QUASI-SUMS IN SEVERAL VARIABLES

GYULA MAKSA AND ENIKŐ NIZSALÓCZKI

$$
\begin{aligned}
& \text { Abstract. In this note we introduce the notions of quasi-sums and of the } \\
& \text { local quasi-sums in several variables, respectively. We prove that the local } \\
& \text { quasi-sums are also quasi-sums. We show how this result can be applied to } \\
& \text { find the continuous solutions of the functional equation } \\
& \qquad g\left(u_{11}+\cdots+u_{1 N}, \ldots, u_{M 1}+\cdots+u_{M N}\right) \\
& \qquad=f\left(g_{1}\left(u_{11}, \ldots, u_{M 1}\right), \ldots, g_{N}\left(u_{1 N}, \ldots, u_{M N}\right)\right)
\end{aligned}
$$

that are strictly monotonic in each variable. Finally we give a proof of a known result on the aggregation equation shorter than that is given in [3].

1. Introduction

By an interval we mean a connected subset of \mathbb{R} (the reals) containing at least two different elements. For a fixed positive integer n, an n-dimensional interval is a set $X_{1} \times \cdots \times X_{n}$ where $X_{k} \subset \mathbb{R}$ is an interval $(k=1, \ldots, n)$. A $C M$ function is a continuous real-valued function defined on an n-dimensional interval and strictly monotonic in each variable. The notion of quasi-sum is the following. Let $n>1$ be a fixed integer, X_{1}, \ldots, X_{n} be intervals, and $X_{1} \times \cdots \times X_{n} \subset R \subset \mathbb{R}^{n}$ be an n-dimensional interval. A function $Q: R \rightarrow \mathbb{R}$ is quasi-sum on the n-dimensional interval $X_{1} \times \cdots \times X_{n}$ if there exist $C M$ functions

$$
\alpha_{k}: X_{k} \rightarrow \mathbb{R} \text { and } \varphi: \sum_{k=1}^{n} \alpha_{k}\left(X_{k}\right) \rightarrow \mathbb{R}
$$

such that

$$
Q\left(x_{1}, \ldots, x_{n}\right)=\varphi\left(\alpha_{1}\left(x_{1}\right)+\cdots+\alpha_{n}\left(x_{n}\right)\right) \quad\left(x_{k} \in X_{k}, k=1, \ldots, n\right) .
$$

The $(n+1)$-tuple $\left(\varphi, \alpha_{1}, \ldots, \alpha_{n}\right)$ is a generator of Q on $X_{1} \times \cdots \times X_{n}$. The function $Q: R \rightarrow \mathbb{R}$ is local quasi-sum on R if for each point $\left(x_{1}, \ldots, x_{n}\right)$ of

[^0]R there exists an open n-dimensional interval S containing $\left(x_{1}, \ldots, x_{n}\right)$ such that Q is quasi-sum on the n-dimensional interval $R \cap S$. Important examples for quasi-sums are associative $C M$ functions
$$
x \circ y=\phi^{-1}(\phi(x)+\phi(y))
$$
(Aczél [1]), quasi-arithmetic means
$$
Q\left(x_{1}, \ldots, x_{n}\right)=\varphi^{-1}\left(\frac{1}{n} \sum_{k=1}^{n} \varphi\left(x_{k}\right)\right) \quad\left(\left(x_{1}, \ldots, x_{n}\right) \in I^{n}\right)
$$
where $I \subset \mathbb{R}$ is an interval and $\varphi: I \rightarrow \mathbb{R}$ is continuous and strictly monotonic (see Hardy-Littlewood-Pólya [2]), and the $C M$ solutions of equation of aggregation
\[

$$
\begin{align*}
G\left(F_{1}\left(x_{11}, \ldots, x_{1 n}\right), \ldots,\right. & \left.F_{m}\left(x_{m 1}, \ldots, x_{m n}\right)\right) \tag{1.1}\\
& =F\left(G_{1}\left(x_{11}, \ldots, x_{m 1}\right), \ldots, G_{n}\left(x_{1 n}, \ldots, x_{m n}\right)\right)
\end{align*}
$$
\]

(see Maksa [3] and its references). In Maksa [4] we have proved the following two theorems.

Theorem 1. If $X \subset \mathbb{R}$ and $Y \subset \mathbb{R}$ are intervals and $Q: X \times Y \rightarrow \mathbb{R}$ is local quasi-sum on $X \times Y$ then Q is quasi-sum on $X \times Y$.

Theorem 2. If $X \subset \mathbb{R}$ and $Y \subset \mathbb{R}$ are intervals and the $C M$ function $Q: X \times$ $Y \rightarrow \mathbb{R}$ is local quasi-sum on $X^{\circ} \times Y^{\circ}$ then Q is quasi-sum on $X \times Y$. (Here X° and Y° denote the interior of X and Y, respectively.)

These results can be applied to find the $C M$ solutions of the generalized associativity equation

$$
F(G(x, y), z)=H(x, K(y, z))
$$

and of the generalized bisymmetry equation

$$
\begin{equation*}
G\left(F_{1}\left(x_{11}, x_{12}\right), F_{2}\left(x_{21}, x_{22}\right)\right)=F\left(G_{1}\left(x_{11}, x_{21}\right), G_{2}\left(x_{12}, x_{22}\right)\right) \tag{1.2}
\end{equation*}
$$

(see [4] and [3]). In this note we extend the results on two variable quasi-sums discussed in [4] to several variable quasi-sums and apply them to find the $C M$ solutions of the particular aggregation equation

$$
\begin{align*}
g\left(u_{11}+\cdots+u_{1 N}, \ldots,\right. & \left.u_{M 1}+\cdots+u_{M N}\right) \tag{1.3}\\
& =f\left(g_{1}\left(u_{11}, \ldots, u_{M 1}\right), \ldots, g_{N}\left(u_{1 N}, \ldots, u_{M N}\right)\right)
\end{align*}
$$

Having this result and the results on equation (1.2) (see [3]), we present a way to find the $C M$ solutions of the general equation (1.1) of aggregation, shorter than that is given in [3]. On the other hand, we hope that the quasisum method, developed in this paper, can help to find the $C M$ solutions of other associative type or bisymmetry type functional equations, too.

2. Some basic properties of $C M$ functions

Throughout the paper n denotes a fixed integer greater then one. We begin with three lemmata.

Lemma 1. Let $1 \leq k \leq n$ be a fixed integer, $X_{1}, \ldots, X_{n}, X_{k}^{*} \subset \mathbb{R}$ be intervals such that $X_{k} \cap X_{k}^{*} \neq \emptyset$. Let further $\alpha_{i}: X_{i} \rightarrow \mathbb{R}, 1 \leq i \leq n, i \neq k$ and $\alpha_{k}: X_{k} \cup X_{k}^{*} \rightarrow \mathbb{R}$ be CM functions. Then

$$
\begin{align*}
& \alpha_{1}\left(X_{1}\right)+\cdots+\alpha_{k}\left(X_{k} \cap X_{k}^{*}\right)+\cdots+\alpha_{n}\left(X_{n}\right) \tag{2.1}\\
& =\left(\alpha_{1}\left(X_{1}\right)+\cdots+\alpha_{k}\left(X_{k}\right)+\cdots+\alpha_{n}\left(X_{n}\right)\right) \\
& \quad \cap\left(\alpha_{1}\left(X_{1}\right)+\cdots+\alpha_{k}\left(X_{k}^{*}\right)+\cdots+\alpha_{n}\left(X_{n}\right)\right) .
\end{align*}
$$

Proof. It is clear that the set on the left-hand side is a subset of the set on the right-hand side. Thus we only prove the reverse inclusion. Suppose that ξ is an element of the set of the right-hand side of (2.1). Then
(2.2) $\xi=\alpha_{1}\left(\xi_{1}\right)+\cdots+\alpha_{k}\left(\xi_{k}\right)+\cdots+\alpha_{n}\left(\xi_{n}\right)=\alpha_{1}\left(\eta_{1}\right)+\cdots+\alpha_{k}\left(\eta_{k}\right)+\cdots+\alpha_{n}\left(\eta_{n}\right)$
holds for some $\xi_{i}, \eta_{i} \in X_{i}, i \in\{1, \ldots, n\} \backslash\{k\}$ and $\xi_{k} \in X_{k}, \eta_{k} \in X_{k}^{*}$. If $\xi_{k} \in X_{k} \cap X_{k}^{*}$ or $\eta_{k} \in X_{k} \cap X_{k}^{*}$ then there is nothing to prove. Suppose that $\xi_{k} \in X_{k} \backslash X_{k}^{*}$ and $\eta_{k} \in X_{k}^{*} \backslash X_{k}$. Let furthermore ω_{k} be a fixed element of $X_{k} \cap X_{k}^{*}$. Since α_{k} is strictly monotonic the value $\alpha_{k}\left(\omega_{k}\right)$ lies between $\alpha_{k}\left(\xi_{k}\right)$ and $\alpha_{k}\left(\eta_{k}\right)$. Thus

$$
\begin{equation*}
\alpha_{k}\left(\omega_{k}\right)=\lambda \alpha_{k}\left(\xi_{k}\right)+(1-\lambda) \alpha_{k}\left(\eta_{k}\right) \tag{2.3}
\end{equation*}
$$

for some $0<\lambda<1$. On the other hand the numbers $\lambda \alpha_{i}\left(\xi_{i}\right)+(1-\lambda) \alpha_{i}\left(\eta_{i}\right), i=$ $1, \ldots, n, i \neq k$ lie between $\alpha_{i}\left(\xi_{i}\right)$ and $\alpha_{i}\left(\eta_{i}\right)$ for all $1 \leq i \leq n, i \neq k$. Thus there are $\omega_{i} \in X_{i}, i=1, \ldots, n, i \neq k$ such that

$$
\begin{equation*}
\alpha_{i}\left(\omega_{i}\right)=\lambda \alpha_{i}\left(\xi_{i}\right)+(1-\lambda) \alpha_{i}\left(\eta_{i}\right) \tag{2.4}
\end{equation*}
$$

for some $\omega_{i} \in X_{i}, i=1, \ldots, n, i \neq k$. Therefore equations (2.2), (2.4), and (2.3) imply that

$$
\begin{aligned}
\xi & =\lambda \xi+(1-\lambda) \xi \\
& =\lambda\left(\alpha_{1}\left(\xi_{1}\right)+\cdots+\alpha_{n}\left(\xi_{n}\right)\right)+(1-\lambda)\left(\alpha_{1}\left(\eta_{1}\right)+\cdots+\alpha_{n}\left(\eta_{n}\right)\right) \\
& =\lambda \alpha_{1}\left(\xi_{1}\right)+(1-\lambda) \alpha_{1}\left(\eta_{1}\right)+\cdots+\lambda \alpha_{n}\left(\xi_{n}\right)+(1-\lambda) \alpha_{n}\left(\eta_{n}\right) \\
& =\alpha_{1}\left(\omega_{1}\right)+\cdots+\alpha_{n}\left(\omega_{n}\right) .
\end{aligned}
$$

Hence

$$
\xi \in \alpha_{1}\left(X_{1}\right)+\cdots+\alpha_{k}\left(X_{k} \cap X_{k}^{*}\right)+\cdots+\alpha_{n}\left(X_{n}\right) .
$$

In this section, we use the following property of $C M$ functions frequently, mostly without explicit references.

Lemma 2. Let $Q: X_{1} \times \cdots \times X_{n} \rightarrow \mathbb{R}$ be a $C M$ function and $k \in\{1, \ldots, n\}$ be a fixed integer. If Q is strictly increasing (resp. strictly decreasing) in each variable but the $k^{\text {th }}$ one for some $x_{i} \in X_{i}, i \in\{1, \ldots, n\} \backslash\{k\}$ then Q has the same property for any $x_{i} \in X_{i}, i \in\{1, \ldots, n\} \backslash\{k\}$, too.

Proof. Suppose that, for example, $Q\left(x_{1}, \ldots, x_{k-1}, \xi_{k}, x_{k+1} \ldots, x_{n}\right)$ strictly increasing while $Q\left(x_{1}, \ldots, x_{k-1}, \xi_{k}^{\prime}, x_{k+1} \ldots, x_{n}\right)$ is strictly decreasing in the variables $x_{i}, i \in\{1, \ldots, n\} \backslash\{k\}$ for some fixed $\xi_{k}, \xi_{k}^{\prime} \in X_{k}$. Let $x_{i}, x_{i}^{\prime} \in X_{i}, x_{i}<$ $x_{i}^{\prime}, i \in\{1, \ldots, n\} \backslash\{k\}$. Then

$$
Q\left(x_{1}, \ldots, x_{k-1}, \xi_{k}, x_{k+1} \ldots, x_{n}\right)-Q\left(x_{1}^{\prime}, \ldots, x_{k-1}^{\prime}, \xi_{k}, x_{k+1}^{\prime} \ldots, x_{n}^{\prime}\right)<0
$$

and

$$
Q\left(x_{1}, \ldots, x_{k-1}, \xi_{k}^{\prime}, x_{k+1} \ldots, x_{n}\right)-Q\left(x_{1}^{\prime}, \ldots, x_{k-1}^{\prime}, \xi_{k}^{\prime}, x_{k+1}^{\prime} \ldots, x_{n}^{\prime}\right)>0
$$

Therefore, because of the continuity,

$$
Q\left(x_{1}, \ldots, x_{k-1}, \eta_{k}, x_{k+1} \ldots, x_{n}\right)-Q\left(x_{1}^{\prime}, \ldots, x_{k-1}^{\prime}, \eta_{k}, x_{k+1}^{\prime} \ldots, x_{n}^{\prime}\right)=0
$$

for some η_{k} lying between ξ_{k} and ξ_{k}^{\prime}. This contradicts to the strict monotonicity. The other statements of the lemma can be proved similarly.

In the following (as before in Theorem 2) we denote the set of all inner points of $A \subseteq \mathbb{R}$ by A°.

Lemma 3. Let $Q: X_{1} \times \cdots \times X_{n} \rightarrow \mathbb{R}$ be a $C M$ function. Then

$$
\begin{aligned}
Q\left(X_{1}, X_{2}^{\circ}, \ldots, X_{n}^{\circ}\right) & =Q\left(X_{1}^{\circ}, X_{2}, X_{3}^{\circ}, \ldots, X_{n}^{\circ}\right)=\cdots=Q\left(X_{1}^{\circ}, \ldots, X_{n-1}^{\circ}, X_{n}\right) \\
& =Q\left(X_{1}^{\circ}, X_{2}^{\circ}, \ldots, X_{n}^{\circ}\right)=Q\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{\circ} .
\end{aligned}
$$

Proof. Suppose that Q is strictly increasing in each variable. This can be done without loss of generality. Indeed, if Q were strictly decreasing in its first variable and strictly increasing in the others (say) then we would consider the function Q_{1} defined by

$$
Q_{1}\left(x_{1}, \ldots, x_{n}\right)=Q\left(-x_{1}, \ldots, x_{n}\right) \quad\left(\left(x_{1}, \ldots, x_{n}\right) \in\left(-X_{1}, \ldots, X_{n}\right)\right)
$$

instead of Q. (See also Lemma 2.) First we prove that

$$
\begin{equation*}
Q\left(X_{1}, X_{2}^{\circ}, \ldots, X_{n}^{\circ}\right) \subset Q\left(X_{1}^{\circ}, X_{2}^{\circ}, \ldots, X_{n}^{\circ}\right) \tag{2.5}
\end{equation*}
$$

Let $\left(x, y_{2}, \ldots, y_{n}\right) \in X_{1} \times X_{2}^{\circ} \times, \ldots, \times X_{n}^{\circ}$. If $x \in X_{1}^{\circ}$ then obviously

$$
Q\left(x, y_{2}, \ldots, y_{n}\right) \in Q\left(X_{1}^{\circ}, X_{2}^{\circ}, \ldots, X_{n}^{\circ}\right) .
$$

If $x \in X_{1} \backslash X_{1}^{\circ}$ then first suppose that $x \in \min X_{1}$. In this case choose an element $\left(y_{2}^{\prime}, \ldots, y_{n}^{\prime}\right) \in X_{2}^{\circ} \times \ldots, \times X_{n}^{\circ}$ so that $y_{i}^{\prime}<y_{i}, i=2, \ldots, n$ and let $\varepsilon=Q\left(x, y_{2}, \ldots, y_{n}\right)-Q\left(x, y_{2}^{\prime}, \ldots, y_{n}^{\prime}\right)$. Then $\varepsilon>0$ and, because of the continuity of Q, there exists $\left(x_{1}, y_{2}, \ldots, y_{n}\right) \in X_{1}^{\circ} \times X_{2}^{\circ} \times \cdots \times X_{n}^{\circ}$ such that

$$
Q\left(x_{1}, y_{2}, \ldots, y_{n}\right)-Q\left(x, y_{2}, \ldots, y_{n}\right)<\varepsilon=Q\left(x, y_{2}, \ldots, y_{n}\right)-Q\left(x, y_{2}^{\prime}, \ldots, y_{n}^{\prime}\right)
$$

whence

$$
\begin{equation*}
\frac{Q\left(x_{1}, y_{2}, \ldots, y_{n}\right)+Q\left(x, y_{2}^{\prime}, \ldots, y_{n}^{\prime}\right)}{2}<Q\left(x, y_{2}, \ldots, y_{n}\right) \tag{2.6}
\end{equation*}
$$

follows. Define the function q on $[0,1]$ by

$$
q(t)=Q\left((1-t) x+t x_{1},(1-t) y_{2}+t y_{2}^{\prime}, \ldots,(1-t) y_{n}+t y_{n}^{\prime}\right) .
$$

Then $q:[0,1] \rightarrow \mathbb{R}$ is continuous. Thus, for some $t_{0} \in[0,1]$, we get that

$$
\begin{equation*}
q\left(t_{0}\right)=\frac{q(0)+q(1)}{2}=\frac{Q\left(x, y_{2}, \ldots, y_{n}\right)+Q\left(x_{1}, y_{2}^{\prime}, \ldots, y_{n}^{\prime}\right)}{2} . \tag{2.7}
\end{equation*}
$$

If $t_{0} \in\{0,1\}$ then $q(0)=q(1)$. Thus, by (2.6),

$$
Q\left(x_{1}, y_{2}, \ldots, y_{n}\right)<Q\left(x, y_{2}, \ldots, y_{n}\right)
$$

However this is impossible, since $x=\min X_{1}$ and Q is strictly increasing in each variable. Hence $\left.t_{0} \in\right] 0,1[$ therefore
$\left(\left(1-t_{0}\right) x+t_{0} x_{1},\left(1-t_{0}\right) y_{2}+t_{0} y_{2}^{\prime}, \ldots,\left(1-t_{0}\right) y_{n}+t_{0} y_{n}^{\prime}\right) \in X_{1}^{\circ} \times X_{2}^{\circ} \times, \ldots, \times X_{n}^{\circ}$ and, by (2.6) and (2.7),
$Q\left(\left(1-t_{0}\right) x+t_{0} x_{1},\left(1-t_{0}\right) y_{2}+t_{0} y_{2}^{\prime}, \ldots,\left(1-t_{0}\right) y_{n}+t_{0} y_{n}^{\prime}\right)<Q\left(x, y_{2}, \ldots, y_{n}\right)$.
On the other hand $Q\left(x, y_{2}, \ldots, y_{n}\right)<Q\left(x_{2}, y_{2}, \ldots, y_{n}\right)$ if $x<x_{2}, x_{2} \in X_{1}^{\circ}$. Thus $Q\left(x, y_{2}, \ldots, y_{n}\right)$ is an intermediate value of Q on $X_{1}^{\circ} \times X_{2}^{\circ} \times \ldots, \times X_{n}^{\circ}$. Therefore $Q\left(x, y_{2}, \ldots, y_{n}\right) \in Q\left(X_{1}^{\circ}, X_{2}, X_{3}^{\circ}, \ldots, X_{n}^{\circ}\right)$ which implies (2.5), in case $x=\min X_{1}$. The case $x=\max X_{1}$ can be handled similarly. Since the inclusion $Q\left(X_{1}^{\circ}, X_{2}^{\circ}, \ldots, X_{n}^{\circ}\right) \subset Q\left(X_{1}, X_{2}^{\circ}, \ldots, X_{n}^{\circ}\right)$ is obvious, we get that

$$
\begin{equation*}
Q\left(X_{1}, X_{2}^{\circ}, \ldots, X_{n}^{\circ}\right)=Q\left(X_{1}^{\circ}, X_{2}^{\circ}, \ldots, X_{n}^{\circ}\right) \tag{2.8}
\end{equation*}
$$

Interchanging the role of the variables we have that

$$
\begin{align*}
Q\left(X_{1}, X_{2}^{\circ}, \ldots, X_{n}^{\circ}\right) & =Q\left(X_{1}^{\circ}, X_{2}, X_{3}^{\circ}, \ldots, X_{n}^{\circ}\right)=\ldots \\
& =Q\left(X_{1}^{\circ}, \ldots, X_{n-1}^{\circ}, X_{n}\right) \tag{2.9}\\
& =Q\left(X_{1}^{\circ}, X_{2}^{\circ}, \ldots, X_{n}^{\circ}\right) .
\end{align*}
$$

It remains only to prove that

$$
\begin{equation*}
Q\left(X_{1}^{\circ}, X_{2}^{\circ}, \ldots, X_{n}^{\circ}\right)=Q\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{\circ} \tag{2.10}
\end{equation*}
$$

The inclusion $Q\left(X_{1}^{\circ}, X_{2}^{\circ}, \ldots, X_{n}^{\circ}\right) \subset Q\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{\circ}$ is obvious. For the proof of the reverse inclusion let $z \in Q\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{\circ}$. Thus

$$
z=Q\left(x_{1}, \ldots, x_{n}\right)
$$

for some $\left(x_{1}, \ldots, x_{n}\right) \in\left(X_{1} \times \cdots \times X_{n}\right)$. If $x_{k} \in X_{k}^{\circ}$ for some $1 \leq k \leq n$ then, by (2.8)-(2.9), $z \in Q\left(X_{1}^{\circ}, X_{2}^{\circ}, \ldots, X_{n}^{\circ}\right)$. In the opposite case we have that x_{k} is boundary point of X_{k} for all $1 \leq k \leq n$. However neither $x_{k}=\min X_{k}$ for all $1 \leq k \leq n$ nor $x_{k}=\max X_{k}$ for all $1 \leq k \leq n$ are valid. (Otherwise $z \notin Q\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{\circ}$ would follow.) Therefore z is an intermediate value of Q on $X_{1}^{\circ} \times X_{2}^{\circ} \times \ldots, \times X_{n}^{\circ}$. Thus (2.10) is proved.

Finally, in this section, we prove an extension theorem which says that, if a $C M$ function is quasi-sum on the interior of its domain then it is quasi-sum on its entire domain, as well.
Theorem 3. Let the $C M$ function $Q: X_{1} \times \cdots \times X_{n} \rightarrow \mathbb{R}$ be quasi-sum on $X_{1}^{\circ} \times \cdots \times X_{n}^{\circ}$ with generator $\left(\varphi_{0}, \alpha_{10}, \ldots, \alpha_{n 0}\right)$. Then Q is quasi-sum on its domain. Moreover Q has a generator $\left(\varphi, \alpha_{1}, \ldots, \alpha_{n}\right)$ so that

$$
\alpha_{k 0}=\alpha_{k} \mid X_{k}^{\circ}, 1 \leq k \leq n
$$

and

$$
\varphi_{0}=\varphi \mid \alpha_{10}\left(X_{1}^{\circ}\right)+\cdots+\alpha_{n 0}\left(X_{n}^{\circ}\right) .
$$

Proof. First we prove that, if $x_{1}^{*} \in X_{1} \backslash X_{1}^{\circ}$ then α_{10} has finite limit at x_{1}^{*}. Indeed, let $\left(y_{m}\right)$ be a sequence in X_{1}° that converges to x_{1}^{*}. Let further $x_{k} \in$ $X_{k}^{\circ}, 2 \leq k \leq n$ be arbitrary. By Lemma 3,

$$
Q\left(x_{1}^{*}, x_{2}, \ldots, x_{n}\right) \in Q\left(X_{1}^{\circ}, X_{2}^{\circ}, \ldots, X_{n}^{\circ}\right) .
$$

On the other hand $\varphi_{0}^{-1}: Q\left(X_{1}^{\circ}, X_{2}^{\circ}, \ldots, X_{n}^{\circ}\right) \rightarrow \mathbb{R}$ and Q are continuous functions. Thus

$$
\begin{align*}
\alpha_{10}\left(y_{m}\right) & =\varphi_{0}^{-1}\left(Q\left(y_{m}, x_{2}, \ldots, x_{n}\right)\right)-\alpha_{20}\left(x_{2}\right)-\cdots-\alpha_{n 0}\left(x_{n}\right) \tag{2.11}\\
& \rightarrow \varphi_{0}^{-1}\left(Q\left(x_{1}^{*}, x_{2}, \ldots, x_{n}\right)\right)-\alpha_{20}\left(x_{2}\right)-\cdots-\alpha_{n 0}\left(x_{n}\right)
\end{align*}
$$

as $m \rightarrow \infty$. Therefore the definition

$$
\alpha_{1}\left(x_{1}\right)=\left\{\begin{array}{lll}
\alpha_{10}\left(x_{1}\right) & \text { if } x_{1} \in X_{1}^{\circ} \tag{2.12}\\
\lim _{t \rightarrow x_{1}^{*}} \alpha_{10}(t) & \text { if } & x_{1}=x_{1}^{*}
\end{array}\right.
$$

is correct, $\alpha_{1}: X_{1} \rightarrow \mathbb{R}$ is $C M$ function, $\alpha_{10}=\alpha_{1} \mid X_{1}^{\circ}$, and, by (2.11),

$$
Q\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\varphi_{0}\left(\alpha_{1}\left(x_{1}\right)+\alpha_{20}\left(x_{2}\right)+\cdots+\alpha_{n 0}\left(x_{n}\right)\right)
$$

holds for all $x_{1} \in X_{1}, x_{k} \in X_{0}^{\circ}, k=2, \ldots, n$. The extension of $\alpha_{k 0}$ from X_{k}° to $X_{k}, k=2, \ldots, n$ can be done similarly such that

$$
Q\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\varphi_{0}\left(\alpha_{1}\left(x_{1}\right)+\cdots+\alpha_{n}\left(x_{n}\right)\right)
$$

should hold for all $x_{k} \in X_{k}, k=1, \ldots, n$. Finally, let

$$
\xi^{*} \in \alpha_{1}\left(X_{1}\right)+\cdots+\alpha_{n}\left(X_{n}\right)
$$

be boundary point. Then ξ^{*} is the maximum or the minimum of the function $\left(x_{1}, \ldots, x_{n}\right) \mapsto \alpha_{1}\left(x_{1}\right)+\cdots+\alpha_{n}\left(x_{n}\right),\left(x_{1}, \ldots, x_{n}\right) \in X_{1} \times \cdots \times X_{n}$. Therefore there is a unique point $\left(x_{1}^{*}, \ldots, x_{n}^{*}\right) \in\left(X_{1} \backslash X_{1}^{\circ}\right) \times \cdots \times\left(X_{n} \backslash X_{n}^{\circ}\right)$ such that $\xi^{*}=\alpha_{1}\left(x_{1}^{*}\right)+\cdots+\alpha_{n}\left(x_{n}^{*}\right)$. Let $\varphi\left(\xi^{*}\right)=Q\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)$ and $\varphi(\xi)=\varphi_{0}(\xi)$ if $\xi \in\left(\alpha_{1}\left(X_{1}\right)+\cdots+\alpha_{n}\left(X_{n}\right)\right)^{\circ}$. Thus, by Lemma 3,

$$
\begin{aligned}
\left(\alpha_{1}\left(X_{1}\right)+\cdots+\alpha_{n}\left(X_{n}\right)\right)^{\circ} & =\alpha_{1}\left(X_{1}^{\circ}\right)+\cdots+\alpha_{n}\left(X_{n}^{\circ}\right) \\
& =\alpha_{10}\left(X_{1}^{\circ}\right)+\cdots+\alpha_{n 0}\left(X_{n}^{\circ}\right) .
\end{aligned}
$$

Therefore $\varphi_{0}=\varphi \mid \alpha_{10}\left(X_{1}^{\circ}\right)+\cdots+\alpha_{n 0}\left(X_{n}^{\circ}\right)$. On the other hand $\varphi\left(\xi^{*}\right)=\inf \left\{\alpha_{10}\left(X_{1}^{\circ}\right)+\cdots+\alpha_{n 0}\left(X_{n}^{\circ}\right)\right\}$ or $\varphi\left(\xi^{*}\right)=\sup \left\{\alpha_{10}\left(X_{1}^{\circ}\right)+\cdots+\alpha_{n 0}\left(X_{n}^{\circ}\right)\right\}$
hence φ is $C M$ function and $\left(\varphi, \alpha_{1}, \ldots, \alpha_{n}\right)$ is a generator of Q on

$$
X_{1} \times \cdots \times X_{n}
$$

3. Main result

In this section we prove that local quasi-sums are also quasi-sums. To do this we need a fitting result on quasi-sums. This says that, if a function is quasisum on finitely many n-dimensional intervals fitting each other in a particular way, then it is quasi-sum on the union of these intervals, too. Our basic tool is the following lemma that is an easy consequence of Corollary 3 in Radó-Baker [5].
Lemma 4. Let $1<N$ be a fixed integer, $X_{k} \subset \mathbb{R}, k=1, \ldots, N$ be intervals, $\gamma_{k}: X_{k} \rightarrow \mathbb{R}, k=1, \ldots, N$ and $\kappa: X_{1} \times \cdots \times X_{N}$ be $C M$ functions. Then the functional equation

$$
\begin{array}{r}
\kappa\left(x_{1}+\cdots+x_{N}\right)=\gamma_{1}\left(x_{1}\right)+\cdots+\gamma_{N}\left(x_{N}\right) \tag{3.1}\\
\quad\left(\left(x_{1}, \ldots, x_{N}\right) \in X_{1} \times \cdots \times X_{N}\right)
\end{array}
$$

holds if, and only if, there exist real numbers $a \neq 0, b_{1}, \ldots, b_{N}$ such that

$$
\gamma_{k}(x)=a x+b_{k} \quad\left(x \in X_{k}, k=1, \ldots, N\right)
$$

and

$$
\kappa(x)=a x+b_{1}+\cdots+b_{N} \quad\left(x \in X_{1}+\cdots+X_{N}\right) .
$$

Now we are ready to prove the following
Lemma 5. Let $R \subset \mathbb{R}^{n}$ be an n-dimensional interval and $Q: R \rightarrow \mathbb{R}$ be quasi-sum on the n-dimensional interval $X_{1} \times \cdots \times X_{n} \subset R$. Then, for each $\xi \in X_{1}, \eta_{k} \in X_{k}, k=1, \ldots, n, \xi \neq \eta_{1}$ and $p, q_{k} \in \mathbb{R}, k=1, \ldots, n, p \neq q_{1}$, there exists a unique generator $\left(\varphi, \alpha_{1}, \ldots, \alpha_{n}\right)$ of Q on $X_{1} \times \cdots \times X_{n}$ such that

$$
\begin{equation*}
\alpha_{1}(\xi)=p \quad \text { and } \quad \alpha_{k}\left(\eta_{k}\right)=q_{k} \quad(k=1, \ldots, n) . \tag{3.2}
\end{equation*}
$$

Proof. By definition, Q has a generator $\left(\psi, \beta_{1}, \ldots, \beta_{n}\right)$ on $X_{1} \times \cdots \times X_{n}$. Define the $(n+1)$-tuple $\left(\varphi, \alpha_{1}, \ldots, \alpha_{n}\right)$ by

$$
\begin{aligned}
\alpha_{k}(x) & =\frac{p-q_{1}}{\beta_{1}(\xi)-\beta_{1}\left(\eta_{1}\right)}\left(\beta_{k}(x)-\beta_{k}\left(\eta_{k}\right)\right)+q_{k} \quad\left(x \in X_{k}, k=1, \ldots, n\right) \\
\varphi(x) & =\psi\left(\frac{\beta_{1}(\xi)-\beta_{1}\left(\eta_{1}\right)}{p-q_{1}}\left(x-\sum_{k=1}^{n}\left(q_{k}-\frac{p-q_{1}}{\beta_{1}(\xi)-\beta_{1}\left(\eta_{1}\right)} \beta_{k}\left(\eta_{k}\right)\right)\right)\right)
\end{aligned}
$$

for $x \in \alpha_{1}\left(X_{1}\right) \times \cdots \times \alpha_{n}\left(X_{n}\right)$. A simple calculation shows that $\left(\varphi, \alpha_{1}, \ldots, \alpha_{n}\right)$ is a generator of Q on $X_{1} \times \cdots \times X_{n}$ having property (3.2).

To prove the uniqueness suppose that $\left(\varphi, \alpha_{1}, \ldots, \alpha_{n}\right)$ and $\left(\chi, \delta_{1} \ldots, \delta_{n}\right)$ are two generators of Q on $X_{1} \times \cdots \times X_{n}$ so that the equalities

$$
\begin{equation*}
\alpha_{1}(\xi)=\delta_{1}(\xi)=p \quad \text { and } \quad \alpha_{k}\left(\eta_{k}\right)=\delta_{k}\left(\eta_{k}\right)=q_{k} \quad(k=1, \ldots, n) \tag{3.3}
\end{equation*}
$$

hold. Then

$$
\varphi\left(\alpha_{1}\left(x_{1}\right)+\cdots+\alpha_{n}\left(x_{n}\right)\right)=\chi\left(\delta_{1}\left(x_{1}\right)+\cdots+\delta_{n}\left(x_{n}\right)\right) \quad\left(x_{k} \in X_{k}, k=1, \ldots, n\right)
$$

whence

$$
\chi^{-1} \circ \varphi\left(\omega_{1}+\cdots+\omega_{n}\right)=\delta_{1} \circ \alpha^{-1}\left(\omega_{1}\right)+\cdots+\delta_{n} \circ \alpha^{-1}\left(\omega_{n}\right)
$$

follows for all $\omega_{k} \in \alpha_{k}\left(X_{k}\right),(k=1, \ldots, n)$. With the notations $n=N, \kappa=$ $\chi^{-1} \circ \varphi, \gamma_{k}=\delta_{k} \circ \alpha_{k}^{-1},(k=1, \ldots, n)$, this implies equation (3.1). Thus Lemma 4 can be applied and we have the following connections between the elements of the two generators:

$$
\begin{align*}
\delta_{k}(x) & =a \alpha_{k}(x)+b_{k} \quad\left(x \in X_{k}, \quad k=1, \ldots, n\right), \\
\varphi(x) & =\chi\left(a x+b_{1}+\cdots+b_{n}\right) \quad\left(x \in \alpha_{1}\left(X_{1}\right)+\cdots+\alpha_{n}\left(X_{n}\right)\right) \tag{3.4}
\end{align*}
$$

with some real numbers $a \neq 0, b_{1}, \ldots, b_{n}$. However, by (3.3), these numbers can easily be determined and finally we get that $a=1, b_{1}=\cdots=b_{n}=0$. Thus the proof is complete.

An easy calculation shows that, if $\left(\varphi, \alpha_{1}, \ldots, \alpha_{n}\right)$ is a generator of the quasisum Q on $X_{1} \times \cdots \times X_{n}$ and the $(n+1)$-tuple ($\chi, \delta_{1} \ldots, \delta_{n}$) is defined by (3.4) with arbitrary real numbers $0 \neq a, b_{1}, \ldots, b_{n}$, then it is also a generator of Q on $X_{1} \times \cdots \times X_{n}$. Thus the generators can be "re-defined" if necessary. The following lemma is an immediate consequence of the previous one.
Lemma 6. Let $R \subset \mathbb{R}^{n}$ be an n-dimensional interval and $Q: R \rightarrow \mathbb{R}$ be quasi-sum on the n-dimensional interval $X_{1} \times \cdots \times X_{n} \subset R$. Suppose that $\left(\varphi, \alpha_{1}, \ldots, \alpha_{n}\right)$ and $\left(\psi, \beta_{1}, \ldots, \beta_{n}\right)$ are two generators of Q on $X_{1} \times \cdots \times X_{n}$ so that the equalities

$$
\alpha_{1}(\xi)=\beta_{1}(\xi) \quad \text { and } \quad \alpha_{k}\left(\eta_{k}\right)=\beta_{k}\left(\eta_{k}\right) \quad(k=1, \ldots, n)
$$

hold for some $\xi \in X_{1}$ and $\eta_{k} \in X_{k},(k=1, \ldots, n), \xi \neq \eta_{1}$. Then the two generators coincide, that is, $\alpha_{k}=\beta_{k}$ on $X_{k},(k=1, \ldots, n)$ and $\varphi=\psi$ on $\alpha_{1}\left(X_{1}\right)+\cdots+\alpha_{n}\left(X_{n}\right)$.

In the following lemma we show how quasi-sums can be fitted.
Lemma 7. Let $1 \leqq k \leqq n$ be fixed integer, $R \subseteq \mathbb{R}^{n}$ be n-dimensional interval and $Q: R \rightarrow \mathbb{R}$ be quasi-sum on the n-dimensional intervals

$$
X_{1} \times \cdots \times X_{k} \times \cdots \times X_{n} \subseteq \mathbb{R}^{n}
$$

and also on $X_{1} \times \cdots \times X_{k}^{*} \times \cdots \times X_{n} \subseteq \mathbb{R}^{n}$. Further, suppose that $X_{k} \cap X_{k}^{*}$ has inner point. Then Q is quasi-sum on $X_{1} \times \cdots \times\left(X_{k} \cup X_{k}^{*}\right) \times \cdots \times X_{n}$, as well.

Proof. If $X_{k} \subset X_{k}^{*}$ or $X_{k}^{*} \subset X_{k}$ then the statement is obvious. Suppose that $X_{k} \not \subset X_{k}^{*}$ and $X_{k}^{*} \not \subset X_{k}$. Let $\left(\varphi, \alpha_{1}, \ldots, \alpha_{n}\right)$ be a generator of Q on $X_{1} \times \cdots \times X_{n}$ and $\xi \in X_{1}, \eta_{i} \in X_{i}, i \in\{1, \ldots, n\} \backslash\{k\}, \eta_{k} \in X_{k} \cap X_{k}^{*}, \xi \neq \eta_{1}$. Since Q is quasi-sum also on $X_{1} \times \cdots \times X_{k}^{*} \times \cdots \times X_{n}$, therefore, by Lemma 5 , it has a generator $\left(\psi, \beta_{1}, \ldots, \beta_{n}\right)$ on $X_{1} \times \cdots \times X_{k}^{*} \times \cdots \times X_{n}$ so that $\beta_{1}(\xi)=$
$\alpha_{1}(\xi)$ and $\beta_{k}\left(\eta_{k}\right)=\alpha_{k}\left(\eta_{k}\right), \quad(k=1, \ldots, n)$. Obviously, Q is quasi-sum also on $X_{1} \times \cdots \times\left(X_{k} \cap X_{k}^{*}\right) \times \cdots \times X_{n}$. Thus, by Lemma 6 , we obtain that

$$
\begin{align*}
\beta_{i}(x) & =\alpha_{i}(x)\left(x \in X_{i}, i \in\{1, \ldots, n\} \backslash\{k\}\right) \\
\beta_{k}(x) & =\alpha_{k}(x)\left(x \in X_{k} \cap X_{k}^{*}\right) \text { and } \tag{3.5}\\
\varphi(x) & =\psi(x)\left(x \in \alpha_{1}\left(X_{1}\right)+\cdots+\alpha_{k}\left(X_{k} \cap X_{k}^{*}\right)+\cdots+\alpha_{n}\left(X_{n}\right)\right) .
\end{align*}
$$

Define the functions $\gamma_{i}: X_{i} \rightarrow \mathbb{R}(i \in\{1, \ldots, n\} \backslash\{k\}), \gamma_{k}: X_{k} \cup X_{k}^{*} \rightarrow \mathbb{R}$ and $\Gamma: \alpha_{1}\left(X_{1}\right)+\cdots+\left(\alpha_{k}\left(X_{k}\right) \cup \alpha_{k}\left(X_{k}^{*}\right)\right)+\cdots+\alpha_{n}\left(X_{n}\right) \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
& \gamma_{i}(x)=\alpha_{i}(x) \quad\left(x \in X_{i},(i \in\{1, \ldots, n\} \backslash\{k\})\right. \\
& \gamma_{k}(x)=\left\{\begin{array}{cl}
\alpha_{k}(x) & \text { if } x \in X_{k} \\
\beta_{k}(x) & \text { if } x \in X_{k}^{*}
\end{array}\right.
\end{aligned}
$$

and

$$
\Gamma(x)=\left\{\begin{array}{lll}
\varphi(x) & \text { if } & x \in \alpha_{1}\left(X_{1}\right)+\cdots+\alpha_{k}\left(X_{k}\right)+\cdots+\alpha_{n}\left(X_{n}\right) \\
\psi(x) & \text { if } & x \in \alpha_{1}\left(X_{1}\right)+\cdots+\alpha_{k}\left(X_{k}^{*}\right)+\cdots+\alpha_{n}\left(X_{n}\right) .
\end{array}\right.
$$

Then it is obvious that γ_{i} is $C M$ function for all $i \in\{1, \ldots, n\} \backslash\{k\}$. Since $X_{k} \cap X_{k}^{*}$ is an interval of positive length, thus, by (3.5), α_{k} and β_{k} are strictly monotonic in the same sense. Hence γ_{k} is $C M$ function, too. If
$x \in\left(\alpha_{1}\left(X_{1}\right)+\cdots+\alpha_{k}\left(X_{k}\right)+\cdots+\alpha_{n}\left(X_{n}\right)\right) \cap\left(\alpha_{1}\left(X_{1}\right)+\cdots+\alpha_{k}\left(X_{k}^{*}\right)+\cdots+\alpha_{n}\left(X_{n}\right)\right)$
then Lemma 1 and (3.5) imply that the definition of Γ is correct and Γ is $C M$ function. Finally, it is obvious that $\left(\Gamma, \gamma_{1}, \ldots, \gamma_{n}\right)$ is a generator of Q on $X_{1} \times \cdots \times\left(X_{k} \cup X_{k}^{*}\right) \times \cdots \times X_{n}$.

We note that the lemma above can also be used repeatedly and for different values of $1 \leqq k \leqq n$. The following result makes possible to restrict our considerations to compact n-dimensional intervals.

Lemma 8. Let $R \subset \mathbb{R}$ be n-dimensional interval, $X_{i j} \subset \mathbb{R}$ be interval for all $i=1, \ldots, n$ and for every positive integer $j, R_{j}=X_{1 j} \times \cdots \times X_{n j} \subset R, R_{j} \subset$ R_{j+1} for every positive integer j and $R_{0}=\bigcup_{j=1}^{\infty} R_{j}$. Suppose that $Q: R \rightarrow \mathbb{R}$ is quasi-sum on R_{j} for every positive integer j. Then Q is quasi-sum also on R_{0}.
Proof. Let $\left(\varphi_{1}, \alpha_{11}, \ldots, \alpha_{n 1}\right)$ be a generator of Q on R_{1} and

$$
\xi \in X_{11}, \eta_{k} \in X_{k 1}, \quad(k=1, \ldots, n), \xi \neq \eta_{1}
$$

and if we have chosen a generator $\left(\varphi_{j}, \alpha_{1 j}, \ldots, \alpha_{n j}\right)$ of Q on R_{j} for the positive integer j then choose the generator $\left(\varphi_{j+1}, \alpha_{1 j+1}, \ldots, \alpha_{n j+1}\right)$ of Q on R_{j+1} so that

$$
\alpha_{1 j+1}(\xi)=\alpha_{1 j}(\xi) \quad \text { and } \quad \alpha_{i j+1}\left(\eta_{i}\right)=\alpha_{i j}\left(\eta_{i}\right) \quad(i=1, \ldots, n)
$$

be fulfilled. This is possible by Lemma 5 , and from Lemma 6 we get that

$$
\alpha_{i j+1}\left(x_{i}\right)=\alpha_{i j}\left(x_{i}\right) \quad\left(x_{i} \in X_{i j}, \quad(i=1, \ldots, n)\right)
$$

and

$$
\varphi_{j+1}(x)=\varphi_{j}(x)\left(x \in \alpha_{1 j}\left(X_{1 j}\right)+\cdots+\alpha_{n j}\left(X_{n j}\right)\right)
$$

for every positive integer j. This shows that the functions

$$
\alpha_{i}=\bigcup_{j=1}^{\infty} \alpha_{i j}(i=1, \ldots, n)
$$

and $\varphi=\bigcup_{j=1}^{\infty} \varphi_{j}$ are well-defined, they are $C M$ functions, and $\left(\varphi, \alpha_{1}, \ldots, \alpha_{n}\right)$ is a generator of Q on R_{0}.

Now we prove the main result of our paper.
Theorem 4. Let $X_{1} \times \cdots \times X_{n}$ be an n-dimensional interval and suppose that $Q: X_{1} \times \cdots \times X_{n} \rightarrow \mathbb{R}$ is local quasi-sum on $i t$. Then Q is quasi-sum on $X_{1} \times \cdots \times X_{n}$.

Proof. By Lemma 8 , it is enough to prove that Q is quasi-sum on any compact n-dimensional subinterval $C=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right]$ of $X_{1} \times \cdots \times X_{n}$. For this, let $\xi \in\left[a_{n}, b_{n}\right]$ be fixed and

$$
C_{\xi}=\left\{\left(\eta_{1}, \ldots, \eta_{n-1}, \xi\right):\left(\eta_{1}, \ldots, \eta_{n-1}\right) \in \underset{i=1}{n-1}\left[a_{i}, b_{i}\right]\right\} .
$$

Then $C_{\xi} \subset C$ is compact. Since Q is local quasi-sum on C, for each point of C there exists an n-dimensional interval, open in C, containing the point, and on which Q is quasi-sum. On the other hand, the compactness of C_{ξ} implies that there are n-dimensional intervals $X_{1 j}^{\xi} \times \cdots \times X_{n j}^{\xi},(j=1, \ldots, m)$ contained by C, such that they are open in C, Q is quasi-sum on each of them, and

$$
C_{\xi} \subset \bigcup_{j=1}^{n}\left(X_{1 j}^{\xi} \times \cdots \times X_{n j}^{\xi}\right)
$$

Let

$$
R_{\xi}=\left(\bigcap_{j=1}^{m} X_{1 j}^{\xi}\right) \times \cdots \times\left(\bigcap_{j=1}^{m} X_{n-1 j}^{\xi}\right) \times\left(\bigcup_{j=1}^{m} X_{n j}^{\xi}\right)
$$

Then $C_{\xi} \subset R_{\xi} \subset C$ is n-dimensional interval and it is open in C. Applying Lemma 7 repeatedly we obtain that Q is quasi-sum on R_{ξ}. Hence, because of the compactness of C, there are numbers $\xi_{1}, \ldots, \xi_{M} \in\left[a_{n}, b_{n}\right]$ such that $C=\bigcup_{j=1}^{M} R_{\xi_{j}}$. Applying Lemma 7 again we get that Q is quasi-sum on C.

It is clear that the theorem above is a generalization of Theorem 1. Combining this result and Theorem 3 we have the generalization of Theorem 2, as well.

Theorem 5. Let $X_{1} \times \cdots \times X_{n}$ be an n-dimensional interval and suppose that the $C M$ function $Q: X_{1} \times \cdots \times X_{n} \rightarrow \mathbb{R}$ is local quasi-sum on the interior of its domain. Then Q is quasi-sum on $X_{1} \times \cdots \times X_{n}$.

4. An application

Now we prove the following theorem as an application of our results on quasi-sums in several variables.
Theorem 6. Let $1<N$ and $1<M$ be fixed integers, $U_{k \ell} \subset \mathbb{R}$ be intervals, and

$$
g: \sum_{\ell=1}^{N} U_{1 \ell} \times \cdots \times \sum_{\ell=1}^{N} U_{M \ell} \rightarrow \mathbb{R}, \quad g_{\ell}: U_{1 \ell} \times \cdots \times U_{M \ell} \rightarrow \mathbb{R}
$$

and

$$
f: V_{1} \times \cdots \times V_{N} \rightarrow \mathbb{R}
$$

where $V_{\ell}=g_{\ell}\left(U_{1 \ell}, \ldots, U_{M \ell}\right),(k=1, \ldots, M, \ell=1, \ldots, N)$, be $C M$ functions. Suppose that

$$
\begin{align*}
& g\left(u_{11}+\cdots+u_{1 N}, \ldots, u_{M 1}+\cdots+u_{M N}\right) \tag{4.1}\\
&=f\left(g_{1}\left(u_{11}, \ldots, u_{M 1}\right), \ldots, g_{N}\left(u_{1 N}, \ldots, u_{M N}\right)\right)
\end{align*}
$$

holds for all $u_{k \ell} \in U_{k \ell}, k=1, \ldots, M, \ell=1, \ldots, N$. Then there exist $C M$ functions

$$
\alpha_{\ell}: V_{\ell} \rightarrow \mathbb{R} \quad(\ell=1, \ldots, N), \varphi: \sum_{\ell=1}^{N} \alpha_{\ell}\left(V_{\ell}\right) \rightarrow \mathbb{R}
$$

$c \in \mathbb{R}^{M}$ with coordinates different from zero and $d_{\ell} \in \mathbb{R}(\ell=1, \ldots, N)$ such that

$$
\begin{align*}
g(u) & =\varphi\left(\langle c, u\rangle+d_{1}+\cdots+d_{N}\right) \quad\left(u \in \sum_{\ell}^{N}\left(U_{1 \ell} \times \cdots \times U_{M \ell}\right)\right) \tag{4.2}\\
g_{\ell}\left(u_{\ell}\right) & =\alpha_{\ell}^{-1}\left(\left\langle c, u_{\ell}\right\rangle+d_{\ell}\right), \quad\left(u_{\ell} \in U_{1 \ell} \times \cdots \times U_{M \ell}, \ell=1, \ldots, N\right)
\end{align*}
$$

where $\langle\cdot, \cdot\rangle$ denotes the usual scalar product in \mathbb{R}^{M} and

$$
f\left(v_{1}, \ldots, v_{N}\right)=\varphi\left(\alpha_{1}\left(v_{1}\right)+\cdots+\alpha_{N}\left(v_{N}\right)\right) \quad\left(\left(v_{1}, \ldots, v_{N}\right) \in V_{1} \times, \ldots, \times V_{N}\right)
$$

Proof. First we show that f is an N-variable quasi-sum. Since f is $C M$ function, by Theorem 5, it is enough to prove that f is local quasi-sum on $V_{1}^{\circ} \times \cdots \times V_{N}^{\circ}$. For this, let $\left(a_{1}, \ldots, a_{N}\right) \in V_{1}^{\circ} \times \cdots \times V_{N}^{\circ}$. Then there exist $u_{k \ell}^{*} \in U_{k \ell}^{\circ},(k=1, \ldots, M, \ell=1, \ldots, N)$ and $0<\delta \in \mathbb{R}$ such that $a_{\ell}=g_{\ell}\left(u_{1 \ell}^{*}, \ldots, u_{M \ell}^{*}\right)(\ell=1, \ldots, N)$ and, with the notations

$$
\left.I_{\ell}=\right] u_{1 \ell}^{*}-\delta, u_{1 \ell}^{*}+\delta[,(\ell=1, \ldots, N)
$$

and

$$
S=g_{1}\left(I_{1}, u_{21}^{*}, \ldots, u_{M 1}^{*}\right) \times \cdots \times g_{N}\left(I_{N}, u_{2 N}^{*}, \ldots, u_{M N}^{*}\right)
$$

we have that $\left(a_{1}, \ldots, a_{N}\right) \in S \subset V_{1}^{\circ} \times \cdots \times V_{N}^{\circ}$.

Now we prove that f is quasi-sum on S. Let $t_{\ell} \in I_{\ell}$ and $u_{1 \ell}=t_{\ell}, u_{k \ell}=$ $u_{k \ell}^{*},(k=2, \ldots, M, \quad \ell=1, \ldots, N)$. Then equation (4.1) implies that

$$
\begin{aligned}
& g\left(t_{1}+\cdots+t_{N}, u_{21}^{*}+\cdots+u_{2 N}^{*}, \ldots, u_{M 1}^{*}+\cdots+u_{M N}^{*}\right) \\
& =f\left(g_{1}\left(t_{1}, u_{21}^{*} \ldots, u_{M 1}^{*}\right), \ldots, g_{N}\left(t_{N}, u_{2 n}^{*} \ldots, u_{M N}^{*}\right)\right) \\
& =f\left(h_{1}\left(t_{1}\right), \ldots, h_{N}\left(t_{N}\right)\right)
\end{aligned}
$$

where

$$
h_{\ell}\left(t_{\ell}\right)=g_{\ell}\left(t_{\ell}, u_{2 \ell}^{*} \ldots, u_{M \ell}^{*}\right), \quad t_{\ell} \in I_{\ell}, \quad(\ell=1, \ldots, N) .
$$

Thus
$f\left(s_{1}, \ldots, s_{N}\right)=g\left(h_{1}^{-1}\left(s_{1}\right)+\cdots+h_{N}^{-1}\left(s_{N}\right), u_{21}^{*}+\cdots+u_{2 N}^{*}, \ldots, u_{M 1}^{*}+\cdots+u_{M N}^{*}\right)$
holds for all $\left(s_{1}, \ldots, s_{N}\right) \in h_{1}\left(I_{1}\right) \times \cdots \times h_{N}\left(I_{N}\right)=S$.
Applying Theorem 5 we have that f is quasi-sum on its domain $V_{1} \times \cdots \times V_{N}$, that is,

$$
\begin{align*}
& f\left(v_{1}, \ldots, v_{N}\right)=\varphi\left(\alpha_{1}\left(v_{1}\right)+\cdots+\alpha_{N}\left(v_{N}\right)\right) \tag{4.3}\\
& \quad\left(\left(v_{1}, \ldots, v_{N}\right) \in V_{1} \times, \ldots, \times V_{N}\right)
\end{align*}
$$

for some $C M$ functions $\alpha_{\ell}: V_{\ell} \rightarrow \mathbb{R}(\ell=1 \ldots, N)$ and $\varphi: \sum_{\ell=1}^{N} \alpha_{\ell}\left(V_{\ell}\right) \rightarrow \mathbb{R}$. Therefore equation (4.1) can be written as

$$
\begin{aligned}
& g\left(u_{11}+\cdots+u_{1 N}, \ldots, u_{M 1}+\cdots+u_{M N}\right) \\
& \quad=\varphi\left(\alpha_{1} \circ g_{1}\left(u_{11}, \ldots, u_{M 1}\right)+\cdots+\alpha_{N} \circ g_{N}\left(u_{1 N}, \ldots, u_{M N}\right)\right)
\end{aligned}
$$

$\left(u_{k \ell} \in U_{k \ell}, k=1, \ldots, M, \ell=1, \ldots, N\right)$ or shortly, with the notations

$$
\begin{equation*}
\gamma=\varphi^{-1} \circ g, \quad \beta_{\ell}=\alpha_{\ell} \circ g_{\ell}, \quad u_{\ell}=\left(u_{1 \ell}, \ldots, u_{M \ell}\right) \quad(\ell=1, \ldots, N), \tag{4.4}
\end{equation*}
$$

we have that

$$
\gamma\left(u_{1}+\cdots+u_{N}\right)=\beta_{1}\left(u_{1}\right)+\cdots+\beta_{N}\left(u_{N}\right)
$$

holds for all $u_{\ell} \in U_{1 \ell} \times \cdots \times U_{M \ell}, \quad(\ell=1, \ldots, N)$. The $C M$ solutions of this equation can easily be obtained from Corollary 3 of [5], and we have that

$$
\beta_{\ell}(u)=\langle c, u\rangle+d_{\ell} \quad\left(u_{\ell} \in U_{1 \ell} \times \cdots \times U_{M \ell}, \ell=1, \ldots, N\right)
$$

and

$$
\gamma(u)=\langle c, u\rangle+d_{1}+\cdots+d_{N} \quad\left(u \in \sum_{\ell=1}^{N} U_{1 \ell} \times \cdots \times U_{M \ell}\right)
$$

with some $c \in \mathbb{R}^{M}$ and $d_{\ell} \in \mathbb{R},(\ell=1, \ldots, N)$. Taking into consideration (4.4), this and (4.3) imply (4.2).

An easy calculation shows that the converse statement of this theorem is true, as well. That is, the functions g, g_{ℓ} and f defined by (4.2) with $C M$ functions φ, α_{ℓ} and $d_{\ell} \in \mathbb{R},(\ell=1, \ldots, N)$ are $C M$ solutions of (4.1).

5. Final remark

As we shall see in this section the problem of finding all $C M$ solutions of the general aggregation equation (1.1) leads to equations (1.2) and (4.1). In ([3]) we have solved (1.2) by using two variable quasi-sums while equation (4.1) can be solved by using several variable quasi-sums. In this section we give a relatively short proof for the following theorem (see also [3]).
Theorem 7. Let $1<n, 1<m$ be fixed integers, $X_{i j} \subset \mathbb{R}$ be intervals, $G_{i}: X_{1 i} \times \cdots \times X_{m i} \rightarrow \mathbb{R}, G_{i}\left(X_{1 i}, \ldots, X_{m i}\right)=I_{i}, F_{j}: X_{j 1} \times \cdots \times X_{j n} \rightarrow \mathbb{R}$, $F_{j}\left(X_{j 1}, \ldots, X_{j n}\right)=J_{j}, G_{i}, F_{j}$ be CM functions for $i=1, \ldots, n$ and $j=$ $1, \ldots, m, G: J_{1} \times \cdots \times J_{m} \rightarrow \mathbb{R}, F: I_{1} \times \cdots \times I_{n} \rightarrow \mathbb{R}$ and G, F be $C M$ functions, too. Suppose that equation (1.1)

$$
\begin{aligned}
& G\left(F_{1}\left(x_{11}, \ldots, x_{1 n}\right), \ldots, F_{m}\left(x_{m 1}, \ldots, x_{m n}\right)\right) \\
& \quad=F\left(G_{1}\left(x_{11}, \ldots, x_{m 1}\right), \ldots, G_{n}\left(x_{1 n}, \ldots, x_{m n}\right)\right)
\end{aligned}
$$

holds for all $x_{j i} \in X_{j i}, j=1, \ldots, m$ and $i=1, \ldots, n$. Then there exist an interval $I \subset \mathbb{R}$ and $C M$ functions $\varphi: I \rightarrow \mathbb{R}, \alpha_{i}: I_{i} \rightarrow \mathbb{R}, \gamma_{j}: J_{j} \rightarrow \mathbb{R}$ and $\beta_{j i}: X_{j i} \rightarrow \mathbb{R}, j=1, \ldots, m, i=1, \ldots, n$ such that

$$
\begin{gather*}
F\left(z_{1}, \ldots, z_{n}\right)=\varphi^{-1}\left(\sum_{i=1}^{n} \alpha_{i}\left(z_{i}\right)\right), \quad\left(z_{1}, \ldots, z_{n}\right) \in I_{1} \times \cdots \times I_{n} \tag{5.1}\\
G\left(y_{1}, \ldots, y_{m}\right)=\varphi^{-1}\left(\sum_{j=1}^{m} \gamma_{j}\left(y_{j}\right)\right), \quad\left(y_{1}, \ldots, y_{m}\right) \in J_{1} \times \cdots \times J_{m} \tag{5.2}\\
F_{j}\left(x_{j 1}, \ldots, x_{j n}\right)=\gamma_{j}^{-1}\left(\sum_{i=1}^{n} \beta_{j i}\left(x_{j i}\right)\right) \tag{5.3}
\end{gather*}
$$

and

$$
\begin{align*}
& G_{i}\left(x_{1 i}, \ldots, x_{m i}\right)=\alpha_{i}^{-1}\left(\sum_{j=1}^{m} \beta_{j i}\left(x_{j i}\right)\right) \tag{5.4}\\
& x_{j i} \in X_{j i}, j=1, \ldots, m, i=1, \ldots, n
\end{align*}
$$

Proof. Part (A). First we prove the theorem for $m=2$ by induction on n. In this case equation (1.1) has the form

$$
\begin{equation*}
G\left(F_{1}\left(x_{11}, \ldots, x_{1 n}\right), F_{2}\left(x_{21}, \ldots, x_{2 n}\right)\right)=F\left(G_{1}\left(x_{11}, x_{21}\right), \ldots, G_{n}\left(x_{1 n}, x_{2 n}\right)\right) \tag{5.5}
\end{equation*}
$$

and the statement of our theorem is true for $n=2$ (see Theorem 1 in [3]). Suppose that $n>2$ and the statement is true for $n-1$ instead of n. Fix the variables $x_{1 n}, x_{2 n}$ in (5.5). Then, by the induction hypothesis, we obtain that (5.4) holds for $m=2$ and for $n-1$ instead of n with $C M$ functions $\alpha_{i}, \beta_{1 i}, \beta_{2 i}, i=1, \ldots, n-1$. Next, fix the variables x_{11}, x_{21} in (5.5) and apply the induction hypothesis again. Thus we get (5.4) for $m=2$ and also for $i=n$
with $C M$ functions $\alpha_{n}, \beta_{1 n}, \beta_{2 n}$. Hence (5.4) holds for $m=2$. Substitute this form of $G_{i}, i=1, \ldots, n$ into (5.5) we have that

$$
\begin{align*}
& G\left(F_{1}\left(x_{11}, \ldots, x_{1 n}\right), F_{2}\left(x_{21}, \ldots, x_{2 n}\right)\right) \tag{5.6}\\
& \left.\quad=F\left(\alpha_{1}^{-1}\left(\beta_{11}\left(x_{11}\right)+\beta_{21}\left(x_{21}\right)\right), \ldots, \alpha_{n}^{-1}\left(\beta_{1 n}\left(x_{1 n}\right)+\beta_{2 n}\left(x_{2 n}\right)\right)\right)\right)
\end{align*}
$$

holds for all $x_{j i} \in X_{j i} j=1,2, i=1, \ldots, n$. Let $U_{j i}=\beta_{j i}\left(X_{j i}\right), j=1,2, i=$ $1, \ldots, n$. Then $U_{j i}$ is interval and for all $u_{j i} \in U_{j i}$ there exists $x_{j i} \in X_{j i}$ such that $u_{j i}=\beta_{j i}\left(x_{j i}\right), j=1,2, i=1, \ldots, n$. Thus (5.6) implies that

$$
\begin{align*}
G\left(F_{1}\left(\beta_{11}^{-1}\left(u_{11}\right), \ldots, \beta_{1 n}^{-1}\left(u_{1 n}\right)\right)\right. & \left., F_{2}\left(\beta_{21}^{-1}\left(u_{21}\right), \ldots, \beta_{2 n}^{-1}\left(u_{2 n}\right)\right)\right) \tag{5.7}\\
& =F\left(\alpha_{1}^{-1}\left(u_{11}+u_{21}\right), \ldots, \alpha_{n}^{-1}\left(u_{1 n}+u_{2 n}\right)\right)
\end{align*}
$$

With the definitions $N=2, M=n$,

$$
\begin{aligned}
g\left(t_{1}, \ldots, t_{M}\right) & =F\left(\alpha_{1}^{-1}\left(t_{1}\right), \ldots, \alpha_{M}^{-1}\left(t_{M}\right)\right) \quad\left(t_{i} \in U_{1 i}+U_{2 i}\right), \\
g_{j}\left(u_{j 1}, \ldots, u_{j M}\right) & =F_{j}\left(\beta_{j 1}^{-1}\left(u_{j 1}\right), \ldots, \beta_{j M}^{-1}\left(u_{j M}\right)\right) \quad\left(u_{j i} \in U_{j i}\right), \\
f & =F \quad(j=1,2, i=1, \ldots, M)
\end{aligned}
$$

equation (5.7) goes over into (4.1) and Theorem 6 can be applied. Thus we have (4.2) and, by definitions (5.8) and by re-defining the generators (see the remark after Lemma 4), we get (5.1)-(5.4) for $m=2$.

Part (B). Now, for fixed $n>1$ we continue the proof by induction on m. The statement of our theorem is true for $m=2$, as we have shown in Part (A) of the proof. Suppose that $m>2$ and the statement is true for $m-1$ instead of m. First fix the variables $x_{m 1}, \ldots, x_{m n}$ in (1.1). Then, by the induction hypothesis, we have (5.3) for $j=1, \ldots, m-1$ with $C M$ functions $\gamma_{j}, \beta_{j i}, j=1, \ldots, m-1, i=, \ldots, n$. Next, let $x_{11}, \ldots, x_{1 n}$ be fixed in (1.1) to obtain (5.3), by using the induction hypothesis again, also for $j=m$ with $C M$ functions $\gamma_{m}, \beta_{m i}, i=1, \ldots, n$. Thus we have proved (5.3). Substitute the known form of $F_{j}, j=1, \ldots, m$ into (1.1) to get

$$
\begin{array}{r}
G\left(\gamma_{1}^{-1}\left(\beta_{11}\left(x_{11}\right)+\cdots+\beta_{1 n}\left(x_{1 n}\right)\right), \ldots, \gamma_{m}^{-1}\left(\beta_{m 1}\left(x_{m 1}\right)+\cdots+\beta_{m n}\left(x_{m n}\right)\right)\right) \tag{5.9}\\
=F\left(G_{1}\left(x_{11}, \ldots, x_{m 1}\right), \ldots, G_{n}\left(x_{1 n}, \ldots, x_{m n}\right)\right)
\end{array}
$$

for all $x_{j i} \in X_{j i} j=1, \ldots, m, i=1, \ldots, n$. Let $U_{j i}=\beta_{j i}\left(X_{j i}\right), j=1, \ldots, m$, $i=1, \ldots, n$. Then $U_{j i}$ is interval and for all $u_{j i} \in U_{j i}$ there exists $x_{j i} \in X_{j i}$ such that $u_{j i}=\beta_{j i}\left(x_{j i}\right), j=1, \ldots, m i=1, \ldots, n$. Thus (5.9) implies that

$$
\begin{align*}
& G\left(\gamma_{1}^{-1}\left(u_{11}+\cdots+u_{1 n}\right), \ldots, \gamma_{m}^{-1}\left(u_{m 1}+\cdots+u_{m n}\right)\right) \tag{5.10}\\
& \quad=F\left(G_{1}\left(\beta_{11}^{-1}\left(u_{11}\right), \ldots, \beta_{m 1}^{-1}\left(u_{m 1}\right)\right), \ldots, G_{n}\left(\beta_{1 n}^{-1}\left(u_{1 n}\right), \ldots, \beta_{m n}^{-1}\left(u_{m n}\right)\right)\right) .
\end{align*}
$$

With the definitions $N=n, M=m$,

$$
\begin{align*}
g\left(t_{1}, \ldots, t_{M}\right) & =G\left(\gamma_{1}^{-1}\left(t_{1}\right), \ldots, \gamma_{M}^{-1}\left(t_{M}\right)\right) \quad\left(t_{j} \in U_{j 1}+\cdots+U_{j N}\right), \\
g_{i}\left(u_{1 i}, \ldots, u_{M i}\right) & =G_{i}\left(\beta_{1 i}^{-1}\left(u_{1 i}\right), \ldots, \beta_{M i}^{-1}\left(u_{M i}\right)\right) \quad\left(u_{j i} \in U_{j i}\right), \tag{5.11}\\
f & =F \quad(j=1, \ldots, M, i=1, \ldots, N)
\end{align*}
$$

equation (5.10) goes over into (4.1) and Theorem 6 can be applied. Thus we have (4.2) and, by definitions (5.11) and by re-defining the generators (see the remark again after Lemma 4), we get (5.1)-(5.4).

An easy calculation shows that the converse statement of this theorem is true, as well. That is, the functions F, G, F_{j}, G_{i} defined by (5.1)-(5.4) with $C M$ functions $\varphi, \alpha_{i}, \gamma_{j}$ and $\beta_{j i}(i=1, \ldots, n, j=1, \ldots, m)$ are $C M$ solutions of (1.1).

References

[1] J. Aczél. Sur les opérations définies pour nombres réels. Bull. Soc. Math. France, 76:5964, 1948.
[2] G. Hardy, J. Littlewood, and G. Pólya. Inequalities. University Press, Cambridge, 1934.
[3] G. Maksa. Solution of generalized bisymmetry type equations without surjectivity assumptions. Aequationes Math., 57(1):50-74, 1999.
[4] G. Maksa. Quasisums and generalized associativity. Aequationes Math., 69(1-2):6-27, 2005.
[5] F. Radó and J. A. Baker. Pexider's equation and aggregation of allocations. Aequationes Math., 32(2-3):227-239, 1987.

Received April 10, 2006.

```
Institute of Mathematics,
University of Debrecen,
4010 Debrecen, Pf. 12,
Hungary
E-mail address: maksa@math.klte.hu
Department of Biophysics and Cell Biology,
Medical and Health Science Center,
University of Debrecen,
4 0 1 2 ~ D e b r e c e n ,
Hungary
E-mail address: nizsaloe@freemail.hu
```


[^0]: 2000 Mathematics Subject Classification. 39B22.
 Key words and phrases. Quasi-sum, local quasi-sum, equation of aggregation.
 Research has partly been supported by the Hungarian Scientific Research Fund (OTKA) Grant T-030082 and K62316.

