Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 25 (2009), 277-281 www.emis.de/journals ISSN 1786-0091

C_0 -BIČECH SPACES AND C_1 -BIČECH SPACES

CHAWALIT BOONPOK

ABSTRACT. The aim of this paper is to introduce the concepts of C_0 -biČech spaces and C_1 -biČech spaces and study its basic properties.

1. INTRODUCTION

Cech closure spaces were introduced by Cech [2] and then studied by many authors, see e.g. [4, 5, 6, 7]. BiČech closure spaces were introduced by Chandrasekhara Rao, Gowri and Swaminathan [3]. Caldas and Jafari [1] introduced the notions of $\wedge_{\delta} - R_0$ and $\wedge_{\delta} - R_1$ topological spaces as a modification of the known notions of R_0 and R_1 topological spaces. In this paper, we introduce the concepts of C_0 - biČech spaces and C_1 -biČech spaces and study its basic properties in biČech closure spaces.

2. Preliminaries

An operator $u: P(X) \to P(X)$ defined on the power set P(X) of a set X satisfying the axioms:

(C1) $u\emptyset = \emptyset$,

(C2) $A \subseteq uA$ for every $A \subseteq X$,

(C3) $u(A \cup B) = uA \cup uB$ for all $A, B \subseteq X$.

is called a *Čech closure operator* and the pair (X, u) is a *Čech closure space*. For short, the space will be noted by X as well, and called a *closure space*. A closure operator u on a set X is called *idempotent* if uA = uuA for all $A \subseteq X$.

A subset A is *closed* in the closure space (X, u) if uA = A and it is *open* if its complement is closed. The empty set and the whole space are both open and closed.

A closure space (Y, v) is said to be a *subspace* of (X, u) if $Y \subseteq X$ and $vA = uA \cap Y$ for each subset $A \subseteq Y$. If Y is closed in (X, u), then the subspace (Y, v) of (X, u) is said to be closed too.

²⁰⁰⁰ Mathematics Subject Classification. 54A05.

Key words and phrases. Čech closure operator, Čech closure space, biČech closure space, C_0 -biČech space, C_1 -biČech space.

CHAWALIT BOONPOK

Let (X, u) and (Y, v) be closure spaces. A map $f: (X, u) \to (Y, v)$ is said to be *continuous* if $f(uA) \subseteq vf(A)$ for every subset $A \subseteq X$.

One can see that a map $f: (X, u) \to (Y, v)$ is continuous if and only if $uf^{-1}(B) \subseteq f^{-1}(vB)$ for every subset $B \subseteq Y$. Clearly, if $f: (X, u) \to (Y, v)$ is continuous, then $f^{-1}(F)$ is a closed subset of (X, u) for every closed subset F of (Y, v).

Let (X, u) and (Y, v) be closure spaces and let $f: (X, u) \to (Y, v)$ be a map. If f is continuous, then $f^{-1}(G)$ is an open subset of (X, u) for every open subset G of (Y, v).

Let (X, u) and (Y, v) be closure spaces. A map $f: (X, u) \to (Y, v)$ is said to be *closed* (resp. *open*) if f(F) is a closed (resp. open) subset of (Y, v) whenever F is a closed (resp. open) subset of (X, u).

The product of a family $\{(X_{\alpha}, u_{\alpha}) : \alpha \in I\}$ of closure spaces, denoted by $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$, is the closure space $(\prod_{\alpha \in I} X_{\alpha}, u)$ where $\prod_{\alpha \in I} X_{\alpha}$ denotes the Cartesian product of sets $X_{\alpha}, \alpha \in I$, and u is the closure operator generated by the projections $\pi_{\alpha} \colon \prod_{\alpha \in I} (X_{\alpha}, u_{\alpha}) \to (X_{\alpha}, u_{\alpha}), \alpha \in I$, i.e., is defined by $uA = \prod_{\alpha \in I} u_{\alpha} \pi_{\alpha}(A)$ for each $A \subseteq \prod_{\alpha \in I} X_{\alpha}$. The following statement is evident:

The following statement is evident.

Proposition 2.1. Let $\{(X_{\alpha}, u_{\alpha}) : \alpha \in I\}$ be a family of closure spaces and let $\beta \in I$. Then the projection map $\pi_{\beta} \colon \prod_{\alpha \in I} (X_{\alpha}, u_{\alpha}) \to (X_{\beta}, u_{\beta})$ is closed and continuous.

Proposition 2.2. Let $\{(X_{\alpha}, u_{\alpha}) : \alpha \in I\}$ be a family of closure spaces and let $\beta \in I$. Then F is a closed subset of (X_{β}, u_{β}) if and only if $F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is a

closed subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$.

Proof. Let $\beta \in I$ and let F be a closed subset of (X_{β}, u_{β}) . Since π_{β} is continuous, $\pi_{\beta}^{-1}(F)$ is a closed subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$. But $\pi_{\beta}^{-1}(F) = F \times \prod_{\alpha \neq \beta \atop \alpha \in I} X_{\alpha}$, hence $F \times \prod X_{\alpha}$ is a closed subset of $\prod (X_{\alpha}, u_{\alpha})$.

hence $F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is a closed subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$. Conversely, let $F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ be a closed subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$. Since π_{β} is closed, $\pi_{\beta} \left(F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha} \right) = F$ is a closed subset of (X_{β}, u_{β}) .

Proposition 2.3. Let $\{(X_{\alpha}, u_{\alpha}) : \alpha \in I\}$ be a family of closure spaces and let $\beta \in I$. Then G is an open subset of (X_{β}, u_{β}) if and only if $G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is an open subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$.

278

Proof. Let $\beta \in I$ and let G be an open subset of (X_{β}, u_{β}) . Since π_{β} is continuous, $\pi_{\beta}^{-1}(G)$ is an open subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$. But $\pi_{\beta}^{-1}(G) = G \times \prod_{\alpha \neq \beta \atop \alpha \in I} X_{\alpha}$, therefore $G \times \prod_{\alpha \neq \beta \atop \alpha \in I} X_{\alpha}$ is an open subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$. Conversely, let $G \times \prod_{\alpha \neq \beta \atop \alpha \in I} X_{\alpha}$ be an open subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$. Then $\prod_{\alpha \in I} X_{\alpha} - G \times \prod_{\alpha \neq \beta \atop \alpha \in I} X_{\alpha}$ is a closed subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$. But $\prod_{\alpha \in I} X_{\alpha} - G \times \prod_{\alpha \neq \beta \atop \alpha \in I} X_{\alpha}$ = $(X_{\beta} - G) \times \prod_{\alpha \in I} X_{\alpha}$, hence $(X_{\beta} - G) \times \prod_{\alpha \in I \atop \alpha \in I} X_{\alpha}$ is a closed subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$. By Proposition 2.2, $X_{\beta} - G$ is a closed subset of (X_{β}, u_{β}) . Consequently, G is an open subset of (X_{β}, u_{β}) .

3. C_0 -BIČECH SPACES AND C_1 -BIČECH SPACES

Definition 3.1. Two maps u_1 and u_2 from power set X to itself are called *biČech closure operator* (simply biclosure operator) for X if they satisfies the following properties:

(i) $u_1 \emptyset = \emptyset$ and $u_2 \emptyset = \emptyset$,

(ii) $A \subseteq u_1 A$ and $A \subseteq u_2 A$ for every $A \subseteq X$,

(iii) $u_1(A \cup B) = u_1A \cup u_1B$ and $u_2(A \cup B) = u_2A \cup u_2B$ for all $A, B \subseteq X$.

A structure (X, u_1, u_2) is called a *biČech closure space*

Definition 3.2. A biCech closure space (X, u_1, u_2) is said to be a C_0 -biCech space if, for every open subset G of (X, u_1) such that $x \in G$, $u_2\{x\} \subseteq G$.

Example 3.3. Let $X = \{a, b\}$ and define a closure operator u_1 on X by $u_1 \emptyset = \emptyset$ and $u_1\{a\} = u_1\{b\} = u_1X = X$. Define a closure operator u_2 on X by $u_2\emptyset = \emptyset$, and $u_2\{a\} = u_2\{b\} = u_2X = X$. Then (X, u_1, u_2) is a C_0 -biČech space.

Proposition 3.4. A biČech closure space (X, u_1, u_2) is a C_0 -biČech space if and only if, for every closed subset F of (X, u_1) such that $x \notin F$, $u_2\{x\} \cap F = \emptyset$.

Proof. Let F be a closed subset of (X, u_1) and let $x \notin F$. Since $x \in X - F$ and X - F is an open subset of (X, u_1) , $u_2\{x\} \subseteq X - F$. Consequently, $u_2\{x\} \cap F = \emptyset$.

Conversely, let G be an open subset of (X, u_1) and let $x \in G$. Since X - G is a closed subset of (X, u_1) and $x \notin X - G$, $u_2\{x\} \cap (X - G) = \emptyset$. Consequently, $u_2\{x\} \subseteq G$. Hence, (X, u_1, u_2) is a C_0 -biČech space.

Definition 3.5. A biCech closure space (X, u_1, u_2) is said to be a C_1 -biCech space if, for each $x, y \in X$ such that $u_1\{x\} \neq u_2\{y\}$, there exist a disjoint open subset G of (X, u_2) and an open subset V of (X, u_1) such that $u_1\{x\} \subseteq G$ and $u_2\{y\} \subseteq V$.

CHAWALIT BOONPOK

Example 3.6. Let $X = \{a, b\}$ and define a closure operator u_1 on X by $u_1 \emptyset = \emptyset$ and $u_1\{a\} = \{a\}, u_1\{b\} = \{b\}$ and $u_1X = X$. Define a closure operator u_2 on X by $u_2 \emptyset = \emptyset$, $u_2\{a\} = \{a\}, u_2\{b\} = \{b\}$ and $u_2X = X$. Then (X, u_1, u_2) is a C_1 -biČech space.

Proposition 3.7. Every C_1 -biČech space is a C_0 -biČech space.

Proof. Let (X, u_1, u_2) be a C_1 -biČech space. Let G be an open subset of (X, u_1) and let $x \in G$. If $y \notin G$, then $u_2\{x\} \neq u_1\{y\}$ because $x \notin u_1\{y\}$. Then there exists an open subset V_y of (X, u_2) such that $u_1\{y\} \subseteq V_y$ and $x \notin V_y$, which implies $y \notin u_2\{x\}$. Consequently, $u_2\{x\} \subseteq G$. Hence, (X, u_1, u_2) is a C_0 -biČech space.

The converse is not true as can be seen from the following example.

Example 3.8. Let $X = \{a, b\}$ and define a closure operator u_1 on X by $u_1 \emptyset = \emptyset$ and $u_1\{a\} = u_1\{b\} = u_1X = X$. Define a closure operator u_2 on X by $u_2\emptyset = \emptyset$, $u_2\{a\} = \{a\}$, and $u_2\{b\} = u_2X = X$. Then (X, u_1, u_2) is a C_0 -biČech space but it is not a C_1 -biČech space.

Proposition 3.9. A biČech closure space (X, u_1, u_2) is a C_1 -biČech space if and only if every pair of points x, y of (X, u_1, u_2) such that $u_1\{x\} \neq u_2\{y\}$, there exist an open subset G of (X, u_1) and open subset V of (X, u_2) such that $x \in V, y \in G$ and $G \cap V = \emptyset$.

Proof. Suppose that (X, u_1, u_2) is a C_1 -biČech space. Let x, y be points of (X, u_1, u_2) such that $u_1\{x\} \neq u_2\{y\}$. There exist a disjoint open subset G of (X, u_1) and an open subset V of (X, u_2) such that $x \in u_1\{x\} \subseteq V$ and $y \in u_2\{y\} \subseteq G$.

Conversely, suppose that there exist an open subset G of (X, u_1) and an open subset V of (X, u_2) such that $x \in V, y \in G$ and $G \cap V = \emptyset$. Since every C_1 -biČech space is a C_0 -biČech space, $u_1\{x\} \subseteq V$ and $u_2\{y\} \subseteq G$. This gives the statement.

Proposition 3.10. Let $\{(X_{\alpha}, u_{\alpha}^{1}, u_{\alpha}^{2}) : \alpha \in I\}$ be a family of biČech closure spaces. If $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha}^{1}, u_{\alpha}^{2})$ is a C_{0} -biČech space, then $(X_{\alpha}, u_{\alpha}^{1}, u_{\alpha}^{2})$ is a C_{0} -biČech space for each $\alpha \in I$.

Proof. Suppose that $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha}^{1}, u_{\alpha}^{2})$ is a C_{0} -biČech closure space. Let $\beta \in I$ and let G be an open subset of $(X_{\beta}, u_{\beta}^{1})$ such that $x_{\beta} \in G$. Then $G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is an open subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha}^{1})$ such that $(x_{\alpha})_{\alpha \in I} \in G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$. Since $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha}^{1}, u_{\alpha}^{2})$ is a C_{0} -biČech space, $\prod_{\alpha \in I} u_{\alpha}^{2} \pi_{\alpha}(\{(x_{\alpha})_{\alpha \in I}\}) \subseteq G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$.

Consequently, $u_{\beta}^2 \{x_{\beta}\} \subseteq G$. Hence, $(X_{\beta}, u_{\beta}^1, u_{\beta}^2)$ is a C_0 -biČech space.

280

Proposition 3.11. Let $\{(X_{\alpha}, u_{\alpha}^{1}, u_{\alpha}^{2}) : \alpha \in I\}$ be a family of biČech closure spaces. If $(X_{\alpha}, u_{\alpha}^{1}, u_{\alpha}^{2})$ is a C_{1} -biČech space for each $\alpha \in I$, then $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha}^{1}, u_{\alpha}^{2})$ is a C_1 -biČech space.

Proof. Suppose that $(X_{\alpha}, u_{\alpha}^{1}, u_{\alpha}^{2})$ is a C_{1} -biČech space for each $\alpha \in I$. Let $(x_{\alpha})_{\alpha \in I}$ and $(y_{\alpha})_{\alpha \in I}$ be points of $\prod_{\alpha \in I} X_{\alpha}$ such that

$$\prod_{\alpha \in I} u_{\alpha}^{1} \pi_{\alpha}(\{(x_{\alpha})_{\alpha \in I}\}) \neq \prod_{\alpha \in I} u_{\alpha}^{2} \pi_{\alpha}(\{(y_{\alpha})_{\alpha \in I}\}).$$

There exists $\beta \in I$ such that $u_{\beta}^{1}\{x_{\beta}\} \neq u_{\beta}^{2}\{y_{\beta}\}$. Since $(X_{\beta}, u_{\beta}^{1}, u_{\beta}^{2})$ is a C_{1} biČech space, there exist an open subset U of $(X_{\beta}, u_{\beta}^{1})$ and V is an open subset of (X_{β}, u_{β}^2) such that $U \cap V = \emptyset$, $u_{\beta}^2 \{y_{\beta}\} \subseteq U$ and $u_{\beta}^1 \{x_{\beta}\} \subseteq V$. Consequently, $\prod_{\alpha \in I} u_{\alpha}^2 \pi_{\alpha}(\{(y_{\alpha})_{\alpha \in I}\}) \subseteq U \times \prod_{\alpha \neq \beta} X_{\alpha} \text{ and } \prod_{\alpha \in I} u_{\alpha}^1 \pi_{\alpha}(\{(x_{\alpha})_{\alpha \in I}\}) \subseteq V \times \prod_{\alpha \neq \beta} X_{\alpha} \text{ such } I$ that $U \times \prod_{\alpha \neq \beta} X_{\alpha}$ is an open subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha}^1), V \times \prod_{\alpha \neq \beta} X_{\alpha}$ is an open subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha}^1), V \times \prod_{\alpha \neq \beta} X_{\alpha}$ is an open subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha}^1), V \times \prod_{\alpha \neq \beta} X_{\alpha}$ is an open subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha}^1), V \times \prod_{\alpha \neq \beta} X_{\alpha}$ is an open subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha}^1), V \times \prod_{\alpha \in I} X_{\alpha} = \emptyset$. Hence, $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha}^1, u_{\alpha}^2)$

is a C_1 -biČech space.

References

- [1] M. Caldas and S. Jafari. On some low separation axioms in topological spaces. Houston J. Math., 29(1):93-104 (electronic), 2003.
- [2] E. Čech. Topological papers of Eduard Čech. Scientific editor: Josef Novák. Academia Publishing House of the Czechoslovak Academy of Sciences, Prague, 1968.
- [3] K. Chandrasekhara Rao, R. Gowri, and V. Swaminathan. α gs closed sets in biCech closure spaces. Int. J. Contemp. Math. Sci., 3(25-28):1165–1172, 2008.
- [4] J. Chvalina. On homeomorphic topologies and equivalent set-systems. Arch. Math. (Brno), 12(2):107–115, 1976.
- [5] J. Chvalina. Stackbases in power sets of neighbourhood spaces preserving the continuity of mappings. Arch. Math. (Brno), 17(2):81-86, 1981.
- [6] L. Skula. Systeme von stetigen Abbildungen. Czechoslovak Math. J., 17 (92):45–52, 1967.
- [7] J. Šlapal. Closure operations for digital topology. Theoret. Comput. Sci., 305(1-3):457-471, 2003. Topology in computer science (Schloß Dagstuhl, 2000).

Received on December 29, 2008; revised on February 22, 2009; accepted on May 12, 2009

DEPARTMENT OF MATHEMATICS Mahasarakham University Mahasarakham, Thailand, 44150 E-mail address: chawalit_boonpok@hotmail.com