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QUASI-SUMS IN SEVERAL VARIABLES

GYULA MAKSA AND ENIKŐ NIZSALÓCZKI

Abstract. In this note we introduce the notions of quasi-sums and of the
local quasi-sums in several variables, respectively. We prove that the local
quasi-sums are also quasi-sums. We show how this result can be applied to
find the continuous solutions of the functional equation

g(u11 + · · ·+ u1N , . . . , uM1 + · · ·+ uMN )

= f(g1(u11, . . . , uM1), . . . , gN (u1N , . . . , uMN ))

that are strictly monotonic in each variable. Finally we give a proof of a
known result on the aggregation equation shorter than that is given in [3].

1. Introduction

By an interval we mean a connected subset of R (the reals) containing at
least two different elements. For a fixed positive integer n, an n-dimensional
interval is a set X1 × · · · ×Xn where Xk ⊂ R is an interval (k = 1, . . . , n). A
CM function is a continuous real-valued function defined on an n-dimensional
interval and strictly monotonic in each variable. The notion of quasi-sum is
the following. Let n > 1 be a fixed integer, X1, . . . , Xn be intervals, and
X1 × · · · ×Xn ⊂ R ⊂ Rn be an n-dimensional interval. A function Q : R→ R
is quasi-sum on the n-dimensional interval X1 × · · · × Xn if there exist CM
functions

αk : Xk → R and ϕ :
n∑

k=1

αk(Xk) → R

such that

Q(x1, . . . , xn) = ϕ(α1(x1) + · · ·+ αn(xn)) (xk ∈ Xk, k = 1, . . . , n).

The (n + 1)-tuple (ϕ, α1, . . . , αn) is a generator of Q on X1 × · · · × Xn. The
function Q : R → R is local quasi-sum on R if for each point (x1, . . . , xn) of
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R there exists an open n-dimensional interval S containing (x1, . . . , xn) such
that Q is quasi-sum on the n-dimensional interval R∩S. Important examples
for quasi-sums are associative CM functions

x ◦ y = φ−1(φ(x) + φ(y))

(Aczél [1]), quasi-arithmetic means

Q(x1, . . . , xn) = ϕ−1

(
1

n

n∑

k=1

ϕ(xk)

)
((x1, . . . , xn) ∈ In)

where I ⊂ R is an interval and ϕ : I → R is continuous and strictly mono-
tonic (see Hardy-Littlewood-Pólya [2]), and the CM solutions of equation of
aggregation

(1.1) G(F1(x11, . . . , x1n), . . . , Fm(xm1, . . . , xmn))

= F (G1(x11, . . . , xm1), . . . , Gn(x1n, . . . , xmn))

(see Maksa [3] and its references). In Maksa [4] we have proved the following
two theorems.

Theorem 1. If X ⊂ R and Y ⊂ R are intervals and Q : X × Y → R is local
quasi-sum on X × Y then Q is quasi-sum on X × Y .

Theorem 2. If X ⊂ R and Y ⊂ R are intervals and the CM function Q : X×
Y → R is local quasi-sum on X◦ × Y ◦ then Q is quasi-sum on X × Y . (Here
X◦ and Y ◦ denote the interior of X and Y , respectively.)

These results can be applied to find the CM solutions of the generalized
associativity equation

F (G(x, y), z) = H(x,K(y, z))

and of the generalized bisymmetry equation

(1.2) G(F1(x11, x12), F2(x21, x22)) = F (G1(x11, x21), G2(x12, x22))

(see [4] and [3]). In this note we extend the results on two variable quasi-sums
discussed in [4] to several variable quasi-sums and apply them to find the CM
solutions of the particular aggregation equation

(1.3) g(u11 + · · ·+ u1N , . . . , uM1 + · · ·+ uMN)

= f(g1(u11, . . . , uM1), . . . , gN(u1N , . . . , uMN)).

Having this result and the results on equation (1.2) (see [3]), we present a
way to find the CM solutions of the general equation (1.1) of aggregation,
shorter than that is given in [3]. On the other hand, we hope that the quasi-
sum method, developed in this paper, can help to find the CM solutions of
other associative type or bisymmetry type functional equations, too.
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2. Some basic properties of CM functions

Throughout the paper n denotes a fixed integer greater then one. We begin
with three lemmata.

Lemma 1. Let 1 ≤ k ≤ n be a fixed integer, X1, . . . , Xn, X
∗
k ⊂ R be intervals

such that Xk ∩ X∗
k 6= ∅. Let further αi : Xi → R, 1 ≤ i ≤ n, i 6= k and

αk : Xk ∪X∗
k → R be CM functions. Then

(2.1) α1(X1) + · · ·+ αk(Xk ∩X∗
k) + · · ·+ αn(Xn)

= (α1(X1) + · · ·+ αk(Xk) + · · ·+ αn(Xn))

∩ (α1(X1) + · · ·+ αk(X
∗
k) + · · ·+ αn(Xn)).

Proof. It is clear that the set on the left-hand side is a subset of the set on the
right-hand side. Thus we only prove the reverse inclusion. Suppose that ξ is
an element of the set of the right-hand side of (2.1). Then

(2.2) ξ = α1(ξ1)+· · ·+αk(ξk)+· · ·+αn(ξn) = α1(η1)+· · ·+αk(ηk)+· · ·+αn(ηn)

holds for some ξi, ηi ∈ Xi, i ∈ {1, . . . , n} \ {k} and ξk ∈ Xk, ηk ∈ X∗
k . If

ξk ∈ Xk ∩ X∗
k or ηk ∈ Xk ∩ X∗

k then there is nothing to prove. Suppose that
ξk ∈ Xk \ X∗

k and ηk ∈ X∗
k \ Xk. Let furthermore ωk be a fixed element of

Xk ∩X∗
k . Since αk is strictly monotonic the value αk(ωk) lies between αk(ξk)

and αk(ηk). Thus

(2.3) αk(ωk) = λαk(ξk) + (1− λ)αk(ηk)

for some 0 < λ < 1. On the other hand the numbers λαi(ξi)+(1−λ)αi(ηi), i =
1, . . . , n, i 6= k lie between αi(ξi) and αi(ηi) for all 1 ≤ i ≤ n, i 6= k. Thus
there are ωi ∈ Xi, i = 1, . . . , n, i 6= k such that

(2.4) αi(ωi) = λαi(ξi) + (1− λ)αi(ηi)

for some ωi ∈ Xi, i = 1, . . . , n, i 6= k. Therefore equations (2.2), (2.4), and
(2.3) imply that

ξ =λξ + (1− λ)ξ

=λ(α1(ξ1) + · · ·+ αn(ξn)) + (1− λ)(α1(η1) + · · ·+ αn(ηn))

=λα1(ξ1) + (1− λ)α1(η1) + · · ·+ λαn(ξn) + (1− λ)αn(ηn)

=α1(ω1) + · · ·+ αn(ωn).

Hence

ξ ∈ α1(X1) + · · ·+ αk(Xk ∩X∗
k) + · · ·+ αn(Xn).

¤

In this section, we use the following property of CM functions frequently,
mostly without explicit references.
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Lemma 2. Let Q : X1 × · · · ×Xn → R be a CM function and k ∈ {1, . . . , n}
be a fixed integer. If Q is strictly increasing (resp. strictly decreasing) in each
variable but the kth one for some xi ∈ Xi, i ∈ {1, . . . , n} \ {k} then Q has the
same property for any xi ∈ Xi, i ∈ {1, . . . , n} \ {k}, too.

Proof. Suppose that, for example, Q(x1, . . . , xk−1, ξk, xk+1 . . . , xn) strictly in-
creasing while Q(x1, . . . , xk−1, ξ

′
k, xk+1 . . . , xn) is strictly decreasing in the vari-

ables xi, i ∈ {1, . . . , n} \ {k} for some fixed ξk, ξ
′
k ∈ Xk. Let xi, x

′
i ∈ Xi, xi <

x′i, i ∈ {1, . . . , n} \ {k}. Then

Q(x1, . . . , xk−1, ξk, xk+1 . . . , xn)−Q(x′1, . . . , x
′
k−1, ξk, x

′
k+1 . . . , x

′
n) < 0

and

Q(x1, . . . , xk−1, ξ
′
k, xk+1 . . . , xn)−Q(x′1, . . . , x

′
k−1, ξ

′
k, x

′
k+1 . . . , x

′
n) > 0.

Therefore, because of the continuity,

Q(x1, . . . , xk−1, ηk, xk+1 . . . , xn)−Q(x′1, . . . , x
′
k−1, ηk, x

′
k+1 . . . , x

′
n) = 0

for some ηk lying between ξk and ξ′k. This contradicts to the strict monotonic-
ity. The other statements of the lemma can be proved similarly. ¤

In the following (as before in Theorem 2) we denote the set of all inner
points of A ⊆ R by A◦.

Lemma 3. Let Q : X1 × · · · ×Xn → R be a CM function. Then

Q(X1, X
◦
2 , . . . , X

◦
n) = Q(X◦

1 , X2, X
◦
3 , . . . , X

◦
n) = · · · = Q(X◦

1 , . . . , X
◦
n−1, Xn)

= Q(X◦
1 , X

◦
2 , . . . , X

◦
n) = Q(X1, X2, . . . , Xn)◦.

Proof. Suppose that Q is strictly increasing in each variable. This can be done
without loss of generality. Indeed, if Q were strictly decreasing in its first
variable and strictly increasing in the others (say) then we would consider the
function Q1 defined by

Q1(x1, . . . , xn) = Q(−x1, . . . , xn) ((x1, . . . , xn) ∈ (−X1, . . . , Xn))

instead of Q. (See also Lemma 2.) First we prove that

(2.5) Q(X1, X
◦
2 , . . . , X

◦
n) ⊂ Q(X◦

1 , X
◦
2 , . . . , X

◦
n).

Let (x, y2, . . . , yn) ∈ X1 ×X◦
2×, . . . ,×X◦

n. If x ∈ X◦
1 then obviously

Q(x, y2, . . . , yn) ∈ Q(X◦
1 , X

◦
2 , . . . , X

◦
n).

If x ∈ X1 \ X◦
1 then first suppose that x ∈ minX1. In this case choose

an element (y′2, . . . , y
′
n) ∈ X◦

2 × . . . ,×X◦
n so that y′i < yi, i = 2, . . . , n and

let ε = Q(x, y2, . . . , yn) − Q(x, y′2, . . . , y
′
n). Then ε > 0 and, because of the

continuity of Q, there exists (x1, y2, . . . , yn) ∈ X◦
1 ×X◦

2 × · · · ×X◦
n such that

Q(x1, y2, . . . , yn)−Q(x, y2, . . . , yn) < ε = Q(x, y2, . . . , yn)−Q(x, y′2, . . . , y
′
n)
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whence

(2.6)
Q(x1, y2, . . . , yn) +Q(x, y′2, . . . , y

′
n)

2
< Q(x, y2, . . . , yn)

follows. Define the function q on [0, 1] by

q(t) = Q((1− t)x+ tx1, (1− t)y2 + ty′2, . . . , (1− t)yn + ty′n).

Then q : [0, 1] → R is continuous. Thus, for some t0 ∈ [0, 1], we get that

(2.7) q(t0) =
q(0) + q(1)

2
=
Q(x, y2, . . . , yn) +Q(x1, y

′
2, . . . , y

′
n)

2
.

If t0 ∈ {0, 1} then q(0) = q(1). Thus, by (2.6),

Q(x1, y2, . . . , yn) < Q(x, y2, . . . , yn).

However this is impossible, since x = minX1 and Q is strictly increasing in
each variable. Hence t0 ∈]0, 1[ therefore

((1− t0)x+ t0x1, (1− t0)y2 + t0y
′
2, . . . , (1− t0)yn + t0y

′
n) ∈ X◦

1 ×X◦
2×, . . . ,×X◦

n

and, by (2.6) and (2.7),

Q((1− t0)x+ t0x1, (1− t0)y2 + t0y
′
2, . . . , (1− t0)yn + t0y

′
n) < Q(x, y2, . . . , yn).

On the other hand Q(x, y2, . . . , yn) < Q(x2, y2, . . . , yn) if x < x2, x2 ∈ X◦
1 .

Thus Q(x, y2, . . . , yn) is an intermediate value of Q on X◦
1 × X◦

2 × . . . ,×X◦
n.

Therefore Q(x, y2, . . . , yn) ∈ Q(X◦
1 , X2, X

◦
3 , . . . , X

◦
n) which implies (2.5), in

case x = minX1. The case x = maxX1 can be handled similarly. Since
the inclusion Q(X◦

1 , X
◦
2 , . . . , X

◦
n) ⊂ Q(X1, X

◦
2 , . . . , X

◦
n) is obvious, we get that

(2.8) Q(X1, X
◦
2 , . . . , X

◦
n) = Q(X◦

1 , X
◦
2 , . . . , X

◦
n).

Interchanging the role of the variables we have that

Q(X1, X
◦
2 , . . . , X

◦
n) = Q(X◦

1 , X2, X
◦
3 , . . . , X

◦
n) = . . .

= Q(X◦
1 , . . . , X

◦
n−1, Xn)

= Q(X◦
1 , X

◦
2 , . . . , X

◦
n).

(2.9)

It remains only to prove that

(2.10) Q(X◦
1 , X

◦
2 , . . . , X

◦
n) = Q(X1, X2, . . . , Xn)◦.

The inclusion Q(X◦
1 , X

◦
2 , . . . , X

◦
n) ⊂ Q(X1, X2, . . . , Xn)◦ is obvious. For the

proof of the reverse inclusion let z ∈ Q(X1, X2, . . . , Xn)◦. Thus

z = Q(x1, . . . , xn)

for some (x1, . . . , xn) ∈ (X1 × · · · ×Xn). If xk ∈ X◦
k for some 1 ≤ k ≤ n then,

by (2.8)-(2.9), z ∈ Q(X◦
1 , X

◦
2 , . . . , X

◦
n). In the opposite case we have that xk

is boundary point of Xk for all 1 ≤ k ≤ n. However neither xk = minXk

for all 1 ≤ k ≤ n nor xk = maxXk for all 1 ≤ k ≤ n are valid. (Otherwise
z /∈ Q(X1, X2, . . . , Xn)◦ would follow.) Therefore z is an intermediate value of
Q on X◦

1 ×X◦
2 × . . . ,×X◦

n. Thus (2.10) is proved. ¤
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Finally, in this section, we prove an extension theorem which says that, if a
CM function is quasi-sum on the interior of its domain then it is quasi-sum
on its entire domain, as well.

Theorem 3. Let the CM function Q : X1 × · · · × Xn → R be quasi-sum on
X◦

1 × · · · × X◦
n with generator (ϕ0, α10, . . . , αn0). Then Q is quasi-sum on its

domain. Moreover Q has a generator (ϕ, α1, . . . , αn) so that

αk0 = αk|X◦
k , 1 ≤ k ≤ n

and
ϕ0 = ϕ|α10(X

◦
1 ) + · · ·+ αn0(X

◦
n).

Proof. First we prove that, if x∗1 ∈ X1 \ X◦
1 then α10 has finite limit at x∗1.

Indeed, let (ym) be a sequence in X◦
1 that converges to x∗1. Let further xk ∈

X◦
k , 2 ≤ k ≤ n be arbitrary. By Lemma 3,

Q(x∗1, x2, . . . , xn) ∈ Q(X◦
1 , X

◦
2 , . . . , X

◦
n).

On the other hand ϕ−1
0 : Q(X◦

1 , X
◦
2 , . . . , X

◦
n) → R and Q are continuous func-

tions. Thus

(2.11)
α10(ym) = ϕ−1

0 (Q(ym, x2, . . . , xn))− α20(x2)− · · · − αn0(xn)

→ ϕ−1
0 (Q(x∗1, x2, . . . , xn))− α20(x2)− · · · − αn0(xn)

as m→∞. Therefore the definition

(2.12) α1(x1) =

{
α10(x1) if x1 ∈ X◦

1

lim
t→x∗1

α10(t) if x1 = x∗1

is correct, α1 : X1 → R is CM function, α10 = α1|X◦
1 , and, by (2.11),

Q(x1, x2, . . . , xn) = ϕ0(α1(x1) + α20(x2) + · · ·+ αn0(xn))

holds for all x1 ∈ X1, xk ∈ X◦
0 , k = 2, . . . , n. The extension of αk0 from X◦

k to
Xk, k = 2, . . . , n can be done similarly such that

Q(x1, x2, . . . , xn) = ϕ0(α1(x1) + · · ·+ αn(xn))

should hold for all xk ∈ Xk, k = 1, . . . , n. Finally, let

ξ∗ ∈ α1(X1) + · · ·+ αn(Xn)

be boundary point. Then ξ∗ is the maximum or the minimum of the function
(x1, . . . , xn) 7→ α1(x1) + · · ·+αn(xn), (x1, . . . , xn) ∈ X1× · · · ×Xn. Therefore
there is a unique point (x∗1, . . . , x

∗
n) ∈ (X1 \ X◦

1 ) × · · · × (Xn \ X◦
n) such that

ξ∗ = α1(x
∗
1) + · · · + αn(x∗n). Let ϕ(ξ∗) = Q(x∗1, . . . , x

∗
n) and ϕ(ξ) = ϕ0(ξ) if

ξ ∈ (α1(X1) + · · ·+ αn(Xn))◦. Thus, by Lemma 3,

(α1(X1) + · · ·+ αn(Xn))◦ = α1(X
◦
1 ) + · · ·+ αn(X◦

n)

= α10(X
◦
1 ) + · · ·+ αn0(X

◦
n).

Therefore ϕ0 = ϕ|α10(X
◦
1 ) + · · ·+ αn0(X

◦
n). On the other hand

ϕ(ξ∗) = inf{α10(X
◦
1 )+· · ·+αn0(X

◦
n)} or ϕ(ξ∗) = sup{α10(X

◦
1 )+· · ·+αn0(X

◦
n)}
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hence ϕ is CM function and (ϕ, α1, . . . , αn) is a generator of Q on

X1 × · · · ×Xn.

¤

3. Main result

In this section we prove that local quasi-sums are also quasi-sums. To do this
we need a fitting result on quasi-sums. This says that, if a function is quasi-
sum on finitely many n-dimensional intervals fitting each other in a particular
way, then it is quasi-sum on the union of these intervals, too. Our basic tool is
the following lemma that is an easy consequence of Corollary 3 in Radó-Baker
[5].

Lemma 4. Let 1 < N be a fixed integer, Xk ⊂ R, k = 1, . . . , N be intervals,
γk : Xk → R, k = 1, . . . , N and κ : X1× · · · ×XN be CM functions. Then the
functional equation

(3.1) κ(x1 + · · ·+ xN) = γ1(x1) + · · ·+ γN(xN)

((x1, . . . , xN) ∈ X1 × · · · ×XN)

holds if, and only if, there exist real numbers a 6= 0, b1, . . . , bN such that

γk(x) = ax+ bk (x ∈ Xk, k = 1, . . . , N)

and
κ(x) = ax+ b1 + · · ·+ bN (x ∈ X1 + · · ·+XN).

Now we are ready to prove the following

Lemma 5. Let R ⊂ Rn be an n-dimensional interval and Q : R → R be
quasi-sum on the n-dimensional interval X1 × · · · ×Xn ⊂ R. Then, for each
ξ ∈ X1, ηk ∈ Xk, k = 1, . . . , n, ξ 6= η1 and p, qk ∈ R, k = 1, . . . , n, p 6= q1,
there exists a unique generator (ϕ, α1, . . . , αn) of Q on X1×· · ·×Xn such that

(3.2) α1(ξ) = p and αk(ηk) = qk (k = 1, . . . , n).

Proof. By definition, Q has a generator (ψ, β1, . . . , βn) on X1×· · ·×Xn. Define
the (n+ 1)-tuple (ϕ, α1, . . . , αn) by

αk(x) =
p− q1

β1(ξ)− β1(η1)
(βk(x)− βk(ηk)) + qk (x ∈ Xk, k = 1, . . . , n)

ϕ(x) = ψ

(
β1(ξ)− β1(η1)

p− q1

(
x−

n∑

k=1

(
qk − p− q1

β1(ξ)− β1(η1)
βk(ηk)

)))

for x ∈ α1(X1)×· · ·×αn(Xn). A simple calculation shows that (ϕ, α1, . . . , αn)
is a generator of Q on X1 × · · · ×Xn having property (3.2).

To prove the uniqueness suppose that (ϕ, α1, . . . , αn) and (χ, δ1 . . . , δn) are
two generators of Q on X1 × · · · ×Xn so that the equalities

(3.3) α1(ξ) = δ1(ξ) = p and αk(ηk) = δk(ηk) = qk (k = 1, . . . , n)
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hold. Then

ϕ(α1(x1) + · · ·+ αn(xn)) = χ(δ1(x1) + · · ·+ δn(xn)) (xk ∈ Xk, k = 1, . . . , n)

whence

χ−1 ◦ ϕ(ω1 + · · ·+ ωn) = δ1 ◦ α−1(ω1) + · · ·+ δn ◦ α−1(ωn)

follows for all ωk ∈ αk(Xk), (k = 1, . . . , n). With the notations n = N, κ =
χ−1 ◦ ϕ, γk = δk ◦ α−1

k , (k = 1, . . . , n), this implies equation (3.1). Thus
Lemma 4 can be applied and we have the following connections between the
elements of the two generators:

(3.4)
δk(x) = aαk(x) + bk (x ∈ Xk, k = 1, . . . , n),

ϕ(x) = χ(ax+ b1 + · · ·+ bn) (x ∈ α1(X1) + · · ·+ αn(Xn))

with some real numbers a 6= 0, b1, . . . , bn. However, by (3.3), these numbers
can easily be determined and finally we get that a = 1, b1 = · · · = bn = 0.
Thus the proof is complete. ¤

An easy calculation shows that, if (ϕ, α1, . . . , αn) is a generator of the quasi-
sum Q on X1×· · ·×Xn and the (n+1)-tuple (χ, δ1 . . . , δn) is defined by (3.4)
with arbitrary real numbers 0 6= a, b1, . . . , bn, then it is also a generator of Q
on X1 × · · · ×Xn. Thus the generators can be “re-defined” if necessary. The
following lemma is an immediate consequence of the previous one.

Lemma 6. Let R ⊂ Rn be an n-dimensional interval and Q : R → R be
quasi-sum on the n-dimensional interval X1 × · · · × Xn ⊂ R. Suppose that
(ϕ, α1, . . . , αn) and (ψ, β1, . . . , βn) are two generators of Q on X1 × · · · × Xn

so that the equalities

α1(ξ) = β1(ξ) and αk(ηk) = βk(ηk) (k = 1, . . . , n)

hold for some ξ ∈ X1 and ηk ∈ Xk, (k = 1, . . . , n), ξ 6= η1. Then the two
generators coincide, that is, αk = βk on Xk, (k = 1, . . . , n) and ϕ = ψ on
α1(X1) + · · ·+ αn(Xn).

In the following lemma we show how quasi-sums can be fitted.

Lemma 7. Let 1 5 k 5 n be fixed integer, R ⊆ Rn be n-dimensional interval
and Q : R→ R be quasi-sum on the n-dimensional intervals

X1 × · · · ×Xk × · · · ×Xn ⊆ Rn

and also on X1 × · · · × X∗
k × · · · × Xn ⊆ Rn. Further, suppose that Xk ∩X∗

k

has inner point. Then Q is quasi-sum on X1 × · · · × (Xk ∪X∗
k)× · · · ×Xn, as

well.

Proof. If Xk ⊂ X∗
k or X∗

k ⊂ Xk then the statement is obvious. Suppose that
Xk 6⊂ X∗

k andX∗
k 6⊂ Xk. Let (ϕ, α1, . . . , αn) be a generator ofQ onX1×· · ·×Xn

and ξ ∈ X1, ηi ∈ Xi, i ∈ {1, . . . , n} \ {k}, ηk ∈ Xk ∩ X∗
k , ξ 6= η1. Since Q

is quasi-sum also on X1 × · · · × X∗
k × · · · × Xn, therefore, by Lemma 5, it

has a generator (ψ, β1, . . . , βn) on X1 × · · · × X∗
k × · · · × Xn so that β1(ξ) =
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α1(ξ) and βk(ηk) = αk(ηk), (k = 1, . . . , n). Obviously, Q is quasi-sum
also on X1 × · · · × (Xk ∩X∗

k)× · · · ×Xn. Thus, by Lemma 6, we obtain that

(3.5)

βi(x) = αi(x) (x ∈ Xi, i ∈ {1, . . . , n} \ {k}),
βk(x) = αk(x) (x ∈ Xk ∩X∗

k) and

ϕ(x) = ψ(x) (x ∈ α1(X1) + · · ·+ αk(Xk ∩X∗
k) + · · ·+ αn(Xn)).

Define the functions γi : Xi → R (i ∈ {1, . . . , n} \ {k}), γk : Xk ∪X∗
k → R and

Γ: α1(X1) + · · ·+ (αk(Xk) ∪ αk(X
∗
k)) + · · ·+ αn(Xn) → R by

γi(x) = αi(x) (x ∈ Xi, (i ∈ {1, . . . , n} \ {k})

γk(x) =

{
αk(x) if x ∈ Xk

βk(x) if x ∈ X∗
k

and

Γ(x) =

{
ϕ(x) if x ∈ α1(X1) + · · ·+ αk(Xk) + · · ·+ αn(Xn)

ψ(x) if x ∈ α1(X1) + · · ·+ αk(X
∗
k) + · · ·+ αn(Xn).

Then it is obvious that γi is CM function for all i ∈ {1, . . . , n} \ {k}. Since
Xk ∩X∗

k is an interval of positive length, thus, by (3.5), αk and βk are strictly
monotonic in the same sense. Hence γk is CM function, too. If

x ∈ (α1(X1)+· · ·+αk(Xk)+· · ·+αn(Xn))∩(α1(X1)+· · ·+αk(X
∗
k)+· · ·+αn(Xn))

then Lemma 1 and (3.5) imply that the definition of Γ is correct and Γ is
CM function. Finally, it is obvious that (Γ, γ1, . . . , γn) is a generator of Q on
X1 × · · · × (Xk ∪X∗

k)× · · · ×Xn. ¤
We note that the lemma above can also be used repeatedly and for different

values of 1 5 k 5 n. The following result makes possible to restrict our
considerations to compact n-dimensional intervals.

Lemma 8. Let R ⊂ R be n-dimensional interval, Xij ⊂ R be interval for all
i = 1, . . . , n and for every positive integer j, Rj = X1j × · · · ×Xnj ⊂ R, Rj ⊂
Rj+1 for every positive integer j and R0 =

∞⋃
j=1

Rj. Suppose that Q : R → R is

quasi-sum on Rj for every positive integer j. Then Q is quasi-sum also on R0.

Proof. Let (ϕ1, α11, . . . , αn1) be a generator of Q on R1 and

ξ ∈ X11, ηk ∈ Xk1, (k = 1, . . . , n), ξ 6= η1

and if we have chosen a generator (ϕj, α1j, . . . , αnj) of Q on Rj for the positive
integer j then choose the generator (ϕj+1, α1j+1, . . . , αnj+1) of Q on Rj+1 so
that

α1j+1(ξ) = α1j(ξ) and αij+1(ηi) = αij(ηi) (i = 1, . . . , n)

be fulfilled. This is possible by Lemma 5, and from Lemma 6 we get that

αij+1(xi) = αij(xi) (xi ∈ Xij, (i = 1, . . . , n))
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and

ϕj+1(x) = ϕj(x) (x ∈ α1j(X1j) + · · ·+ αnj(Xnj))

for every positive integer j. This shows that the functions

αi =
∞⋃

j=1

αij (i = 1, . . . , n)

and ϕ =
∞⋃

j=1

ϕj are well-defined, they are CM functions, and (ϕ, α1, . . . , αn) is

a generator of Q on R0. ¤

Now we prove the main result of our paper.

Theorem 4. Let X1×· · ·×Xn be an n-dimensional interval and suppose that
Q : X1 × · · · × Xn → R is local quasi-sum on it. Then Q is quasi-sum on
X1 × · · · ×Xn.

Proof. By Lemma 8, it is enough to prove that Q is quasi-sum on any compact
n-dimensional subinterval C = [a1, b1] × · · · × [an, bn] of X1 × · · · × Xn. For
this, let ξ ∈ [an, bn] be fixed and

Cξ = {(η1, . . . , ηn−1, ξ) : (η1, . . . , ηn−1) ∈
n−1

X
i=1

[ai, bi]}.

Then Cξ ⊂ C is compact. Since Q is local quasi-sum on C, for each point of C
there exists an n-dimensional interval, open in C, containing the point, and on
which Q is quasi-sum. On the other hand, the compactness of Cξ implies that

there are n-dimensional intervals Xξ
1j×· · ·×Xξ

nj, (j = 1, . . . ,m) contained by
C, such that they are open in C, Q is quasi-sum on each of them, and

Cξ ⊂
n⋃

j=1

(Xξ
1j × · · · ×Xξ

nj).

Let

Rξ =

(
m⋂

j=1

Xξ
1j

)
× · · · ×

(
m⋂

j=1

Xξ
n−1j

)
×

(
m⋃

j=1

Xξ
nj

)
.

Then Cξ ⊂ Rξ ⊂ C is n-dimensional interval and it is open in C. Applying
Lemma 7 repeatedly we obtain that Q is quasi-sum on Rξ. Hence, because
of the compactness of C, there are numbers ξ1, . . . , ξM ∈ [an, bn] such that

C =
M⋃

j=1

Rξj
. Applying Lemma 7 again we get that Q is quasi-sum on C. ¤

It is clear that the theorem above is a generalization of Theorem 1. Com-
bining this result and Theorem 3 we have the generalization of Theorem 2, as
well.
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Theorem 5. Let X1×· · ·×Xn be an n-dimensional interval and suppose that
the CM function Q : X1 × · · · ×Xn → R is local quasi-sum on the interior of
its domain. Then Q is quasi-sum on X1 × · · · ×Xn.

4. An application

Now we prove the following theorem as an application of our results on
quasi-sums in several variables.

Theorem 6. Let 1 < N and 1 < M be fixed integers, Uk` ⊂ R be intervals,
and

g :
N∑

`=1

U1` × · · · ×
N∑

`=1

UM` → R, g` : U1` × · · · × UM` → R,

and
f : V1 × · · · × VN → R,

where V` = g`(U1`, . . . , UM`), (k = 1, . . . ,M, ` = 1, . . . , N), be CM functions.
Suppose that

(4.1) g(u11 + · · ·+ u1N , . . . , uM1 + · · ·+ uMN)

= f(g1(u11, . . . , uM1), . . . , gN(u1N , . . . , uMN))

holds for all uk` ∈ Uk`, k = 1, . . . ,M, ` = 1, . . . , N . Then there exist CM
functions

α` : V` → R (` = 1, . . . , N), ϕ :
N∑

`=1

α`(V`) → R,

c ∈ RM with coordinates different from zero and d` ∈ R (` = 1, . . . , N) such
that

(4.2)
g(u) = ϕ(〈c, u〉+ d1 + · · ·+ dN)

(
u ∈

N∑

`

(U1` × · · · × UM`)

)

g`(u`) = α−1
` (〈c, u`〉+ d`), (u` ∈ U1` × · · · × UM`, ` = 1, . . . , N)

where 〈·, ·〉 denotes the usual scalar product in RM and

f(v1, . . . , vN) = ϕ(α1(v1) + · · ·+ αN(vN)) ((v1, . . . , vN) ∈ V1×, . . . ,×VN) .

Proof. First we show that f is an N -variable quasi-sum. Since f is CM
function, by Theorem 5, it is enough to prove that f is local quasi-sum on
V ◦

1 × · · · × V ◦
N . For this, let (a1, . . . , aN) ∈ V ◦

1 × · · · × V ◦
N . Then there

exist u∗k` ∈ U◦k`, (k = 1, . . . ,M, ` = 1, . . . , N) and 0 < δ ∈ R such that
a` = g`(u

∗
1`, . . . , u

∗
M`) (` = 1, . . . , N) and, with the notations

I` =]u∗1` − δ, u∗1` + δ[, (` = 1, . . . , N)

and
S = g1(I1, u

∗
21, . . . , u

∗
M1)× · · · × gN(IN , u

∗
2N , . . . , u

∗
MN),

we have that (a1, . . . , aN) ∈ S ⊂ V ◦
1 × · · · × V ◦

N .
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Now we prove that f is quasi-sum on S. Let t` ∈ I` and u1` = t`, uk` =
u∗k`, (k = 2, . . . ,M, ` = 1, . . . , N). Then equation (4.1) implies that

g(t1 + · · ·+ tN , u
∗
21 + · · ·+ u∗2N , . . . , u

∗
M1 + · · ·+ u∗MN)

= f(g1(t1, u
∗
21 . . . , u

∗
M1), . . . , gN(tN , u

∗
2n . . . , u

∗
MN))

= f(h1(t1), . . . , hN(tN))

where

h`(t`) = g`(t`, u
∗
2` . . . , u

∗
M`), t` ∈ I`, (` = 1, . . . , N).

Thus

f(s1, . . . , sN) = g(h−1
1 (s1)+ · · ·+h−1

N (sN), u∗21 + · · ·+u∗2N , . . . , u
∗
M1 + · · ·+u∗MN)

holds for all (s1, . . . , sN) ∈ h1(I1)× · · · × hN(IN) = S.
Applying Theorem 5 we have that f is quasi-sum on its domain V1×· · ·×VN ,

that is,

(4.3) f(v1, . . . , vN) = ϕ(α1(v1) + · · ·+ αN(vN))

((v1, . . . , vN) ∈ V1×, . . . ,×VN)

for some CM functions α` : V` → R (` = 1 . . . , N) and ϕ :
∑N

`=1 α`(V`) → R.
Therefore equation (4.1) can be written as

g(u11 + · · ·+ u1N , . . . , uM1 + · · ·+ uMN)

= ϕ(α1 ◦ g1(u11, . . . , uM1) + · · ·+ αN ◦ gN(u1N , . . . , uMN))

(uk` ∈ Uk`, k = 1, . . . ,M, ` = 1, . . . , N) or shortly, with the notations

(4.4) γ = ϕ−1 ◦ g, β` = α` ◦ g`, u` = (u1`, . . . , uM`) (` = 1, . . . , N),

we have that

γ(u1 + · · ·+ uN) = β1(u1) + · · ·+ βN(uN)

holds for all u` ∈ U1` × · · · × UM`, (` = 1, . . . , N). The CM solutions of this
equation can easily be obtained from Corollary 3 of [5], and we have that

β`(u) = 〈c, u〉+ d` (u` ∈ U1` × · · · × UM`, ` = 1, . . . , N)

and

γ(u) = 〈c, u〉+ d1 + · · ·+ dN

(
u ∈

N∑

`=1

U1` × · · · × UM`

)

with some c ∈ RM and d` ∈ R, (` = 1, . . . , N). Taking into consideration
(4.4), this and (4.3) imply (4.2). ¤

An easy calculation shows that the converse statement of this theorem is
true, as well. That is, the functions g, g` and f defined by (4.2) with CM
functions ϕ, α` and d` ∈ R, (` = 1, . . . , N) are CM solutions of (4.1).
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5. Final remark

As we shall see in this section the problem of finding all CM solutions of the
general aggregation equation (1.1) leads to equations (1.2) and (4.1). In ([3])
we have solved (1.2) by using two variable quasi-sums while equation (4.1)
can be solved by using several variable quasi-sums. In this section we give a
relatively short proof for the following theorem (see also [3]).

Theorem 7. Let 1 < n, 1 < m be fixed integers, Xij ⊂ R be intervals,
Gi : X1i × · · · × Xmi → R, Gi(X1i, . . . , Xmi) = Ii, Fj : Xj1 × · · · × Xjn → R,
Fj(Xj1, . . . , Xjn) = Jj, Gi, Fj be CM functions for i = 1, . . . , n and j =
1, . . . ,m, G : J1 × · · · × Jm → R, F : I1 × · · · × In → R and G,F be CM
functions, too. Suppose that equation (1.1)

G(F1(x11, . . . , x1n), . . . , Fm(xm1, . . . , xmn))

= F (G1(x11, . . . , xm1), . . . , Gn(x1n, . . . , xmn))

holds for all xji ∈ Xji, j = 1, . . . ,m and i = 1, . . . , n. Then there exist an
interval I ⊂ R and CM functions ϕ : I → R, αi : Ii → R, γj : Jj → R and
βji : Xji → R, j = 1, . . . ,m, i = 1, . . . , n such that

F (z1, . . . , zn) = ϕ−1

(
n∑

i=1

αi(zi)

)
, (z1, . . . , zn) ∈ I1 × · · · × In,(5.1)

G(y1, . . . , ym) = ϕ−1

(
m∑

j=1

γj(yj)

)
, (y1, . . . , ym) ∈ J1 × · · · × Jm,(5.2)

Fj(xj1, . . . , xjn) = γ−1
j

(
n∑

i=1

βji(xji)

)
,(5.3)

and

Gi(x1i, . . . , xmi) = α−1
i

(
m∑

j=1

βji(xji)

)
,(5.4)

xji ∈ Xji, j = 1, . . . ,m, i = 1, . . . , n.

Proof. Part (A). First we prove the theorem for m = 2 by induction on n. In
this case equation (1.1) has the form
(5.5)
G(F1(x11, . . . , x1n), F2(x21, . . . , x2n)) = F (G1(x11, x21), . . . , Gn(x1n, x2n)),

and the statement of our theorem is true for n = 2 (see Theorem 1 in [3]).
Suppose that n > 2 and the statement is true for n − 1 instead of n. Fix
the variables x1n, x2n in (5.5). Then, by the induction hypothesis, we obtain
that (5.4) holds for m = 2 and for n − 1 instead of n with CM functions
αi, β1i, β2i, i = 1, . . . , n− 1. Next, fix the variables x11, x21 in (5.5) and apply
the induction hypothesis again. Thus we get (5.4) for m = 2 and also for i = n
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with CM functions αn, β1n, β2n. Hence (5.4) holds for m = 2. Substitute this
form of Gi, i = 1, . . . , n into (5.5) we have that

(5.6) G(F1(x11, . . . , x1n), F2(x21, . . . , x2n))

= F (α−1
1 (β11(x11) + β21(x21)), . . . , α

−1
n (β1n(x1n) + β2n(x2n))))

holds for all xji ∈ Xji j = 1, 2, i = 1, . . . , n. Let Uji = βji(Xji), j = 1, 2, i =
1, . . . , n. Then Uji is interval and for all uji ∈ Uji there exists xji ∈ Xji such
that uji = βji(xji), j = 1, 2, i = 1, . . . , n. Thus (5.6) implies that

(5.7) G(F1(β
−1
11 (u11), . . . , β

−1
1n (u1n)), F2(β

−1
21 (u21), . . . , β

−1
2n (u2n)))

= F (α−1
1 (u11 + u21), . . . , α

−1
n (u1n + u2n)).

With the definitions N = 2,M = n,

(5.8)

g(t1, . . . , tM) = F (α−1
1 (t1), . . . , α

−1
M (tM)) (ti ∈ U1i + U2i),

gj(uj1, . . . , ujM) = Fj(β
−1
j1 (uj1), . . . , β

−1
jM(ujM)) (uji ∈ Uji),

f = F (j = 1, 2, i = 1, . . . ,M)

equation (5.7) goes over into (4.1) and Theorem 6 can be applied. Thus we
have (4.2) and, by definitions (5.8) and by re-defining the generators (see the
remark after Lemma 4), we get (5.1)-(5.4) for m = 2.

Part (B). Now, for fixed n > 1 we continue the proof by induction on m.
The statement of our theorem is true for m = 2, as we have shown in Part
(A) of the proof. Suppose that m > 2 and the statement is true for m − 1
instead of m. First fix the variables xm1, . . . , xmn in (1.1). Then, by the
induction hypothesis, we have (5.3) for j = 1, . . . ,m − 1 with CM functions
γj, βji, j = 1, . . . ,m − 1, i =, . . . , n. Next, let x11, . . . , x1n be fixed in (1.1)
to obtain (5.3), by using the induction hypothesis again, also for j = m with
CM functions γm, βmi, i = 1, . . . , n. Thus we have proved (5.3). Substitute
the known form of Fj, j = 1, . . . ,m into (1.1) to get

(5.9) G(γ−1
1 (β11(x11) + · · ·+ β1n(x1n)), . . . , γ−1

m (βm1(xm1) + · · ·+ βmn(xmn)))

= F (G1(x11, . . . , xm1), . . . , Gn(x1n, . . . , xmn))

for all xji ∈ Xji j = 1, . . . ,m, i = 1, . . . , n. Let Uji = βji(Xji), j = 1, . . . ,m,
i = 1, . . . , n. Then Uji is interval and for all uji ∈ Uji there exists xji ∈ Xji

such that uji = βji(xji), j = 1, . . . ,m i = 1, . . . , n. Thus (5.9) implies that

(5.10) G(γ−1
1 (u11 + · · ·+ u1n), . . . , γ−1

m (um1 + · · ·+ umn))

= F (G1(β
−1
11 (u11), . . . , β

−1
m1(um1)), . . . , Gn(β−1

1n (u1n), . . . , β−1
mn(umn))).

With the definitions N = n,M = m,

(5.11)

g(t1, . . . , tM) = G(γ−1
1 (t1), . . . , γ

−1
M (tM)) (tj ∈ Uj1 + · · ·+ UjN),

gi(u1i, . . . , uMi) = Gi(β
−1
1i (u1i), . . . , β

−1
Mi(uMi)) (uji ∈ Uji),

f = F (j = 1, . . . ,M, i = 1, . . . , N)
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equation (5.10) goes over into (4.1) and Theorem 6 can be applied. Thus we
have (4.2) and, by definitions (5.11) and by re-defining the generators (see the
remark again after Lemma 4), we get (5.1)–(5.4). ¤

An easy calculation shows that the converse statement of this theorem is
true, as well. That is, the functions F,G, Fj, Gi defined by (5.1)-(5.4) with
CM functions ϕ, αi, γj and βji (i = 1, . . . , n, j = 1, . . . ,m) are CM solutions
of (1.1).
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