ∅.

(2) If n
√
m is an integer, but m(n+ 1) is odd and σ = −, then n

√
f = ∅.

(3) If n
√
m is an integer and m(n+1) is even, then n

√
f has a unique element.

This element is a strict horseshoe map of type ( n
√
m,σ).

(4) If n
√
m is an integer, m(n+1) is odd and σ = +, then n

√
f has exactly two

elements. Both of them are strict horseshoe maps; one of type ( n
√
m,+),

the other one of type ( n
√
m,−).

Notice that exactly one of the cases (1)-(4) has to occur.
We prove Theorem A in Section 2, Theorem C in Section 3 and Theorem B in

Section 4.

2. Piecewise monotone and piecewise strictly monotone roots

We start by proving an auxiliary lemma.

Lemma 1. Let I, J ∈ I and let ϕ,ψ ∈ C(J, I) be maps such that

(i) ψ is monotone,
(ii) ϕ|bd J = ψ|bdJ ,
(iii) if x ∈ J and ϕ(x) 6= ψ(x) then ϕ is constant in some neighborhood of x.

Then ϕ = ψ.

Proof. Suppose that ϕ 6= ψ. Then there is some x ∈ J such that ϕ(x) 6= ψ(x).
Let [c, d] be the maximal interval containing x on which ϕ is constant. If ϕ(c) 6=
ψ(c) then by (iii), ϕ is constant in some neighborhood of c. By the maximality of
[c, d], this means that c is the left endpoint of J , but this contradicts (ii). Therefore
we have ϕ(c) = ψ(c). Analogously, ϕ(d) = ψ(d). Hence, ψ(c) = ϕ(c) = ϕ(x) =
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ϕ(d) = ψ(d). Thus, by (i), ψ is constant on [c, d], and we get ϕ(x) = ψ(x) – a
contradiction. �

Now we can prove a basic lemma, showing what happens if a composition of
two maps is monotone. We shall use the notation 〈x, y〉 for the closed interval
whose endpoints are x and y (regardless of whether x < y, x > y or x = y – in
which case 〈x, y〉 = {x}).

Lemma 2. Let I, J,K ∈ I and let F ∈ C(J,K), G ∈ C(K, I). Assume that
G ◦ F is monotone. Then:

(a) G is monotone on F (J).
(b) There exists a monotone map H ∈ C(J,K) such that G ◦H = G ◦ F and

H|bdJ = F |bdJ .

Proof.
(a) Suppose that G is not monotone on F (J). Then there exist x < y < z in

F (J) such that G(y) /∈ 〈G(x), G(z)〉. There are u < v in J such that F ({u, v}) =
{x, z}. Then there exists w ∈ (u, v) such that F (w) = y. We get u < w < v and
G ◦ F (w) /∈ 〈G ◦ F (u), G ◦ F (v)〉 – a contradiction.

(b) Let F (bd J) = {c, d} with c ≤ d. Define a map H1 ∈ C(J,K) by

H1(x) =


c if F (x) < c,

d if F (x) > d,

F (x) otherwise.

Then apply the “pouring water” construction of [ALMS]. That is, define a map
H ∈ C(J,K) by

H(x) = min(max{H1(t) : t ∈ J, t ≤ x},max{H1(t) : t ∈ J, t ≥ x}).

(To get the graph of H, we pour water to the graph of H1, until it is full; see
Figure 1.) Clearly, H|bdJ = F |bdJ and H is monotone. Moreover, if H(x) 6= F (x)
at some x then H is constant in some neighborhood of x. Therefore the hypotheses
of Lemma 1 are satisfied for ϕ = G ◦H and ψ = G ◦ F . Hence, we get ϕ = ψ. �

Remark 3. In the proof of Lemma 2 (b), either we get H = F or H is constant
on some interval.

We can restate Theorem A in the following form, more convenient for the proof
(notice that g(I) = I is equivalent to gn(I) = I).

Theorem 4. Let I ∈ I, n ∈ Z+ and g ∈ C(I, I). Assume that gn ∈ M(I, I).
Then:

(a) There exists h ∈M(I, I) such that hn = gn.
(b) If g(I) = I then g ∈M(I, I).
(c) If gn ∈ S(I, I) then g ∈ S(I, I).
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Figure 1. Consecutive steps in the construction of the map H.

Proof. We start by proving that

(?) g is piecewise monotone on gn−1(I).

Let J be an interval of monotonicity of gn. Apply Lemma 2 (a) to K = gn−1(J),
F = gn−1|J and G = g|K . We obtain that g is monotone on gn−1(J). (If gn−1(J)
consists of one point, then formally we cannot use Lemma 2, but clearly g is also
monotone on gn−1(J).) Since gn−1(I) is a finite union of gn−1(J) over intervals J
of the type considered, (?) follows.

Now, to prove (a), notice that gn−1(I) ⊂ gn−2(I) ⊂ · · · ⊂ g(I) ⊂ I. We shall
construct h inductively on these intervals. We shall do it in such a way that hn−k

will also coincide with gn−k on gk(I) and h will coincide with g on bd (gk(I)).
In view of (?), we can set h|gn−1(I) = g|gn−1(I). Assume now that 1 ≤ k ≤

n − 1, that h is already defined on gk(I), and that hn−k coincides with gn−k

on gk(I) and h coincides with g on bd (gk(I)). We are going to define h on
gk−1(I). The set cl (gk−1(I) \ gk(I)) consists of 0,1 or 2 closed intervals. Assume
that J is the intersection of such an interval with an interval of monotonicity
of gn. Then we apply Lemma 2 (b) to K = g(J), F = g|J and G = gn−k|K .
We obtain a continuous monotone map H : J → g(J) such that gn−k ◦ H =
gn−k+1|J and H|bdJ = g|bdJ . We set h = H on J . Since g(J) ⊂ g(gk−1(I)) =
gk(I), we have hn−k|g(J) = gn−k|g(J), so hn−k+1|J = (gn−k|g(J)) ◦H = gn−k+1|J .
Therefore, if we proceed as above on each possible J then we get a piecewise
monotone h on gk−1(I), such that hn−k+1 coincides with gn−k+1 on gk−1(I)\gk(I).
However, if x ∈ gk(I) then hn−k(x) = gn−k(x) and gn−k(x) ∈ gn(I) ⊂ gn−1(I), so
g(gn−k(x)) = h(gn−k(x)). Therefore hn−k+1 coincides with gn−k+1 also on gk(I),
and consequently hn−k+1 coincides with gn−k+1 on gk−1(I). From the conditions
H|bdJ = g|bdJ and h|bd (gk(I)) = g|bd (gk(I)) it follows that h is continuous on the

whole gk−1(I) and that h coincides with g on bd (gk−1(I)). This completes the
induction step.

When we arrive with the induction at k = 0 then we obtain h ∈ M(I, I) such
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that hn = gn. This proves (a).
(b) follows immediately from (?).
To prove (c), notice that in the proof of (a), whenever we use Lemma 2 (b),

then by Remark 3, we either get h|J = g|J or h is constant on some interval. If gn

is piecewise strictly monotone then, since hn = gn, the map hn is also piecewise
strictly monotone. Therefore h cannot be constant on any interval, and we get
h|J = g|J on all J . Therefore h = g, so g ∈ M(I, I). Since g cannot be constant
on any interval, we get g ∈ S(I, I). �

3. Roots of horseshoe maps

The first step in the investigation of roots of horseshoe maps is the following
simple theorem.

Theorem 5. Let I ∈ I, n ∈ Z+ and let f ∈ S(I, I) be a horseshoe map. Then
any element of n

√
f is a horseshoe map.

Proof. Suppose that g ∈ n
√
f . By Theorem A, g ∈ S(I, I). If g is not a

horseshoe map then there is a lap J of g such that g(J) 6= I (since f has more
than one lap, clearly g has more than one lap). Since f(I) = I, we have also
g(I) = I, so gn−1(I) = I. Therefore there exists x ∈ I such that gi(x) ∈ intJi for

some laps Ji of g for i = 0, 1, . . . , n− 1 and Jn−1 = J . Then K =
⋂n−1
i=0 g

−i(Ji) is

a lap of f = gn. Since K ⊂ g−(n−1)(J), we get f(K) ⊂ g(J). Hence, f(K) 6= I –
a contradiction. �

The following lemma is very simple and we leave its proof to the reader.

Lemma 6. Let g be a horseshoe map of type (k, τ) and let n ∈ Z+. Then gn

is a horseshoe map of type (kn, σ), where σ = + whenever τ = + and also when
τ = −, k is odd and n is even; otherwise σ = −.

Now we turn to the investigation of strict horseshoe maps. Clearly, if n ∈ Z+

then F is strict if and only if Fn is strict.
We say that two maps F ∈ C(I, I) and G ∈ C(J, J) are topologically conju-

gate if there exists a homeomorphism H : I → J such that H ◦ F = G ◦H. The
next lemma follows immediately from the kneading theory (see e.g. [MT]).

Lemma 7. Any two strict horseshoe maps of the same type are topologically
conjugate via an orientation preserving homeomorphism.

Clearly, any map topologically conjugate to a horseshoe map is a horseshoe
map. Moreover, if the conjugacy preserves orientation then these two horseshoe
maps have the same type. Also, if one of them is strict, so is the other one.

It turns out that a strict horseshoe map cannot have more than one n-th root
which is a strict horseshoe map of a given type.

Lemma 8. Let F,G ∈ S(I, I) be strict horseshoe maps of the same type and
let n ∈ Z+. Assume that Fn = Gn. Then F = G.
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Proof. Let [a0, a1], [a1, a2], . . . , [am−1, am] be the laps of F and let [b0, b1],
[b1, b2], . . . , [bmn−1, bmn ] be the laps of Fn. We know that the set {b0, b1, . . . , bmn}
is equal to

⋃n−1
i=0 F

−i({a0, a1, . . . , am}). Hence, there is a map ϕ : {0, 1, . . . ,mn} →
{0, 1, . . . ,mn} such that F (bi) = bϕ(i) for i = 0, 1, . . . ,mn. In view of Lemma
7, this map remains the same if we replace F by G. Thus, F and G coin-
cide on the set

⋃n−1
i=0 F

−i({a0, a1, . . . , am}). Since F kn = Gkn for k ∈ Z+,
this remains true if we replace n by kn. Therefore F and G coincide on the
set R =

⋃∞
i=0 F

−i({a0, a1, . . . , am}). Since F is strict, the set R is dense in I.
Consequently, F and G coincide on the whole I. �

We need the existence of strict horseshoe maps of all types. For this, we intro-
duce linear horseshoe maps, that is those horseshoe maps which are affine on
each lap. Note that a horseshoe map which belongs to L(I, I) need not be a linear
horseshoe map, since the former need only be piecewise linear on each of its laps.
Figure 2 gives an example of a horseshoe map which is piecewise linear, but which
is not a linear horseshoe map.

Figure 2. This map is not a linear horseshoe map.

Clearly, for each (m,σ) where m ≥ 2 is an integer and σ ∈ {+,−}, there exists
a linear horseshoe map of type (m,σ).

Lemma 9. Any linear horseshoe map is strict.

Proof. Let F be a linear horseshoe map. Since it has more than one lap, it is
expanding on each lap. This means that there is a constant α > 1 such that if K
is an interval on which F is monotone then the length of F (K) is at least α times
larger than the length of K. Therefore if F has a homterval J then the lengths of
Fn(J) tend to infinity as n→∞ – a contradiction. �

The last ingredient of the proof of Theorem C is the following lemma.

Lemma 10. Let m,k ≥ 2 and n ≥ 1 be integers and let σ, τ ∈ {+,−}. Assume
that m = kn and one of the following conditions holds.

(i) σ = τ = +,
(ii) σ = +, τ = − and m(n+ 1) is odd,
(iii) σ = τ = − and m(n+ 1) is even.
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Then for any strict horseshoe map f of type (m,σ) there exists a strict horseshoe
map of type (k, τ) in n

√
f .

Proof. Let f ∈ S(I, I) be a strict horseshoe map of type (m,σ). There exists
a linear horseshoe map G ∈ L(I, I) of type (k, τ). By Lemma 6, Gn is a linear
horseshoe map of type (m,σ). By Lemma 9, Gn is strict, and by Lemma 7,
Gn is conjugate to f via an orientation preserving homeomorphism H (that is,
H ◦Gn = f ◦H). Set g = H ◦G ◦H−1. Then g is a strict horseshoe map of type
(k, τ). We have gn = H ◦Gn ◦H−1 = f . �

Now Theorem C follows from Theorem 5 and Lemmas 6, 8 and 10.

4. Piecewise linear roots of linear horseshoe maps

If F ∈ L(I, I) then we shall call the maximal intervals on which F is affine the
linear laps of F .

When we want to prove a counterpart to Theorem 5 for linear horseshoe maps,
then we cannot just repeat the proof of Theorem 5 with small modifications. The
reason is that laps are the maximal intervals on which the map is one-to-one. If
we take a longer interval then some points get glued together by the map and its
further applications cannot “unglue” them. With linear laps (which can be shorter
than the laps of the same map), the situation is different. A longer interval can be
“bent” by the map and “straightened” by its further applications. Nevertheless,
we can prove the following theorem.

Theorem 11. Let I ∈ I, n ∈ Z+ and let f ∈ L(I, I) be a linear horseshoe
map. Then any element of n

√
f ∩ L(I, I) is a linear horseshoe map.

Proof. Suppose that g ∈ n
√
f ∩ L(I, I). Let A be the set of those points of I

which belong to the interior of some lap of g but not to the interior of any linear lap
of g. The set A is finite; if it is empty then by Theorem 5, g is a linear horseshoe
map.

Suppose that x ∈ I is a point for which gn−1(x) ∈ A. The points x, g(x), . . . ,
gn−2(x) belong to the interiors of some laps of g (otherwise, by Theorem 5, gn−1(x)
would be an endpoint of I). Therefore x belongs to the interior of some lap of f
and hence to the interior of some linear lap of f . Consequently, one of the points
x, g(x), . . . , gn−2(x) has to belong also to A.

This shows that if (xi)
∞
i=0 is a sequence of points of I such that g(xi) = xi−1

for all i > 0 and x0 ∈ A then for infinitely many i’s, the points xi belong to A.
Since by Theorem 5, g is a horseshoe map, for every y ∈ I we can find a sequence
(yi)

∞
i=0 such that g(yi) = yi−1 for all i > 0, all points yi are distinct, and y0 = y.

Consequently, if y ∈ A then A is infinite. Therefore A must be empty. This
completes the proof. �

We turn now to the proof of Theorem B. Let I ∈ I and let β be the length
of I. For any integer m > 2, σ ∈ {+,−} and a vector P = (p1, . . . , pm) with
pi > 0 and

∑m
i=1 pi = β there exists a unique linear horseshoe map FP,σ ∈ L(I, I)

of type (m,σ) with laps of length p1, . . . , pm (from left to right). Let n ∈ Z+ and
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suppose that g ∈ n
√
FP,σ ∩ L(I, I). By Theorem 11, g is a linear horseshoe map.

Therefore g = FQ,τ for some τ ∈ {+,−} and a vector Q = (q1, . . . , qk) with qi > 0

and
∑k
i=1 qi = β. By Lemma 6, kn = m and one of the conditions (i) - (iii) of

Lemma 10 holds. Moreover, there are additional conditions on the vectors P and
Q. Namely, it is clear that there are polynomials (in fact, monomials) W1, . . . ,Wm

of degree n in k variables such that pi = Wi(Q) for i = 1, . . . ,m. The monomials
Wi depend only on k, τ and n.

It is worth mentioning that with some work one can obtain explicit formulas for
the monomials Wi (at least in some cases). For instance, if k = 2 and τ = + then
Wi(x, y) = xn−αi−1yαi+1, where for i ≥ 2, αi is the number of switches (from 1
to 0 and from 0 to 1) in the binary expansion of i− 1, and α1 = −1.

Now Theorem B follows easily. For a given integer n ≥ 2 we choose m ≥ 2
and σ ∈ {+,−} such that one of the conditions (3) or (4) of Theorem C is sat-
isfied. If I ∈ I and f ∈ L(I, I) is a linear horseshoe map of type (m,σ) then
by Theorem C, n

√
f 6= ∅. The set n

√
f ∩ L(I, I) is parametrized by the vec-

tors P from an open (m − 1)-dimensional simplex S. However, those elements
of n
√
f ∩ L(I, I) which have piecewise linear n-th root, correspond to the param-

eters P = (W1(Q), . . . ,Wm(Q)) for Q from an open ( n
√
m − 1)-dimensional sim-

plex. Therefore they form an ( n
√
m− 1)-dimensional algebraic subset of S. Since

n
√
m− 1 < m− 1, this proves Theorem B.
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