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ON THE FAMILY OF DIOPHANTINE TRIPLES
{k + 2, 4k, 9k + 6}

ALAN FILIPIN AND ALAIN TOGBÉ

Abstract. In this paper, we prove that if k and d are two positive integers
such that the product of any two distinct elements of the set

{k + 2, 4k, 9k + 6, d}
increased by 4 is a perfect square, then d = 36k3 + 96k2 + 76k + 16.

1. Introduction

Let m, n be two integers, m > 1. A set of m positive integers {a1, . . . , am}
is called a Diophantine m-tuple with the property D(n) or a D(n)-m-tuple
(or a Pn-set of size m), if aiaj + n is a perfect square for all 1 ≤ i ≤ j ≤ m.
Diophantus was the first who considered the problem of finding such sets and
it was in the case n = 1. Particularly he found the set of four positive rational
numbers

{
1
16

, 33
16

, 17
4
, 105

16

}
with the property D(1). However, the first D(1)-

quadruple was found by Fermat and it was the set {1, 3, 8, 120}. Moreover
Baker and Davenport [1] proved that the set {1, 3, 8, 120} cannot be extended
to a D(1)-quintuple. Several results of the generalization of the result of Baker
and Davenport are obtained. In 1997, Dujella [3] proved that D(1)-triples of
the form {k−1, k +1, 4k}, for k ≥ 2, cannot be extended to a D(1)-quintuple.
In 1998, Dujella and Pethő [5] proved that the D(1)-pair {1, 3} cannot be
extended to a D(1)-quintuple. In 2008, Fujita obtained a more general result
by proving that the D(1)-pairs of the form {k− 1, k + 1}, for k ≥ 2 cannot be
extended to a D(1)-quintuple. A folklore conjecture is that there does not exist
a Diophantine D(1)-quintuple. Recently, Dujella [4] proved that there does not
exist a D(1)-sextuple and that there are only finitely many D(1)-quintuples.
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Case n = 4 is closely connected to the case n = 1. It is easy to see that
if we have D(4)-m-tuple with even elements, when we divide those elements
by 2, we get a D(1)-m-tuple. In 2005, Dujella and Ramasamy [6, Conjecture
1] conjectured that there does not exist a D(4)-quintuple. Actually there is a
stronger version of this conjecture.

Conjecture 1.1. There does not exist a D(4)-quintuple. Moreover, if {a, b, c, d}
is a D(4)-quadruple such that a < b < c < d, then

d = a + b + c +
1

2
(abc + rst),

where r, s, t are positive integers defined by

ab + 4 = r2, ac + 4 = s2, bc + 4 = t2.

If we denote d+ = a + b + c + 1
2
(abc + rst), then {a, b, c, d+} is a D(4)-

quadruple called a regular D(4)-quadruple. We also define number d− = a +
b + c− 1

2
(abc + rst). If d− 6= 0, then {a, b, c, d−} is also a D(4)-quadruple, but

d− < c.
The first result of nonextendibility of D(4)-m-tuples was obtained by Mo-

hanty and Ramasamy in [17]. They proved that D(4)-quadruple {1, 5, 12, 96}
cannot be extended to a D(4)-quintuple. Later Kedlaya [16] proved that if
{1, 5, 12, d} is a D(4)-quadruple, then d = 96. One generalization of this result
was given by Dujella and Ramasamy [6]. They proved Conjecture 1.1 for a
parametric family of D(4)-quadruples. Precisely, they proved that if k and
d are positive integers and {F2k, 5F2k4F2k + 2, d} is a D(4)-quadruple, then
d = 4L2kF4k + 2 where Fk and Lk are the Fibonacci and Lucas numbers. A
second generalization was given by Fujita in [12]. He proved that if k ≥ 3 is
an integer and {k− 2, k + 2, 4k, d} is a D(4)-quadruple, then d = k3− 4k. All
these results support Conjecture 1.1. The first author have studied the size of
a D(4)-m-tuple. He proved that there does not exist a D(4)-sextuple and that
there are only finitely many D(4)-quintuples exist (see [9, 8, 10, 7]).

The aim of this paper is to consider D(4)-triples of the form {k+2, 4k, 9k+6},
giving another polynomial parametric family of D(4)-triples (see the example
of Fujita [12]) and to prove the following result.

Theorem 1. If k is a positive integer and d is a positive integer such that the
product of any two distinct elements of the set

{k + 2, 4k, 9k + 6, d}
increased by 4 is a perfect square, then d = 36k3 + 96k2 + 76k + 16.

Therefore, one can easily see that our quadruple {k+2, 4k, 9k+6, d} with d =
36k3+96k2+76k+16 is regular. This family is the special case of twoparametric
family of D(4) Diophantine triples {k, A2 − 4A, (A + 1)2k − 4(A + 1)}, which
can be studied on the same way for small A′s. The organization of this paper
is as follows. In Section 2, we recall some useful results obtained by the first
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author and adapt them to our case. We use a result due to Bennett [2] on
simultaneous approximations of algebraic numbers which are close to 1 to get
an upper bound for k. Finally, in Section 4, we use Baker method and Baker-
Davenport reduction method to prove Theorem 1. The method, applied in this
paper, was used by the second author and Bo He in [15]. The results obtained
in this paper are sightly different from those in [15] as the family considered
by He-Togbé is a family of D(1) Diophantine triples. But let us mention that
their result proves our main theorem for even k. This method can be applied
to many Diophantine sets. With Bo He, we applied it to study a family of
two-parametric D(4) Diophantine triples, {k, A2k + 4A, (A + 1)2k + 4(A + 1)}
for small values of the parameter A (see [11]). In the same way, the second
author and Bo He studied a family of two-parametric D(1) Diophantine triples
(see [13] and [14]). These families are simplest if we consider them as linear
polynomials in k. Notice that the success of the method depends on the bound
of k obtained in Section 3. If this bound is too large, it would take too long
to run a program like we have done in Section 4.

2. Some useful lemmas

In this section, we will recall or prove some useful lemmas that will be used
to prove Theorem 1. So let r, s, t be positive integers defined by

(1) ab + 4 = r2, ac + 4 = s2, bc + 4 = t2.

To extend the Diophantine triple {a, b, c} to a Diophantine D(4)-quadruple
{a, b, c, d}, we have to solve the system

(2) ad + 4 = x2, bd + 4 = y2, cd + 4 = z2.

If we eliminate d, we obtain the following system of Pellian equations.

az2 − cx2 = 4(a− c),(3)

bz2 − cy2 = 4(b− c).(4)

From [8, Lemma 1], there exists a solution
(
z

(i)
0 , x

(i)
0

)
of (3) such that z = v

(i)
m ,

where

v
(i)
0 = z

(i)
0 , v

(i)
1 =

1

2
(sz

(i)
0 + cx

(i)
0 ), v

(i)
m+2 = sv

(i)
m+1 − v(i)

m ,

and |z(i)
0 | <

√
c
√

c√
a
. Similarly, there exists a solution

(
z

(i)
1 , y

(i)
1

)
of (4) such that

z = w
(j)
n , where

w
(i)
0 = z

(j)
1 , w

(j)
1 =

1

2
(tz

(j)
1 + cy

(j)
1 ), w

(j)
n+2 = tw

(j)
n+1 − w(j)

n ,

and |z(j)
1 | <

√
c
√

c√
b
.

The initial terms z
(i)
0 and z

(j)
1 are almost completely determined in the fol-

lowing lemma [10, Lemma 9].
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Lemma 1. (1) If the equation v2m = w2n has a solution, then z0 = z1.

Moreover, |z0| = 2, or |z0| = 1
2
(cr − st), or |z0| < 1.608a−

5
14 c

9
14 .

(2) If the equation v2m+1 = w2n has a solution, then

|z0| = t, |z1| = 1

2
(cr − st), z0z1 < 0.

(3) If the equation v2m = w2n+1 has a solution, then

|z1| = s, |z0| = 1

2
(cr − st), z0z1 < 0.

(4) If the equation v2m+1 = w2n+1 has a solution, then |z0| = t, |z1| = s,
z0 · z1 > 0.

Here, we consider

a = k + 2, b = 4k, c = 9k + 6,

and

r = 2k + 2, s = 3k + 4, t = 6k + 2.

We have

|z0| <
√

c
√

c√
a

<
√

3(9k + 6) ≤ 6.71
√

k

and

|z1| <
√

c
√

c√
b

<

√√
3.75 · (9k + 6) ≤ 5.39

√
k.

Using the same procedure as in [15], we can exclude all items of Lemma 1 except
the first item with x0 = 2, y0 = 2, and |z0| = (cr − st)/2 = 2. Therefore, we
need to solve the system of Pell equations

(k + 2)z2 − (9k + 6)x2 = 4(−8k − 4),(5)

4kz2 − (9k + 6)y2 = 4(−5k − 6),(6)

with x0 = y1 = 2 and z0 = z1 = ±2. This is equivalent to solve the equation

(7) z = v2m = w2n.

Let z0 = z1 = ±2. We have

v0 = ±2, v1 = 9k + 6± (3k + 4), vm+2 = (3k + 4)vm+1 − vm,(8)

w0 = ±2, w1 = 9k + 6± (6k + 2), wn+2 = (6k + 2)wn+1 − wn.(9)

For the relations of indices m and n, we have

Lemma 2. If v2m = w2n, then n ≤ m ≤ 2n.

Proof. By [10, Lemma 5], if vm = wn, then n − 1 ≤ m ≤ 2n + 1. In our even
case, we have 2n− 1 ≤ 2m ≤ 4n + 1. The result is obtained. ¤

Now let us recall the following lemma.
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Lemma 3. We have

v2m ≡ z0 +
1

2
c(az0m

2 + sx0m) (mod c2),

w2n ≡ z1 +
1

2
c(bz1n

2 + ty1n) (mod c2).

Proof. See [6, Lemma 3]. ¤

The next result will help us to determine a lower bound of m depending on
k.

Lemma 4. Assume that v2m = w2n with m,n ≥ 2, then

m ≥ 1

2

√
k − 1.

Proof. Using the results of Lemma 3, we have

(10) ±am2 + sm ≡ ±bn2 + tn (mod c).

In our case, the congruence becomes

±(k + 2)m2 + (3k + 4)m ≡ ±4kn2 + (6k + 2)n (mod 9k + 6)

Multiplying the above congruence by ±9, it results

12m2 ± 18m ≡ −24n2 ∓ 18n (mod 9k + 6).

Therefore,

(11) 4m2 + 8n2 ± 6m± 6n ≡ 0 (mod 3k + 2).

If m,n ≥ 2, then

4m2 + 8n2 + 6m + 6n ≥ 4m2 + 8n2 − 6m− 6n > 0.

Hence from (11) we obtain

4m2 + 8n2 + 6m + 6n ≥ 3k + 2.

By Lemma 2, we know that m ≥ n. So we have 12m2 + 12m ≥ 3k + 2 > 3k.
This completes the proof of the lemma. ¤

Now we prove the following result.

Lemma 5. Let x, y, z be positive integer solutions of the system of Pellian
equations (5) and (6) such that z /∈ {2, 18k2 + 30k + 10}. Then

log(2z) > (
√

k − 2) log(3k).

Proof. The proof is similar to that of Lemma 5 in [15] but here we take z0 =
±2, x0 = 2 and v2m = w2n. ¤
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3. An application of Diophantine approximation

In this section, we will use a result of Bennett [2] on simultaneous approxi-
mations of algebraic numbers which are close to 1 to get a lower bound for k
in order to solve the system of Pell equations (3) and (4). So let us consider
the numbers

θ1 =

√
1 +

4

3k + 2
and θ2 =

√
1− 2

3k + 2
.

The following result gives us some information on the approximations of the
algebraic numbers θ1 and θ2.

Lemma 6. If k ≥ 5 and (x, y, z) 6= (2, 2, 2), then∣∣∣∣θ1 − 6x

2z

∣∣∣∣ < 16z−2 and

∣∣∣∣θ2 − 3y

2z

∣∣∣∣ < 3z−2.

Therefore we obtain

max

{∣∣∣∣θ1 − 6x

2z

∣∣∣∣ ,

∣∣∣∣θ2 − 3y

2z

∣∣∣∣
}

< 16z−2.

Proof. The lemma can be proved exactly like Lemma 7 in [15]. ¤
We will use the above lemma to prove the following lemma that gives us the

information on d.

Proposition 3.1. If k ≥ 881906 and if the set {k + 2, 4k, 9k + 6, d} is a
Diophantine quadruple, then d = 36k3 + 96k2 + 76k + 16.

Proof. If d satisfies the condition, then z2 = cd + 4 = (9k + 6)d + 4. As d > 1,
we have z 6= 2. If d 6= 36k3 +96k2 +76k+16, thus we have z 6= 18k2 +30k+10.
Therefore, Lemma 5 implies

(12) log(2z) > (
√

k − 2) log(3k).

Now we apply [2, Lemma 3.2]. We take a0 = −2, a1 = 0, a2 = 4, M =
4, q = 2z, p0 = 3y, p1 = q, p2 = 6x and N = 3k + 2. When k ≥ 881906, the
condition N > M9 holds. Therefore, by [2, Lemma 3.2] and Lemma 6, we have

(13) 16z−2 > (130(3k + 2)γ)−1(2z)−µ,

where γ = 57.6 and

µ = 1 +
log(32.04 · 57.6 · (3k + 2))

log(1.68 · (3k + 2)2/2304)
< 1 +

log(3k + 2) + 7.521

2 log(3k + 2)− 7.223

< 1.5 +
11.132

2 log(3k + 2)− 7.223
.

If k > 881906, then we have µ < 2. In fact, we get

0.5− 11.132

2 log(3k + 2)− 7.223
< 2− µ.
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From (13) we have

(2z)2−µ < 16 · 130 · 57.6(3k + 2).

We deduce that

(14) log(2z) < log(479232(3k + 2))/(2− µ).

A combination of (12) and (14) gives

(15)
√

k − 2 <
log(479232(3k + 2))

(2− µ) log(3k)
<

log(479232(3k + 2))(
0.5− 11.132

2 log(3k+2)−7.223

)
log(3k)

.

If k ≥ 881906, we get a contradiction. ¤

4. Proof of Theorem 1

This section is devoted to the remaining cases, i.e. 1 ≤ k ≤ 881906. A
theorem of lower bounds to linear forms in logarithms to helps get an upper
bound for m. In fact, let

α1 =
s +

√
ac

2
and α2 =

t +
√

bc

2
.

Solving equations (3) and (4), we have

v2m =
1

2
√

a

(
(z0

√
a + x0

√
c)α2m

1 + (z0

√
a + x0

√
c)α−2m

1

)

and

w2n =
1

2
√

b

(
(z1

√
b + y1

√
c)α2n

2 + (z1

√
b + y1

√
c)α−2n

2

)

respectively. Notice x0 = y1 = 2 and z0 = z1 = ±2. Solving equations (3) and
(4) is equivalent to solve z = v2m = w2n with m,n 6= 0. So we have (see [10,
Lemma 10])

(16) 0 < Λ := 2m log α1 − 2n log α2 + log α3 < 2acα−4m
1 ,

where

α3 =

√
b(
√

c±√a)√
a(
√

c±
√

b)
.

Therefore, we get

(17) log |Λ| < −4m log α1 + log(2ac) < (2− 4m) log(3k + 5).

In [8], using Baker’s method the first author proved that

2m

log(2m + 1)
< 6.543 · 1015 log2 c.

As 1 ≤ k ≤ 881906, we obtain

2m

log(2m + 1)
< 1.648 · 1018.

This implies m < 3.8 · 1019.
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To solve the problem for the remaining cases 1 ≤ k ≤ 881906, we will use a
Diophantine approximation algorithm, so-called the Baker-Davenport reduc-
tion method. Lemma [5, Lemma 5a] or [15, Lemma 9] is a slight modification
of the original version of Baker-Davenport reduction method. We will apply
it with

κ =
log α1

log α2

, µ′ =
log α3

2 log α2

, A =
(k + 2)(9k + 6)

log α2

, B = α4
1

and M = 3.8 · 1019.
In [8], the first author has used Baker-Davenport reduction method for

ab2c < 107, which covered all cases when 0.022d4.5
+ b3.5 < 1026. In our case,

it corresponds to 1 ≤ k ≤ 15. Therefore, we wrote a program in Mathematica
that we ran for 16 ≤ k ≤ 881906. In fact, if z0 = z1 = 2, then for 16 ≤ k ≤ 47,
we got m ≤ 3 after the first step of reduction. We ran again the program by
taking M = 3 and we obtained m ≤ 1. For k ≥ 48, we got m ≤ 2 after the
first step of reduction. On the other hand, if z0 = z1 = −2, the results are
similar with 16 ≤ k ≤ 43. In the same way, for k ≥ 44, we got m ≤ 2 after
the first step of reduction.

If m = 2, then by Lemma 2 we have n ≤ 2 and from Lemma 4 we get k ≤ 36.
It is easy to check there is no integer k for which equation (7) is verified. Then
we consider m = 1 (m = n = 0 gives the trivial solution d = 0).

Again by Lemma 2, we have m = n = 1. When v0 = w0 = −2, we obtain
v2 = w2 = 18k2 + 30k + 10. Then we deduce d = 36k3 + 96k2 + 76k + 16. This
completes the proof of Theorem 1.
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