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QUASI-SUMS IN SEVERAL VARIABLES

GYULA MAKSA AND ENIKO NIZSALOCZKI

ABSTRACT. In this note we introduce the notions of quasi-sums and of the
local quasi-sums in several variables, respectively. We prove that the local
quasi-sums are also quasi-sums. We show how this result can be applied to
find the continuous solutions of the functional equation

g(urr + - -+ uiN, - upt o upN)

= f(gl(’ulh cee 7U]V11)a S ,QN(UUV, cee 7UMN))

that are strictly monotonic in each variable. Finally we give a proof of a
known result on the aggregation equation shorter than that is given in [3].

1. INTRODUCTION

By an interval we mean a connected subset of R (the reals) containing at
least two different elements. For a fixed positive integer n, an n-dimensional
interval is a set X; x --- x X,, where X}, C R is an interval (k =1,...,n). A
C'M function is a continuous real-valued function defined on an n-dimensional
interval and strictly monotonic in each variable. The notion of quasi-sum is
the following. Let n > 1 be a fixed integer, Xi,..., X, be intervals, and
X1 X -+ x X, C RCR" be an n-dimensional interval. A function @): R — R
is quasi-sum on the n-dimensional interval X; x --- x X, if there exist CM
functions

ap: X — R and ¢: Zak(Xk) —R
k=1
such that

Q(x1, ..., xn) = plan(z1) + -+ an(xn))  (vp € Xpyk=1,...,n).

The (n 4 1)-tuple (¢, a1, ..., ay,) is a generator of @ on X; x --- x X,,. The
function @): R — R is local quasi-sum on R if for each point (xi,...,x,) of
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R there exists an open n-dimensional interval S containing (z1,...,x,) such
that @) is quasi-sum on the n-dimensional interval R N.S. Important examples
for quasi-sums are associative C'M functions

woy= ¢ (¢(x) + (y))

(Aczél [1]), quasi-arithmetic means

Qlar, . a) = ! (% gw(xk)) (21, 20) € ")

where I C R is an interval and ¢: I — R is continuous and strictly mono-
tonic (see Hardy-Littlewood-Pdlya [2]), and the C'M solutions of equation of
aggregation

(].].) G(Fl(xu, e ,l’ln), ceey Fm<l’m1, Ce 7xmn))
= F(Gl(ajll’ e ,.Z'ml), e ,Gn(l'ln, e ,.’L’mn))

(see Maksa [3] and its references). In Maksa [4] we have proved the following
two theorems.

Theorem 1. If X C R and Y C R are intervals and QQ: X xY — R is local
quasi-sum on X X Y then Q) is quasi-sum on X X Y.

Theorem 2. If X C R andY C R are intervals and the CM function ): X X
Y — R is local quasi-sum on X° x Y° then Q is quasi-sum on X x Y. (Here
X° and Y° denote the interior of X and Y, respectively.)

These results can be applied to find the C'M solutions of the generalized
associativity equation

F(G(x,y),2) = H(z, K(y,2))
and of the generalized bisymmetry equation

(1-2) G(F1($11, $12), F2($21, $22)) = F(G1($11, j521), G2($12, $22))

(see [4] and [3]). In this note we extend the results on two variable quasi-sums
discussed in [4] to several variable quasi-sums and apply them to find the C'M
solutions of the particular aggregation equation

(13) g(un =+ —|—U1N,...,UM1 + - +UMN>
= f(gl(ull, RN ,uMl), Ce >gN(u1N7 Ce ,UMN)).

Having this result and the results on equation (1.2) (see [3]), we present a
way to find the C'M solutions of the general equation (1.1) of aggregation,
shorter than that is given in [3]. On the other hand, we hope that the quasi-
sum method, developed in this paper, can help to find the CM solutions of
other associative type or bisymmetry type functional equations, too.
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2. SOME BASIC PROPERTIES OF C' M FUNCTIONS

Throughout the paper n denotes a fixed integer greater then one. We begin
with three lemmata.

Lemma 1. Let 1 <k <n be a fived integer, X1, ..., X,, X; CR be intervals
such that Xp N X; # 0. Let further oz X; — R, 1 < i < n,i # k and
ap: Xp UX; — R be CM functions. Then

(2.1) o (Xy)+ -+ ap(XeN X)) + -+ an(Xy)
= (e (X1) + - o Xe) + - + an(X))
N (o (X1) + -+ an(Xp) + - 4 (X))
Proof. 1t is clear that the set on the left-hand side is a subset of the set on the

right-hand side. Thus we only prove the reverse inclusion. Suppose that £ is
an element of the set of the right-hand side of (2.1). Then

(2.2) &€= a1(&)+ - Aaw(&p)+ - Fan(&n) = ar(m)+ - +ar(me)+ - +an(n.)

holds for some &,n; € X;, 1 € {1,...,n} \ {k} and & € Xp,m € X If
& € Xy N X} or m € Xi N X}, then there is nothing to prove. Suppose that
& € Xi \ Xp and np € X} \ Xi. Let furthermore wy be a fixed element of
X N X;. Since ay is strictly monotonic the value ay(wy) lies between ay (&)
and oy (ng). Thus

(2.3) a(wr) = Aag(&r) + (1 — N ()

for some 0 < A < 1. On the other hand the numbers Aa; ()4 (1—N)a;(n;), @ =
1,...,n, 1 # k lie between «;(&;) and «;(n;) for all 1 < i < n,i # k. Thus
there are w; € X;, 1 =1,...,n, i # k such that
(2.4) ai(wi) = A (&) + (1 = Aoi(m:)
for some w; € X;, i = 1,...,n,i # k. Therefore equations (2.2), (2.4), and
(2.3) imply that
=X+ (1= A)¢

=AM (&) + -+ an(&n)) + (1= M(ea(m) + - + an(nn))

=Aar (&) + (1= Aar(m) + -+ + Ao (&) + (1 = A an(nn)

=ai(w1) + -+ + an(wn).
Hence

Eear(Xy)+ - +a(XpNXE) + -+ an(Xy).
U

In this section, we use the following property of C'M functions frequently,
mostly without explicit references.
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Lemma 2. Let Q: Xy x -+ x X;, = R be a CM function and k € {1,...,n}
be a fized integer. If Q is strictly increasing (resp. strictly decreasing) in each
variable but the k™ one for some x; € X;, i € {1,...,n}\ {k} then Q has the
same property for any x; € X;, 1 € {1,...,n}\ {k}, too.

Proof. Suppose that, for example, Q(x1,..., 25 1,&, Tri1 - ., T,) strictly in-
creasing while Q(z1, ..., 2k-1,&),, Tht1 - - ., Tp) is strictly decreasing in the vari-
ables z;, 1 € {1,...,n} \ {k} for some fixed &, &) € Xi. Let x;, 2} € X;, x; <
i, i€ {l,...,n}\ {k}. Then

Q(xb s JIk—17€k7‘rk+1 R 7‘7:%) - Q(Illa s 7x;gflv§kax;g+1 s 7I,n) <0

and

Q(z1,. o Th1, &gy Thr1 -, Ty) — Q2,2 & Ty -, x) > 0.

Therefore, because of the continuity,

Q(T1, oy Tty My Thog1 - -5 T) — QX o, Ty g, My Tpyq -+, T) =0
for some 7 lying between & and &,. This contradicts to the strict monotonic-

ity. The other statements of the lemma can be proved similarly. ([l

In the following (as before in Theorem 2) we denote the set of all inner
points of A C R by A°.
Lemma 3. Let Q: X7 X --- x X,, = R be a CM function. Then

Q(X1, X5, ..., X)) =Q(X], X0, X5,.... X)) = =Q(X7,..., X, _1, X))

= Q(X2, XS, ..., X0) = Q(X1, Xo, ..., X,)°.

Proof. Suppose that @ is strictly increasing in each variable. This can be done
without loss of generality. Indeed, if ) were strictly decreasing in its first
variable and strictly increasing in the others (say) then we would consider the
function @); defined by

Q1(z1,. .., x,) = Q(—x1, ..., 1) (z1,...,2) € (= X1,..., X))

instead of Q. (See also Lemma 2.) First we prove that

(25) Q(X1>X2O7"-7X72) CQ<Xf7X§7"'7XO)'

n

Let (z,y2,...,yn) € X1 X XgX, ..., xX,. If z € X} then obviously

Q@,y2, .- yn) € QXT, X3, X7).
If € X7\ X7 then first suppose that x € min X;. In this case choose
an element (y5,...,y,) € X5 x ..., xX; so that ¢ < y;, ¢ = 2,...,n and
let € = Q(z,y2,...,yn) — Q(x, 45, ...,y.). Then ¢ > 0 and, because of the
continuity of @, there exists (z1,yz,...,Yn) € X7 X X3 X --- x X such that

Q(xlay%--'7yn)_Q(xay%--wyn) <€:Q($7y2a"'7yn)_Q(ajayéa"'ay;)
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whence

Q(mlay% s 7yn) + Q(:Ca yé? s >y;)
2
follows. Define the function ¢ on [0, 1] by

q(t) = QUL = )z + tzy, (L= D)y + 1y, -, (1 = E)yn + Ly,).
Then ¢: [0,1] — R is continuous. Thus, for some ¢, € [0, 1], we get that
@7 alt) = 4(0) ; g(1) _ Q. 4, ,Yn) z@(xhyé, o Un)
If to € {0,1} then ¢(0) = ¢(1). Thus, by (2.6),

Q1,92 Yn) < QT Y2, -, Yn).

However this is impossible, since x = min X; and @ is strictly increasing in
each variable. Hence ty €]0, 1] therefore
(1 —to)x +toxy, (L —to)ya +toys, - -, (L —to)yn +toy),) € X7 X X5X, ..., xX;
and, by (2.6) and (2.7),

QUL —to)z + tox1, (1 — to)ya + toys, - -+ (L = to)yn + toyy) < QT Y2, Yn)-

On the other hand Q(z,vs,...,yn) < Q(x2,Ya,...,yn) if © < 29, x5 € X7,
Thus Q(z,ys,...,Yy,) is an intermediate value of Q on X7 x X§ x ..., xX¢.
Therefore Q(x,ya,...,yn) € Q(X7, X2, X3,...,X;) which implies (2.5), in
case x = min X;. The case x = max X; can be handled similarly. Since

the inclusion Q(X7, X5,..., X)) C Q(X;, X3, ..., X)) is obvious, we get that
(2.8) QX1, XS, ..., X°) = Q(X2, XS,..., X2).

n n

(26) < Q(xvaa'~'7yn)

Interchanging the role of the variables we have that

Q(X, X5, ..., X)) =Q(X], Xy, X3,..., X)) =
=Q(X7,..., X, 1, Xn)
=Q(X7,X5,...,X,).

n

(2.9)

It remains only to prove that

(2.10) QX2 XS, .. X2) = Q(X1, Xo, ..., X"

The inclusion Q(X7, X5,...,X?) C Q(X1, Xs,...,X,)° is obvious. For the
proof of the reverse inclusion let z € Q(X;, Xs, ..., X,,)°. Thus

z2=Q(x1,...,xy,)

for some (z1,...,2,) € (X1 X -+ x X,,). If 2 € X} for some 1 < k < n then,
by (2.8)-(2.9), z € Q(X7,X3,...,X:). In the opposite case we have that xy
is boundary point of X, for all 1 < k < n. However neither z; = min X,
for all 1 < k < n nor z; = max Xy, for all 1 < k < n are valid. (Otherwise
2z ¢ Q(X1, Xo,...,X,)° would follow.) Therefore z is an intermediate value of
Q) on X7 x X3 x ..., xX,. Thus (2.10) is proved. O
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Finally, in this section, we prove an extension theorem which says that, if a
C'M function is quasi-sum on the interior of its domain then it is quasi-sum
on its entire domain, as well.

Theorem 3. Let the CM function QQ: X; X --- x X,, — R be quasi-sum on
X7 X - x X2 with generator (o, 010, - .., Qno). Then Q is quasi-sum on its
domain. Moreover Q) has a generator (¢, aq,...,qy,) so that
arg = o X2, 1 <k <n
and
po = plong(X7) + -+ + ano(Xy).
Proof. First we prove that, if 7 € X; \ X7 then «ajy has finite limit at x}.
Indeed, let (y,,) be a sequence in X; that converges to x}. Let further z; €
Xy, 2 <k <n be arbitrary. By Lemma 3,
Q] @9, ..., 1) € QXT, X5,..., X,).

On the other hand py*: Q(X?, X3,...,X°) — R and Q are continuous func-
tions. Thus
W0(ym) = 00 (QWm, 2, ..., xn)) — c2o(w2) — -+ - — Ao(@n)

— Q] 3y ... 1)) — ao(T2) — -+ — Qo(n)
as m — 00. Therefore the definition

Oélg(xl) if X € Xlo
01(1‘1 =

hl’Il* Oél()<t) if T, = .’]7){
t—a]

(2.11)

(2.12)

is correct, a;: X7 — R is CM function, oy = ay| X7, and, by (2.11),

Q1,22 ..., 7,) = pola1(x1) + o) + -+ + ano(xy))

holds for all z; € Xy, 2, € X§, k=2,...,n. The extension of ayy from X; to
Xk, k=2,...,n can be done similarly such that

Q(x1, g, ..., Tn) = @olar(z1) + -+ + an(zy))
should hold for all x, € Xy, £k =1,...,n. Finally, let
Eem(Xy)+- -+ an(X,)

be boundary point. Then £* is the maximum or the minimum of the function
(1, ..y ) —oq(Tr) + - Fan(zn), (T1,...,2,) eXl X «++ X X,,. Therefore
there is a unique point (z7,...,2%) € (Xj \Xo) - x (X, \ X7) such that

(z1,.
& =aoq(x}) +---+ an(x;; Let gp( ) =Q(a7, . .. x;) and (&) = ¢o(§) if
€€ (a1 (Xy)+ -+ an(X,))°. Thus, by Lemma 3,

(1 (X7) + -+ 4 on(Xn))® = o (X7) + - -+ + an (X))
= o(X7) + -+ + ano(X5).
Therefore g = p|ag(X7) + -+ + ano(X2). On the other hand
o(€") = mf{no(X) - +ano(X2)} or o€ = sup{ano(X)+- - +an(X3)
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hence ¢ is CM function and (¢, a4, ..., q,) is a generator of () on
Xi X x X,,.

3. MAIN RESULT

In this section we prove that local quasi-sums are also quasi-sums. To do this
we need a fitting result on quasi-sums. This says that, if a function is quasi-
sum on finitely many n-dimensional intervals fitting each other in a particular
way, then it is quasi-sum on the union of these intervals, too. Our basic tool is
the following lemma that is an easy consequence of Corollary 3 in Radé-Baker

[5].
Lemma 4. Let 1 < N be a fized integer, X, C R, k=1,..., N be intervals,
Ve X — R, k=1,....N and k: X1 X --- X Xy be CM functions. Then the
functional equation
(3.1) li(iﬁ + -+ .CEN) = ’71(331) + -+ ’YN(ZEN)
((xlw'wa)EXl Xoeee XXN)
holds if, and only if, there exist real numbers a # 0,by, ..., by such that
(@) =ar+b, (re Xy k=1,...,N)
and
kx)=ax+b+---+by (re€Xi+--+ Xn).

Now we are ready to prove the following

Lemma 5. Let R C R"™ be an n-dimensional interval and @Q: R — R be

quasi-sum on the n-dimensional interval X, x --- x X,, C R. Then, for each
f € Xlﬂ?k € Xka k= 17"'7”’) 5 7é T andp,qk € R? k= 17"'7”7 p 7é qi1,
there exists a unique generator (@, aq, ..., a,) of Q on Xy X ---x X, such that
(32) 041(5) =D and ak(nk) = Gk (k = 17 SR 7”)'

Proof. By definition, @ has a generator (¢, 51, ..., ,) on Xj X---x X,,. Define
the (n + 1)-tuple (¢, aq,...,a,) by

P— a1 B ,
51 — ) ) P+ (2 € X k=1,.m)

B Br(&) — Bi(m) v - _ P~
plz) = ( P—a ( ; (qk Bi(§) — 51(771)5k(nk))>)

ag(z) =

for z € oy (X7) X+ - X a0, (X,,). A simple calculation shows that (¢, aq, ..., ay)
is a generator of @) on X; X -+ x X, having property (3.2).
To prove the uniqueness suppose that (¢, aq,...,«,) and (x,07...,0,) are

two generators of () on X; X --- X X, so that the equalities
(3.3) ar(§) =01(§) =p and ap(m) =dk(m) =a (k=1,...,n)
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hold. Then
olag(xy) + -+ ap(x,)) = x(01(z1) + - -+ 0nl(xn)) (2 € Xp,k=1,...,n)
whence

X toplw+- - Fwy) =doaH(w)+ -+ hoat(wy)

follows for all wy € ax(Xg), (k= 1,...,n). With the notations n = N, k =
X towvw = dkoa;', (k = 1,...,n), this implies equation (3.1). Thus
Lemma 4 can be applied and we have the following connections between the
elements of the two generators:

k() = aap(x) +bp (v € Xg, k=1,...,n),

34

(34) o) =xlax+b+---+b,) (x€a(Xy)+ 4+ a(Xy))

with some real numbers a # 0,bq,...,b,. However, by (3.3), these numbers

can easily be determined and finally we get that a = 1,0, = --- = b, = 0.

Thus the proof is complete. O
An easy calculation shows that, if (¢, a1, ..., @,) is a generator of the quasi-

sum @ on X X --- x X, and the (n+ 1)-tuple (x,d;...,0,) is defined by (3.4)

with arbitrary real numbers 0 # a, by, ..., b,, then it is also a generator of @)

on X; X --- x X,,. Thus the generators can be “re-defined” if necessary. The
following lemma is an immediate consequence of the previous one.

Lemma 6. Let R C R"™ be an n-dimensional interval and @Q: R — R be
quasi-sum on the n-dimensional interval X, x --- x X,, C R. Suppose that
(p,a1,..., ) and (Y, By, ..., Bn) are two generators of Q on X; x -+- x X,
so that the equalities

a1(§) = Bu(§) and ar(m) = Brimk) (k=1,...,n)

hold for some & € X1 and nx € Xi, (k = 1,...,n), & # m. Then the two
generators coincide, that is, ay = [ on Xy, (k= 1,...,n) and ¢ = ¢ on
a1 (Xy) + -+ an(Xn).

In the following lemma we show how quasi-sums can be fitted.

Lemma 7. Let 1 < k < n be fized integer, R C R™ be n-dimensional interval
and Q): R — R be quasi-sum on the n-dimensional intervals

Xix- - xXpgx---xX, CR"
and also on X7 x --- x X} x --- x X, CR". Further, suppose that X; N X}

has inner point. Then Q is quasi-sum on X; X - X (X UX() x -+ x X,,, as
well.

Proof. It X, C X; or X C X}, then the statement is obvious. Suppose that
X ¢ X;and X & Xi. Let (p,aq, ..., a,) be a generator of Q on X x---x X,
and € € Xy,m; € X;, 1 € {1,...,n} \{k}, mx € X N X}, € # my. Since Q
is quasi-sum also on X; X --- X X} X --- x X, therefore, by Lemma 5, it
has a generator (¢, f1,...,0,) on X; x --- x X} x --- x X}, so that 3,(§) =
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ap(§) and  Br(nk) = ar(nk), (kK = 1,...,n). Obviously, @ is quasi-sum
also on X x -+ x (XN X}) x -+ x X,,. Thus, by Lemma 6, we obtain that

Bi(z) = ai(x) (x € X5, i € {1,...,n}\ {k}),
(3.5) Br(x) = ag(x) (x € XN X}) and
p(r) = ¢() (r € an(Xy) + -+ (X N XD) + - 4 an(Xa)).
Define the functions v;: X; = R (i € {1,...,n}\{k}), 1: Xx UX; — R and
Ia(Xy) + - 4 (o (Xg) Uag(X7)) 4+ -+ - + an(X,) — R by
vi(z) = a;(x) (xeX;, (ie{l,...,n}\{k})
ap(z) i e X,
(@) = {ﬂk((a:; it ze X
and
P(z) = {gp(x) %f rea(Xy)+ -+ ap(Xg) + -+ an(X)
Y(x) if zeo(Xy)+- -+ (X)) + -+ an(Xn).
Then it is obvious that ~; is CM function for all i € {1,...,n} \ {k}. Since

XN X is an interval of positive length, thus, by (3.5), o and f are strictly
monotonic in the same sense. Hence v; is CM function, too. If

€ (an(Xp)+- - Ao (Xp)+- - Ao (Xn)) N (Xi) + - Fap(Xp)+ - Ao (Xn))

then Lemma 1 and (3.5) imply that the definition of I' is correct and I is
C'M function. Finally, it is obvious that (I',yq,...,7,) is a generator of ) on
Xy XX (XpU X)) x - x X, O

We note that the lemma above can also be used repeatedly and for different
values of 1 £ k < n. The following result makes possible to restrict our
considerations to compact n-dimensional intervals.

Lemma 8. Let R C R be n-dimensional interval, X;; C R be interval for all

i =1,...,n and for every positive integer j, R; = X1, x---x X,; CR, R; C

Rj1 for every positive integer j and Ry = |J R;. Suppose that Q: R — R is
j=1

quasi-sum on R; for every positive integer j. Then Q) is quasi-sum also on Ry.

Proof. Let (p1,aq1,...,0,1) be a generator of () on Ry and
§€X117nk€Xk1a (k:1>"'7n)7 57&771

and if we have chosen a generator (¢;, o, ..., ;) of Q on R; for the positive
integer j then choose the generator (¢ji1,1j41,..., 00 41) of @ on R, so
that

arj11(§) = a(§) and  aiia(m) = () (i=1,...,n)
be fulfilled. This is possible by Lemma 5, and from Lemma 6 we get that

Qijp1(Ti) = agi(m) (v € Xy, (i=1,...,n))
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and
pir1(r) = pj(x) (z € arj(Xiz) + - + ani(Xnj))

for every positive integer j. This shows that the functions

oo
ai:Uaij (’L:].,,TL>
j=1

and ¢ = |J ¢; are well-defined, they are CM functions, and (¢, aq, ..., a,) is
j=1
a generator of () on Ry. U

Now we prove the main result of our paper.

Theorem 4. Let X; X ---x X,, be an n-dimensional interval and suppose that
Q: X; x---x X, — R s local quasi-sum on it. Then Q) is quasi-sum on
Xy X xX,.

Proof. By Lemma 8, it is enough to prove that () is quasi-sum on any compact
n-dimensional subinterval C' = [ay,b1] X -+ X [a,, b,] of X7 x --- x X,. For
this, let & € [ayn, b,] be fixed and

n—1
Cf = {(7717 cee 777n717€> : (7717' .- 777n*1) € Z§1[al7bl]}

Then C¢ C C'is compact. Since @ is local quasi-sum on C, for each point of C
there exists an n-dimensional interval, open in C', containing the point, and on
which @) is quasi-sum. On the other hand, the compactness of C¢ implies that
there are n-dimensional intervals ij X - X ng, (j =1,...,m) contained by
C, such that they are open in C, @) is quasi-sum on each of them, and

Ce C U(ij X -ee X Xflj).
j=1

Re = (ﬂij) X oo X (ﬂX§_1j> X ( X§j>.
j=1 j=1 j=1

Then C¢ C R C C is n-dimensional interval and it is open in C. Applying
Lemma 7 repeatedly we obtain that @) is quasi-sum on R.. Hence, because
of the compactness of C, there are numbers &;,...,&y € [an, b, such that

Let

s

M
C = U Re,;. Applying Lemma 7 again we get that @ is quasi-sum on C. [J
j=1

It is clear that the theorem above is a generalization of Theorem 1. Com-
bining this result and Theorem 3 we have the generalization of Theorem 2, as
well.
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Theorem 5. Let X; x ---x X,, be an n-dimensional interval and suppose that
the CM function Q: X1 X --- x X,, — R is local quasi-sum on the interior of
its domain. Then Q) is quasi-sum on X; X -+ X X,,.

4. AN APPLICATION

Now we prove the following theorem as an application of our results on
quasi-sums in several variables.

Theorem 6. Let 1 < N and 1 < M be fized integers, Uy, C R be intervals,
and

N N
g 3 Ui x 3 Uns =R, g U x oo x Une — R,
=1 =1
and
f:Vix.---xVy—R,
where Vo = go(Uygy ..., Uppe), (k=1,...,M, £ =1,...,N), be CM functions.
Suppose that

(4.1) g(u11+--~+u1N,...,uM1—|—~~~—|—uMN)

= f(gl(ully'"7U'M1)7"'agN(ule"'7uMN)>

holds for all upy € Uge, K = 1,..., M, £ = 1,...,N. Then there exist C M
functions

N
ac: ViR ({=1,...,N), ¢: > (Vi) = R,
=1

c € RM with coordinates different from zero and dy € R (£ =1,...,N) such
that

(4.2) g(u) = p((c,u) +dy + -+ - + dn) (ue ;(Ulg X e X UMg>)

ge(ug) = a7 ({c,ue) + do), (ug € Upyg X -+ X Uppgy £=1,...,N)
where {-,-) denotes the usual scalar product in RM and
f(l)l, R 7UN) = QO(O./l(Ul) + -+ O[N(UN» ((1)17 R ,UN) € ‘/1)(, e XVN) .

Proof. First we show that f is an N-variable quasi-sum. Since f is C'M
function, by Theorem b5, it is enough to prove that f is local quasi-sum on
VP x -+ x Vg. For this, let (aj,...,ay) € VP x -+ x V5. Then there
exist uy, € Ugy, (k=1,...,M, ¢ =1,...,N) and 0 < § € R such that
ap = go(uiy, ..., ul;,) (€=1,...,N) and, with the notations

IE :]UTZ_&UTZ—’_(SL (5: ]-a7N)
and

S:gl(h?u;l?"'vu?\/[l) Xoees XgN([N7u;N7"-7u*MN)7
we have that (a1,...,ay) € S CV? x -+ x V§.
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Now we prove that f is quasi-sum on S. Let t, € I, and uiy = tp, upe =

up,, (k=2,...,M, ¢=1,...,N). Then equation (4.1) implies that

gty + -+ tn,usy + o F UGNy Uy T UYN)

= flgi(tr,upy - U)o IN(ENS Uy, - Uy )

= f(hi(tr), ..., hn(tn))
where

hg(tg):gg(tg,uzg...,u*Mé), thIg, (521,...,]\[).

Thus
f(s1,-88) = g(h (s1) 4+ by (sn), usy - Usys - U+ o+ Uyy)

holds for all (s1,...,sn) € hi(I1) X -+- X hny(In) = S.
Applying Theorem 5 we have that f is quasi-sum on its domain Vi x - - - X Vi,
that is,

(4.3) flor,...,on) = @(aa(v1) + -+ an(vy))
((Ul,...,UN) € %X,...,XVN)

for some C'M functions ap: V; = R (£ =1...,N) and ¢: S0 ap(V;) — R.
Therefore equation (4.1) can be written as
glun + -+ urn, - upn + e+ upN)
= (p(ozl @) gl(un, R 7UM1) +---F+ayo gN(ulN, R ,UMN))
(upe € Uge, k=1,...,M, £=1,...,N) or shortly, with the notations
(44) ’7290_109’ ﬁg:agogg, UZ:(UIZV'WUMZ) (62177]\7)7
we have that

’Y(U1+"‘+UN) :ﬂl(ul)+"'+ﬁN(uN)

holds for all up € Uy X -+ X Uppe, (€ =1,...,N). The C'M solutions of this
equation can easily be obtained from Corollary 3 of [5], and we have that

Be(u) = (c,u) +dp (ug € Urg x -+ x Uppg, £=1,...,N)
and
N
’y(u) = <C,u>+d1+"’+d]v (UE ZUM X o X UM4>
=1
with some ¢ € RM and d; € R, ({ = 1,...,N). Taking into consideration
(4.4), this and (4.3) imply (4.2). O

An easy calculation shows that the converse statement of this theorem is
true, as well. That is, the functions g, g, and f defined by (4.2) with CM
functions ¢, ap and d; € R, (¢ =1,...,N) are CM solutions of (4.1).



QUASI-SUMS IN SEVERAL VARIABLES 205

5. FINAL REMARK

As we shall see in this section the problem of finding all C'M solutions of the
general aggregation equation (1.1) leads to equations (1.2) and (4.1). In ([3])
we have solved (1.2) by using two variable quasi-sums while equation (4.1)
can be solved by using several variable quasi-sums. In this section we give a
relatively short proof for the following theorem (see also [3]).

Theorem 7. Let 1 < n,1 < m be fized integers, X;; C R be intervals,
GZ'Z Xli Xoeee XXmi HR, Gl(Xlu7sz> :[i7 F} le Ko XXjn —>R,
Fi(Xj1,....,Xjn) = J;, Gi,F; be CM functions for i = 1,...,n and j =
L,....m, G: Jy x -+ xJ, =R F:I; x---x1I, - R and G, F be CM
functions, too. Suppose that equation (1.1)

G(Fl(l'n, e ,ZL’ln), ceey Fm(xmly ce ,xmn))
= F(G1($11, e ,l'ml), e ,Gn(l'ln, e ,xmn))

holds for all x;; € Xj;, 7 = 1,...,m and i = 1,...,n. Then there exist an
interval I C R and CM functions ¢: I — R, a;: I; = R, v;: J; — R and
Bji: Xji — R, 5=1,...,m,i=1,...,n such that

(51) F(Zb' s 7Zn) = 90_1 (ZO&Z(Z%)> ) (Zla cee 7Zn) € [1 X X I’rw
i=1

(52) G(ylv"wym):@il (Z%(%)) ) (y17"'aym)EJI X"'ij7
j=1

(5.3) Fy(zji, o wjn) =75 (Z@A@ﬁ) ’

and

(5.4) Gy Toi) = (Z ﬁﬂ(ﬂfﬂ)) ;

.IjiEin, j=1....m,1=1,...,n.

Proof. Part (A). First we prove the theorem for m = 2 by induction on n. In
this case equation (1.1) has the form
(5.5)

G(Fl(l'll, ce ,IL‘ln), FQ(iL‘Ql, . ,ZEQn)) = F(Gl(ﬂfll, ZL‘Ql), . ,Gn(Iln, IL‘Qn)),

and the statement of our theorem is true for n = 2 (see Theorem 1 in [3]).
Suppose that n > 2 and the statement is true for n — 1 instead of n. Fix
the variables x1,, z2, in (5.5). Then, by the induction hypothesis, we obtain
that (5.4) holds for m = 2 and for n — 1 instead of n with C'M functions
ai, Bis P2i, ©=1,...,n — 1. Next, fix the variables 11, 91 in (5.5) and apply
the induction hypothesis again. Thus we get (5.4) for m = 2 and also for i = n
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with C'M functions oy, Bin, f2n. Hence (5.4) holds for m = 2. Substitute this
form of G;, i =1,...,n into (5.5) we have that

(56) G(Fl(IH, e ,I’ln), FQ(Q?Ql, e ,ZL‘Qn))
= F(ar ' (Buen) + B (w21)), -5 o (Bin(21a) + ﬁzn(ﬂfzn))))

holds for all xj; € X, j=1,2, i=1,...,n. Let Uj;; = B;;(X;), j=1,2, i =
1,...,n. Then Uj is interval and for all uj; € Uj; there exists xj € Xﬂ such
that u;; = Bi(xj), 7=1,2, i=1,...,n. Thus (5.6) implies that
(5.7) G(Fi(Byy (un), - - By (win)), Fa(Bay' (uzn), - -, Ba (u2n)
= F(Oél_l(ull + ugl), e a,jl(uln + Ugn)).
With the definitions N = 2, M = n,
g(tl, e ,tM) = F(Oé_l(tl) e Oé]T/[l(tM)) (tz - UM + U2i>,
(5.8)  gi(uji, - uing) = Fi(B' (ujn), - .-, By (wing)) - (s € Uys),
f=F (=12 i=1,..., M)
equation (5.7) goes over into (4.1) and Theorem 6 can be applied. Thus we
have (4.2) and, by definitions (5.8) and by re-defining the generators (see the
remark after Lemma 4), we get (5.1)-(5.4) for m = 2.

Part (B). Now, for fixed n > 1 we continue the proof by induction on m.
The statement of our theorem is true for m = 2, as we have shown in Part
(A) of the proof. Suppose that m > 2 and the statement is true for m — 1
instead of m. First fix the variables ,1,...,Zm, in (1.1). Then, by the
induction hypothesis, we have (5.3) for j = 1,...,m — 1 with C'M functions
Y, Bji» J = 1,...,m =1, 4 =,...,n. Next, let z11,..., 21, be fixed in (1.1)
to obtain (5.3), by using the 1nduct10n hypothesm again, also for j = m with

CM functions 7y, Bmi, © = 1,...,n. Thus we have proved (5.3). Substitute
the known form of Fj, j=1,...,m into (1.1) to get

(5.9) GOy (Bulen) + -+ Bin(@1n)), - - Y (Bt (@m1) + -+ - + By (Tonn)))

= F(Gl(xlh s 7xm1)7 s 7Gn(x1n7 s 7xmn))
forall zj; € X;; 7=1,...,m, i=1,...,n. Let Uj;; = B;;(X;s), j =1,...,m,
1 =1,...,n. Then Uﬂ is 1nterval and for all uj; € Uj; there exists z;; € Xj;
such that uj; = Bji(zi), j=1,...,mi=1,...,n. Thus (5.9) implies that
(5.10) Gy (uar 4 -+ + uin), ... 7’77711(um1 e Umn))
= F(Gi(Br' (unn), -, Bt (W) -+, Go(B (i) -+, Bran ().
With the definitions N = n, M = m,
gltr, o otar) = GO (), - var (B)) - (85 € U + -+ + Uy,
(511) gi(uli7 sy U Gz(ﬁl_zl(UI’L)? - 76MZ(UM7,)) (ujz € U]z)
f=F (j=1,...,M, i=1,...,N)
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equation (5.10) goes over into (4.1) and Theorem 6 can be applied. Thus we
have (4.2) and, by definitions (5.11) and by re-defining the generators (see the
remark again after Lemma 4), we get (5.1)—(5.4). O

An easy calculation shows that the converse statement of this theorem is
true, as well. That is, the functions F,G, F}, G; defined by (5.1)-(5.4) with
CM functions ¢, a;,v; and §;; (1 =1,...,n, j=1,...,m) are CM solutions
of (1.1).
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