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C0-BIČECH SPACES AND C1-BIČECH SPACES

CHAWALIT BOONPOK

Abstract. The aim of this paper is to introduce the concepts of C0-biČech
spaces and C1-biČech spaces and study its basic properties.

1. Introduction

Čech closure spaces were introduced by Čech [2] and then studied by many
authors, see e.g. [4, 5, 6, 7]. BiČech closure spaces were introduced by Chan-
drasekhara Rao, Gowri and Swaminathan [3]. Caldas and Jafari [1] introduced
the notions of ∧δ −R0 and ∧δ −R1 topological spaces as a modification of the
known notions of R0 and R1 topological spaces. In this paper, we introduce
the concepts of C0 - biČech spaces and C1-biČech spaces and study its basic
properties in biČech closure spaces.

2. Preliminaries

An operator u : P (X) → P (X) defined on the power set P (X) of a set X
satisfying the axioms:

( C1 ) u∅ = ∅,
( C2 ) A ⊆ uA for every A ⊆ X,
( C3 ) u(A ∪B) = uA ∪ uB for all A, B ⊆ X.

is called a Čech closure operator and the pair (X, u) is a Čech closure space.
For short, the space will be noted by X as well, and called a closure space. A
closure operator u on a set X is called idempotent if uA = uuA for all A ⊆ X.

A subset A is closed in the closure space (X, u) if uA = A and it is open if
its complement is closed. The empty set and the whole space are both open
and closed.

A closure space (Y, v) is said to be a subspace of (X, u) if Y ⊆ X and
vA = uA ∩ Y for each subset A ⊆ Y . If Y is closed in (X, u), then the
subspace (Y, v) of (X, u) is said to be closed too.
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Let (X, u) and (Y, v) be closure spaces. A map f : (X, u) → (Y, v) is said to
be continuous if f(uA) ⊆ vf(A) for every subset A ⊆ X.

One can see that a map f : (X, u) → (Y, v) is continuous if and only if
uf−1(B) ⊆ f−1(vB) for every subset B ⊆ Y . Clearly, if f : (X, u) → (Y, v) is
continuous, then f−1(F ) is a closed subset of (X, u) for every closed subset F
of (Y, v).

Let (X, u) and (Y, v) be closure spaces and let f : (X, u) → (Y, v) be a map.
If f is continuous, then f−1(G) is an open subset of (X, u) for every open
subset G of (Y, v).

Let (X, u) and (Y, v) be closure spaces. A map f : (X, u) → (Y, v) is said to
be closed (resp. open) if f(F ) is a closed (resp. open) subset of (Y, v) whenever
F is a closed (resp. open) subset of (X, u).

The product of a family {(Xα, uα) : α ∈ I} of closure spaces, denoted
by

∏
α∈I

(Xα, uα), is the closure space
( ∏

α∈I

Xα, u
)

where
∏
α∈I

Xα denotes the

Cartesian product of sets Xα, α ∈ I, and u is the closure operator gener-
ated by the projections πα :

∏
α∈I

(Xα, uα) → (Xα, uα), α ∈ I, i.e., is defined by

uA =
∏
α∈I

uαπα(A) for each A ⊆ ∏
α∈I

Xα.

The following statement is evident:

Proposition 2.1. Let {(Xα, uα) : α ∈ I} be a family of closure spaces and
let β ∈ I. Then the projection map πβ :

∏
α∈I

(Xα, uα) → (Xβ, uβ) is closed and

continuous.

Proposition 2.2. Let {(Xα, uα) : α ∈ I} be a family of closure spaces and let
β ∈ I. Then F is a closed subset of (Xβ, uβ) if and only if F × ∏

α6=β
α∈I

Xα is a

closed subset of
∏
α∈I

(Xα, uα).

Proof. Let β ∈ I and let F be a closed subset of (Xβ, uβ). Since πβ is con-
tinuous, π−1

β (F ) is a closed subset of
∏
α∈I

(Xα, uα). But π−1
β (F ) = F × ∏

α6=β
α∈I

Xα,

hence F × ∏
α6=β
α∈I

Xα is a closed subset of
∏
α∈I

(Xα, uα).

Conversely, let F × ∏
α6=β
α∈I

Xα be a closed subset of
∏
α∈I

(Xα, uα). Since πβ is

closed, πβ

(
F × ∏

α6=β
α∈I

Xα

)
= F is a closed subset of (Xβ, uβ). ¤

Proposition 2.3. Let {(Xα, uα) : α ∈ I} be a family of closure spaces and let
β ∈ I. Then G is an open subset of (Xβ, uβ) if and only if G × ∏

α6=β
α∈I

Xα is an

open subset of
∏
α∈I

(Xα, uα).
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Proof. Let β ∈ I and let G be an open subset of (Xβ, uβ). Since πβ is con-
tinuous, π−1

β (G) is an open subset of
∏
α∈I

(Xα, uα). But π−1
β (G) = G× ∏

α6=β
α∈I

Xα,

therefore G× ∏
α6=β
α∈I

Xα is an open subset of
∏
α∈I

(Xα, uα).

Conversely, let G× ∏
α6=β
α∈I

Xα be an open subset of
∏
α∈I

(Xα, uα). Then
∏
α∈I

Xα−

G × ∏
α6=β
α∈I

Xα is a closed subset of
∏
α∈I

(Xα, uα). But
∏
α∈I

Xα − G × ∏
α6=β
α∈I

Xα =

(Xβ −G)× ∏
α6=β
α∈I

Xα, hence (Xβ −G)× ∏
α6=β
α∈I

Xα is a closed subset of
∏
α∈I

(Xα, uα).

By Proposition 2.2, Xβ −G is a closed subset of (Xβ, uβ). Consequently, G is
an open subset of (Xβ, uβ). ¤

3. C0-BiČech Spaces and C1-BiČech Spaces

Definition 3.1. Two maps u1 and u2 from power set X to itself are called
biČech closure operator (simply biclosure operator) for X if they satisfies the
following properties:

( i ) u1∅ = ∅ and u2∅ = ∅,
( ii ) A ⊆ u1A and A ⊆ u2A for every A ⊆ X,
( iii ) u1(A∪B) = u1A∪ u1B and u2(A∪B) = u2A∪ u2B for all A,B ⊆ X.

A structure (X, u1, u2) is called a biČech closure space

Definition 3.2. A biČech closure space (X, u1, u2) is said to be a C0-biČech
space if, for every open subset G of (X, u1) such that x ∈ G, u2{x} ⊆ G.

Example 3.3. Let X = {a, b} and define a closure operator u1 on X by u1∅ = ∅
and u1{a} = u1{b} = u1X = X. Define a closure operator u2 on X by u2∅ = ∅,
and u2{a} = u2{b} = u2X = X. Then (X, u1, u2) is a C0-biČech space.

Proposition 3.4. A biČech closure space (X, u1, u2) is a C0-biČech space if
and only if, for every closed subset F of (X, u1) such that x /∈ F , u2{x}∩F = ∅.
Proof. Let F be a closed subset of (X, u1) and let x /∈ F . Since x ∈ X − F
and X − F is an open subset of (X, u1), u2{x} ⊆ X − F . Consequently,
u2{x} ∩ F = ∅.

Conversely, let G be an open subset of (X, u1) and let x ∈ G. Since X−G is
a closed subset of (X, u1) and x /∈ X−G, u2{x}∩ (X−G) = ∅. Consequently,
u2{x} ⊆ G. Hence, (X, u1, u2) is a C0-biČech space. ¤

Definition 3.5. A biČech closure space (X, u1, u2) is said to be a C1-biČech
space if, for each x, y ∈ X such that u1{x} 6= u2{y}, there exist a disjoint open
subset G of (X, u2) and an open subset V of (X, u1) such that u1{x} ⊆ G and
u2{y} ⊆ V .



280 CHAWALIT BOONPOK

Example 3.6. Let X = {a, b} and define a closure operator u1 on X by u1∅ = ∅
and u1{a} = {a}, u1{b} = {b} and u1X = X. Define a closure operator u2 on
X by u2∅ = ∅, u2{a} = {a}, u2{b} = {b} and u2X = X. Then (X, u1, u2) is a
C1-biČech space.

Proposition 3.7. Every C1-biČech space is a C0 -biČech space.

Proof. Let (X, u1, u2) be a C1-biČech space. Let G be an open subset of
(X, u1) and let x ∈ G. If y /∈ G, then u2{x} 6= u1{y} because x /∈ u1{y}. Then
there exists an open subset Vy of (X, u2) such that u1{y} ⊆ Vy and x /∈ Vy,
which implies y /∈ u2{x}. Consequently, u2{x} ⊆ G. Hence, (X, u1, u2) is a
C0-biČech space. ¤

The converse is not true as can be seen from the following example.

Example 3.8. Let X = {a, b} and define a closure operator u1 on X by u1∅ = ∅
and u1{a} = u1{b} = u1X = X. Define a closure operator u2 on X by u2∅ = ∅,
u2{a} = {a}, and u2{b} = u2X = X. Then (X, u1, u2) is a C0-biČech space
but it is not a C1-biČech space.

Proposition 3.9. A biČech closure space (X, u1, u2) is a C1-biČech space if
and only if every pair of points x, y of (X, u1, u2) such that u1{x} 6= u2{y},
there exist an open subset G of (X, u1) and open subset V of (X, u2) such that
x ∈ V , y ∈ G and G ∩ V = ∅.
Proof. Suppose that (X, u1, u2) is a C1-biČech space. Let x, y be points of
(X, u1, u2) such that u1{x} 6= u2{y}. There exist a disjoint open subset G
of (X, u1) and an open subset V of (X, u2) such that x ∈ u1{x} ⊆ V and
y ∈ u2{y} ⊆ G.

Conversely, suppose that there exist an open subset G of (X, u1) and an
open subset V of (X, u2) such that x ∈ V , y ∈ G and G ∩ V = ∅. Since every
C1-biČech space is a C0-biČech space, u1{x} ⊆ V and u2{y} ⊆ G. This gives
the statement. ¤

Proposition 3.10. Let {(Xα, u1
α, u2

α) : α ∈ I} be a family of biČech closure
spaces. If

∏
α∈I

(Xα, u1
α, u2

α) is a C0-biČech space, then (Xα, u1
α, u2

α) is a C0-biČech

space for each α ∈ I.

Proof. Suppose that
∏
α∈I

(Xα, u1
α, u2

α) is a C0-biČech closure space. Let β ∈
I and let G be an open subset of (Xβ, u1

β) such that xβ ∈ G. Then G ×∏
α6=β
α∈I

Xα is an open subset of
∏
α∈I

(Xα, u1
α) such that (xα)α∈I ∈ G × ∏

α6=β
α∈I

Xα.

Since
∏
α∈I

(Xα, u1
α, u2

α) is a C0-biČech space,
∏
α∈I

u2
απα({(xα)α∈I}) ⊆ G× ∏

α6=β
α∈I

Xα.

Consequently, u2
β{xβ} ⊆ G. Hence, (Xβ, u1

β, u2
β) is a C0-biČech space. ¤
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Proposition 3.11. Let {(Xα, u1
α, u2

α) : α ∈ I} be a family of biČech closure
spaces. If (Xα, u1

α, u2
α) is a C1-biČech space for each α ∈ I, then

∏
α∈I

(Xα, u1
α, u2

α)

is a C1-biČech space.

Proof. Suppose that (Xα, u1
α, u2

α) is a C1-biČech space for each α ∈ I. Let
(xα)α∈I and (yα)α∈I be points of

∏
α∈I

Xα such that

∏
α∈I

u1
απα({(xα)α∈I}) 6=

∏
α∈I

u2
απα({(yα)α∈I}).

There exists β ∈ I such that u1
β{xβ} 6= u2

β{yβ}. Since (Xβ, u1
β, u2

β) is a C1-

biČech space, there exist an open subset U of (Xβ, u1
β) and V is an open subset

of (Xβ, u2
β) such that U ∩V = ∅, u2

β{yβ} ⊆ U and u1
β{xβ} ⊆ V . Consequently,∏

α∈I

u2
απα({(yα)α∈I}) ⊆ U× ∏

α6=β
α∈I

Xα and
∏
α∈I

u1
απα({(xα)α∈I}) ⊆ V × ∏

α6=β
α∈I

Xα such

that U× ∏
α6=β
α∈I

Xα is an open subset of
∏
α∈I

(Xα, u1
α), V × ∏

α6=β
α∈I

Xα is an open subset

of
∏
α∈I

(Xα, u2
α) and (U × ∏

α6=β
α∈I

Xα) ∩ (V × ∏
α6=β
α∈I

Xα) = ∅. Hence,
∏
α∈I

(Xα, u1
α, u2

α)

is a C1-biČech space. ¤
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