FAMILY OF ANALYTIC FUNCTIONS OF COMPLEX ORDER

B.A. FRASIN

Abstract

In this paper, we introduce the class $\mathcal{Q}_{\mathcal{T}}(\Phi, \Psi ; \alpha, b)$ of analytic functions of complex order b and type $\alpha(0 \leq \alpha<1)$. Coefficient inequalities, distortion theorems, closure theorems, radii of close-to-convexity, starlikeness, convexity and fractional calculus for functions belonging to the class $\mathcal{Q}_{\mathcal{T}}(\Phi, \Psi ; \alpha, b)$ are obtained. Furthermore, we obtain the integral means inequality for the function $f(z)$ belongs to the class $\mathcal{Q}_{\mathcal{T}}(\Phi, \Psi ; \alpha, b)$ with the extremal function of this class. Also, we consider $q-\delta$-neighborhood for functions in this class.

1. Introduction and definitions

Let \mathcal{A} denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathcal{U}=\{z: z \in \mathbb{C}$ and $|z|<1\}$. A function $f(z) \in \mathcal{A}$ is said to be starlike of complex order $b(b \in \mathbb{C} \backslash\{0\})$ and type $\alpha(0 \leq \alpha<1)$, that is $f(z) \in \mathcal{S}_{\alpha}^{*}(b)$, if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)\right\}>\alpha \quad(z \in \mathcal{U} ; b \in \mathbb{C} \backslash\{0\}) \tag{1.2}
\end{equation*}
$$

and is said to be convex of complex order $b(b \in \mathbb{C} \backslash\{0\})$ and type $\alpha(0 \leq \alpha<1)$, denoted by $\mathcal{C}_{\alpha}(b)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{1}{b} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha \quad(z \in \mathcal{U} ; b \in \mathbb{C} \backslash\{0\}) \tag{1.3}
\end{equation*}
$$

Note that $\mathcal{S}_{0}^{*}(b)=\mathcal{S}^{*}(b)$ and $\mathcal{C}_{0}(b)=\mathcal{C}(b)$ the classes considered earlier by Nasr and Aouf [2] and Wiatrowski [7].

[^0]Further, let $\mathcal{P}_{\alpha}(b)$ denote the class of functions $f(z) \in \mathcal{A}$ such that

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{1}{b}\left(f^{\prime}(z)-1\right)\right\}>\alpha \quad(z \in \mathcal{U} ; b \in \mathbb{C} \backslash\{0\}) \tag{1.4}
\end{equation*}
$$

Given two analytic functions $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ and $g(z)=z+\sum_{n=2}^{\infty} c_{n} z^{n}$ their convolution or Hadamard product $f(z) * h(z)$, is defined by

$$
\begin{equation*}
f(z) * g(z)=z+\sum_{n=2}^{\infty} a_{n} c_{n} z^{n} \quad(z \in \mathcal{U}) . \tag{1.5}
\end{equation*}
$$

Let \mathcal{T} denote the subclass of \mathcal{A} whose members have the form:

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}, \quad\left(a_{n} \geq 0\right) \tag{1.6}
\end{equation*}
$$

we denote by $\mathcal{S}_{\alpha}^{*}[b], \mathcal{C}_{\alpha}[b]$ and $\mathcal{P}_{\alpha}[b]$, respectively, the classes obtained by taking the intersections of $\mathcal{S}_{\alpha}^{*}(b), \mathcal{C}_{\alpha}(b)$, and $\mathcal{P}_{\alpha}(b)$ with \mathcal{T}, that is,

$$
\begin{equation*}
\mathcal{S}_{\alpha}^{*}[b]=\mathcal{S}_{\alpha}^{*}(b) \cap \mathcal{T}, \mathcal{C}_{\alpha}[b]=\mathcal{C}_{\alpha}(b) \cap \mathcal{T}, \mathcal{P}_{\alpha}[b]=\mathcal{P}_{\alpha}(b) \cap \mathcal{T} \tag{1.7}
\end{equation*}
$$

We can obtain the above classes by using the following:
Definition 1.1. Given $b(b \in \mathbb{C} \backslash\{0\})$ and $\alpha(0 \leq \alpha<1)$. Let the functions

$$
\begin{equation*}
\Phi(z)=z+\sum_{n=2}^{\infty} \lambda_{n} z^{n} \text { and } \quad \Psi(z)=z+\sum_{n=2}^{\infty} \mu_{n} z^{n} \tag{1.8}
\end{equation*}
$$

be analytic in \mathcal{U}, such that $\lambda_{n} \geq 0, \mu_{n} \geq 0$ and $\lambda_{n} \geq \mu_{n}$ for $n \geq 2$, we say that $f(z) \in \mathcal{A}$ is in $\mathcal{Q}(\Phi, \Psi ; \alpha, b)$ if $f(z) * \Psi(z) \neq 0$ and

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{f(z) * \Phi(z)}{f(z) * \Psi(z)}-1\right)\right\}>\alpha \quad(z \in \mathcal{U}) \tag{1.9}
\end{equation*}
$$

Further, let

$$
\begin{equation*}
\mathcal{Q}_{\mathcal{T}}(\Phi, \Psi ; \alpha, b)=\mathcal{Q}(\Phi, \Psi ; \alpha, b) \cap \mathcal{T} \tag{1.10}
\end{equation*}
$$

We note that, by suitably choosing $\Phi(z), \Psi(z)$ we obtain the above subclasses of \mathcal{T} of complex order b and type

$$
\alpha: \mathcal{Q}_{\mathcal{T}}\left(\frac{z}{(1-z)^{2}}, \frac{z}{1-z} ; \alpha, b\right)=\mathcal{S}_{\alpha}^{*}[b] ; \mathcal{Q}_{\mathcal{T}}\left(\frac{z+z^{2}}{(1-z)^{3}}, \frac{z}{(1-z)^{2}} ; \alpha, b\right)=\mathcal{C}_{\alpha}[b] ;
$$

and

$$
\mathcal{Q}_{\mathcal{T}}\left(\frac{z}{(1-z)^{2}}, z ; \alpha, b\right)=\mathcal{P}_{\alpha}[b] .
$$

In fact many new subclasses of \mathcal{T} of complex order b and type α can be defined and studied by suitably choosing $\Phi(z), \Psi(z)$. For example

$$
\mathcal{Q}_{\mathcal{T}}\left(\frac{z}{1-z}, z ; \alpha, b\right)=\left\{f(z) \in \mathcal{T}: \operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{f(z)}{z}-1\right)\right\}>\alpha\right\},
$$

and

$$
\mathcal{Q}_{\mathcal{T}}\left(\frac{z+z^{2}}{(1-z)^{3}}, z ; \alpha, b\right)=\left\{f(z) \in \mathcal{T}: \operatorname{Re}\left\{1+\frac{1}{b}\left(\left(z f^{\prime}(z)\right)^{\prime}-1\right)\right\}>\alpha\right\}
$$

and so on.
In this paper, we shall obtain coefficient inequalities, distortion theorems, closure theorems, radii of close-to-convexity, starlikeness, convexity and fractional calculus for functions belonging to the class $\mathcal{Q}_{\mathcal{T}}(\Phi, \Psi ; \alpha, b)$. Furthermore, we obtain the integral means inequality for the function $f(z)$ belongs to the class $\mathcal{Q}_{\mathcal{T}}(\Phi, \Psi ; \alpha, b)$ with the extremal function of this class. Also, we consider $q-\delta$-neighborhood for functions in this class.

2. Coefficient inequalities

Theorem 2.1. Let the function $f(z)$ defined by (1.6) be in the class

$$
\mathcal{Q}_{\mathcal{T}}(\Phi, \Psi ; \alpha, b)
$$

Then

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left[(\operatorname{Re}(b)) \lambda_{n}+\left((1-\alpha)|b|^{2}-\operatorname{Re}(b)\right) \mu_{n}\right]\left|a_{n}\right| \leq|b|^{2}(1-\alpha) \tag{2.1}
\end{equation*}
$$

The result (2.1) is sharp.
Proof. Suppose that $f(z) \in \mathcal{Q}_{\mathcal{T}}(\Phi, \Psi ; \alpha, b)$. Then

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{f(z) * \Phi(z)}{f(z) * \Psi(z)}-1\right)\right\}>\alpha \quad(z \in \mathcal{U}) \tag{2.2}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{1}{b}\left(\frac{-\sum_{n=2}^{\infty}\left(\lambda_{n}-\mu_{n}\right) a_{n} z^{n-1}}{1-\sum_{n=2}^{\infty} \mu_{n} a_{n} z^{n-1}}\right)\right\}>\alpha-1 \quad(z \in \mathcal{U}) \tag{2.3}
\end{equation*}
$$

Now choose values of z on the real axis and let $z \rightarrow 1^{-}$through real values to find that

$$
\begin{equation*}
\left(\frac{-\sum_{n=2}^{\infty}\left(\lambda_{n}-\mu_{n}\right)\left|a_{n}\right|}{1-\sum_{n=2}^{\infty} \mu_{n}\left|a_{n}\right|}\right) \operatorname{Re} \frac{1}{b} \geq \alpha-1 \tag{2.4}
\end{equation*}
$$

whence

$$
\begin{equation*}
\left(\frac{\sum_{n=2}^{\infty}\left(\lambda_{n}-\mu_{n}\right)\left|a_{n}\right|}{1-\sum_{n=2}^{\infty} \mu_{n}\left|a_{n}\right|}\right) \frac{\operatorname{Re}(b)}{|b|^{2}} \leq 1-\alpha \tag{2.5}
\end{equation*}
$$

and so

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(\lambda_{n}-\mu_{n}\right)\left|a_{n}\right| \leq \frac{|b|^{2}}{\operatorname{Re}(b)}(1-\alpha)\left(1-\sum_{n=2}^{\infty} \mu_{n}\left|a_{n}\right|\right) \tag{2.6}
\end{equation*}
$$

which is equivalent to (2.1).
The equality in (2.1) holds true for the functions $f(z)$ defined by

$$
\begin{equation*}
f(z)=z-\frac{|b|^{2}(1-\alpha)}{(\operatorname{Re}(b)) \lambda_{n}+\left((1-\alpha)|b|^{2}-\operatorname{Re}(b)\right) \mu_{n}} z^{n} \quad(n \geq 2) \tag{2.7}
\end{equation*}
$$

Corollary 2.2. Let the function $f(z)$ defined by (1.6) be in the class

$$
\mathcal{Q}_{\mathcal{T}}(\Phi, \Psi ; \alpha, b)
$$

Then

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{|b|^{2}(1-\alpha)}{(\operatorname{Re}(b)) \lambda_{n}+\left((1-\alpha)|b|^{2}-\operatorname{Re}(b)\right) \mu_{n}} \quad(n \geq 2) \tag{2.8}
\end{equation*}
$$

The result (2.8) is sharp for the function $f(z)$ given by (2.7).
Putting $\Phi(z)=z /(1-z)^{2}$ and $\Psi(z)=z /(1-z)$ in Theorem 2.1, we have
Corollary 2.3. Let the function $f(z)$ defined by (1.6) be in the class $\mathcal{S}_{\alpha}^{*}[b]$. Then

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left[(\operatorname{Re}(b)) n+\left((1-\alpha)|b|^{2}-\operatorname{Re}(b)\right)\right]\left|a_{n}\right| \leq|b|^{2}(1-\alpha) \tag{2.9}
\end{equation*}
$$

The result is sharp for

$$
f(z)=z-\frac{|b|^{2}(1-\alpha)}{(\operatorname{Re}(b)) n+\left((1-\alpha)|b|^{2}-\operatorname{Re}(b)\right)} z^{n} \quad(n \geq 2) .
$$

Putting $\Phi(z)=\left(z+z^{2}\right) /(1-z)^{3}$ and $\Psi(z)=z /(1-z)^{2}$ in Theorem 2.1, we have

Corollary 2.4. Let the function $f(z)$ defined by (1.6) be in the class $\mathcal{C}_{\alpha}^{*}[b]$. Then

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left[(\operatorname{Re}(b)) n^{2}+\left((1-\alpha)|b|^{2}-\operatorname{Re}(b)\right) n\right]\left|a_{n}\right| \leq|b|^{2}(1-\alpha) \tag{2.10}
\end{equation*}
$$

The result is sharp for

$$
f(z)=z-\frac{|b|^{2}(1-\alpha)}{(\operatorname{Re}(b)) n^{2}+\left((1-\alpha)|b|^{2}-\operatorname{Re}(b)\right) n} z^{n} \quad(n \geq 2) .
$$

Putting $\Phi(z)=z /(1-z)^{2}$ and $\Psi(z)=z$ in Theorem 2.1, we have

Corollary 2.5. Let the function $f(z)$ defined by (1.6) be in the class $\mathcal{P}_{\alpha}^{*}[b]$. Then

$$
\begin{equation*}
\sum_{n=2}^{\infty}[(\operatorname{Re}(b)) n]\left|a_{n}\right| \leq|b|^{2}(1-\alpha) \tag{2.11}
\end{equation*}
$$

The result is sharp for

$$
f(z)=z-\frac{|b|^{2}(1-\alpha)}{(\operatorname{Re}(b)) n} z^{n} \quad(n \geq 2)
$$

For the notational convenience we shall henceforth denote

$$
\begin{equation*}
\sigma_{n}(\alpha, b)=(\operatorname{Re}(b)) \lambda_{n}+\left((1-\alpha)|b|^{2}-\operatorname{Re}(b)\right) \mu_{n} \quad(n \geq 2) \tag{2.12}
\end{equation*}
$$

3. Growth and distortion theorems

Theorem 3.1. Let the function $f(z)$ defined by (1.6) be in the class

$$
\mathcal{Q}_{\mathcal{T}}(\Phi, \Psi ; \alpha, b) .
$$

If $\left\{\sigma_{n}(\alpha, b)\right\}_{n=2}^{\infty}$ is a non-decreasing sequence, then

$$
\begin{equation*}
|z|-\frac{|b|^{2}(1-\alpha)}{\sigma_{2}(\alpha, b)}|z|^{2} \leq|f(z)| \leq|z|+\frac{|b|^{2}(1-\alpha)}{\sigma_{2}(\alpha, b)}|z|^{2} \tag{3.1}
\end{equation*}
$$

where $\sigma_{2}(\alpha, b)=(\operatorname{Re}(b)) \lambda_{2}+\left((1-\alpha)|b|^{2}-\operatorname{Re}(b)\right) \mu_{2}$. The equality in (3.1) is attained for the function $f(z)$ given by

$$
\begin{equation*}
f(z)=z-\frac{|b|^{2}(1-\alpha)}{\sigma_{2}(\alpha, b)} z^{2} \tag{3.2}
\end{equation*}
$$

Proof. Note that

$$
\sigma_{2}(\alpha, b) \sum_{n=2}^{\infty}\left|a_{n}\right| \leq \sum_{n=2}^{\infty} \sigma_{n}(\alpha, b)\left|a_{n}\right| \leq|b|^{2}(1-\alpha)
$$

or, equivalently

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left|a_{n}\right| \leq \frac{|b|^{2}(1-\alpha)}{\sigma_{2}(\alpha, b)} \tag{3.3}
\end{equation*}
$$

this last inequality following from Theorem 2.1. Thus we have

$$
\begin{equation*}
|f(z)| \geq|z|-\sum_{n=2}^{\infty}\left|a_{n}\right||z|^{n} \geq|z|-|z|^{2} \sum_{n=2}^{\infty}\left|a_{n}\right| \geq|z|-\frac{|b|^{2}(1-\alpha)}{\sigma_{2}(\alpha, b)}|z|^{2} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(z)| \leq|z|+\sum_{n=2}^{\infty}\left|a_{n}\right||z|^{n} \leq|z|+|z|^{2} \sum_{n=2}^{\infty}\left|a_{n}\right| \leq|z|+\frac{|b|^{2}(1-\alpha)}{\sigma_{2}(\alpha, b)}|z|^{2} \tag{3.5}
\end{equation*}
$$

for $z \in \mathcal{U}$. From the inequalities (3.4) and (3.5) we obtain the inequality (3.1).

Theorem 3.2. The disk $|z|<1$ is mapped onto a domain that contains the disk

$$
|w|<\frac{\sigma_{2}(\alpha, b)-|b|^{2}(1-\alpha)}{\sigma_{2}(\alpha, b)}
$$

by any $f(z) \in \mathcal{Q}_{\mathcal{T}}(\Phi, \Psi ; \alpha, b)$. The theorem is sharp with the function $f(z)$ given by (3.2).

Theorem 3.3. Let the function $f(z)$ defined by (1.6) be in the class

$$
\mathcal{Q}_{\mathcal{T}}(\Phi, \Psi ; \alpha, b)
$$

If $\left\{\sigma_{n}(\alpha, b) / n\right\}_{n=2}^{\infty}$ is a non-decreasing sequence, then

$$
\begin{equation*}
1-\frac{2|b|^{2}(1-\alpha)}{\sigma_{2}(\alpha, b)}|z| \leq\left|f^{\prime}(z)\right| \leq 1+\frac{2|b|^{2}(1-\alpha)}{\sigma_{2}(\alpha, b)}|z| . \tag{3.6}
\end{equation*}
$$

The equality in (3.6) is attained for the function $f(z)$ given by (3.2).
Proof. In view of Theorem 2.1,

$$
\begin{equation*}
\frac{\sigma_{2}(\alpha, b)}{2} \sum_{n=2}^{\infty} n\left|a_{n}\right| \leq \sum_{n=2}^{\infty} \sigma_{n}(\alpha, b)\left|a_{n}\right| \leq|b|^{2}(1-\alpha) . \tag{3.7}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\sum_{n=2}^{\infty} n\left|a_{n}\right| \leq \frac{2|b|^{2}(1-\alpha)}{\sigma_{2}(\alpha, b)} . \tag{3.8}
\end{equation*}
$$

Form (3.8), we can easily prove that

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \geq 1-\sum_{n=2}^{\infty} n\left|a_{n}\right||z|^{n-1} \geq 1-|z| \sum_{n=2}^{\infty} n\left|a_{n}\right| \geq 1-\frac{2|b|^{2}(1-\alpha)}{\sigma_{2}(\alpha, b)}|z| \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leq 1+\sum_{n=2}^{\infty} n\left|a_{n}\right||z|^{n-1} \leq 1+|z| \sum_{n=2}^{\infty} n\left|a_{n}\right| \leq 1+\frac{2|b|^{2}(1-\alpha)}{\sigma_{2}(\alpha, b)}|z| \tag{3.10}
\end{equation*}
$$

for $z \in \mathcal{U}$. Combining the inequalities (3.9) and (3.10) we obtain the inequality (3.6).

4. Radii of Close-to-convexity, starlikeness and convexity

Theorem 4.1. Let the function $f(z)$ be defined by (1.6) be in the class

$$
\mathcal{Q}_{\mathcal{T}}(\Phi, \Psi ; \alpha, b) .
$$

Then $f(z)$ is close-to-convex of complex order b in $|z|<r_{1}$, where

$$
\begin{equation*}
r_{1}=r_{1}(\alpha, b)=\inf _{n}\left[\frac{\sigma_{n}(\alpha, b)}{|b| n(1-\alpha)}\right]^{1 /(n-1)} \quad(n \geq 2) . \tag{4.1}
\end{equation*}
$$

The result is sharp for the function $f(z)$ being given by (3.2).

Proof. We must show that $\left|f^{\prime}(z)-1\right| \leq|b|$ for $|z|<r_{1}$, where r_{1} is given by (4.1). From (1.6) we have

$$
\left|f^{\prime}(z)-1\right|<\sum_{n=2}^{\infty} n a_{n}|z|^{n-1}
$$

Thus $\left|f^{\prime}(z)-1\right|<|b|$ if

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(\frac{n}{|b|}\right) a_{n}|z|^{n-1} \leq 1 \tag{4.2}
\end{equation*}
$$

But, by Theorem 2.1, (4.2) will be true if

$$
\left(\frac{n}{|b|}\right)|z|^{n-1} \leq \frac{\sigma_{n}(\alpha, b)}{|b|^{2}(1-\alpha)},
$$

that is, if

$$
\begin{equation*}
|z| \leq\left[\frac{\sigma_{n}(\alpha, b)}{|b| n(1-\alpha)}\right]^{1 /(n-1)} \quad(n \geq 2) \tag{4.3}
\end{equation*}
$$

Theorem 4.1 follows easily from (4.3).
Theorem 4.2. Let the function $f(z)$ be defined by (1.6) be in the class

$$
\mathcal{Q}_{\mathcal{T}}(\Phi, \Psi ; \alpha, b) .
$$

Then $f(z)$ is starlike of complex order b in $|z|<r_{2}$, where

$$
\begin{equation*}
r_{2}=r_{2}(\alpha, b)=\inf _{n}\left[\frac{\sigma_{n}(\alpha, b)}{|b|(n+|b|-1)(1-\alpha)}\right]^{1 /(n-1)} \quad(n \geq 2) \tag{4.4}
\end{equation*}
$$

The result is sharp for the function $f(z)$ being given by (3.2).
Proof. It is sufficient to show that

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq|b|
$$

for $|z|<r_{2}$, where r_{2} is given by (4.4). From (1.6) we find that

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq \frac{\sum_{n=2}^{\infty}(n-1) a_{n}|z|^{n-1}}{1-\sum_{n=2}^{\infty} a_{n}|z|^{n-1}}
$$

Thus $\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq|b|$ if

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(\frac{n+|b|-1}{|b|}\right) a_{n}|z|^{n-1} \leq 1 \tag{4.5}
\end{equation*}
$$

But, by Theorem 2.1, (4.5) will be true if

$$
\left(\frac{n+|b|-1}{|b|}\right)|z|^{n-1} \leq \frac{\sigma_{n}(\alpha, b)}{|b|^{2}(1-\alpha)}
$$

that is, if

$$
\begin{equation*}
|z| \leq\left[\frac{\sigma_{n}(\alpha, b)}{|b|(n+|b|-1)(1-\alpha)}\right]^{1 /(n-1)} \quad(n \geq 2) \tag{4.6}
\end{equation*}
$$

Theorem 4.2 follows easily from (4.6).
Corollary 4.3. Let the function $f(z)$ be defined by (1.6) be in the class

$$
\mathcal{Q}_{\mathcal{T}}(\Phi, \Psi ; \alpha, b) .
$$

Then $f(z)$ is convex of complex order b in $|z|<r_{3}$, where

$$
\begin{equation*}
r_{3}=r_{3}(\alpha, b)=\inf _{n}\left[\frac{\sigma_{n}(\alpha, b)}{|b| n(n+|b|-1)(1-\alpha)}\right]^{1 /(n-1)} \quad(n \geq 2) . \tag{4.7}
\end{equation*}
$$

The result is sharp for the function $f(z)$ being given by (3.2).

5. Fractional Calculus

In this section, we find it to be convenient to recall here the following of fractional calculus which were introduced by by Owa ([3], [4]).

Definition 5.1. The fractional integral of order δ is defined, for a function $f(z)$, by

$$
\begin{equation*}
D_{z}^{-\delta} f(z)=\frac{1}{\Gamma(\delta)} \int_{0}^{z} \frac{f(\zeta)}{(z-\zeta)^{1-\delta}} d \zeta \quad(\delta>0) \tag{5.1}
\end{equation*}
$$

where the function $f(z)$ is analytic in a simply-connected region of the z-plane containing the origin and the multiplicity of the function $(z-\zeta)^{\delta-1}$ is removed by requiring the function $\log (z-\zeta)$ to be real when $z-\zeta>0$.

Definition 5.2. The fractional derivative of order δ is defined, for a function $f(z)$, by

$$
\begin{equation*}
D_{z}^{\delta} f(z)=\frac{1}{\Gamma(1-\delta)} \frac{d}{d z} \int_{0}^{z} \frac{f(\zeta)}{(z-\zeta)^{1-\delta}} d \zeta \quad(0 \leq \delta<1) \tag{5.2}
\end{equation*}
$$

where the function $f(z)$ is constrained, and the multiplicity of the function $(z-\zeta)^{-\delta}$ is removed as in Definition 5.1.

Definition 5.3. Under the hypotheses of Definition 5.2, the fractional derivative of order $n+\delta$ is defined by

$$
\begin{equation*}
D_{z}^{n+\delta} f(z)=\frac{d^{n}}{d z^{n}} D_{z}^{\delta} f(z) \quad\left(0 \leq \delta<1 ; n \in N_{0}\right) \tag{5.3}
\end{equation*}
$$

Remark 5.4. From Definition 5.1, we have $D_{z}^{0} f(z)=f(z)$, which in view of Definition 5.3 yields $D_{z}^{n+0} f(z)=\frac{d^{n}}{d z^{n}} D_{z}^{0} f(z)=f^{(n)}(z)$. Thus, $\lim _{\delta \rightarrow 0} D_{z}^{-\delta} f(z)=$ $f(z)$ and $\lim _{\delta \rightarrow 0} D_{z}^{1-\delta} f(z)=f^{\prime}(z)$.
Theorem 5.5. Let the function $f(z)$ be defined by (1.6) be in the class

$$
\left.\mathcal{Q}_{\mathcal{T}}(\Phi, \Psi ; \alpha, b)\right)
$$

If $\left\{\sigma_{n}(\alpha, b)\right\}_{n=2}^{\infty}$ is a non-decreasing sequence, then

$$
\begin{equation*}
\left|D_{z}^{-\delta} f(z)\right| \geq \frac{|z|^{1+\delta}}{\Gamma(2+\delta)}\left\{1-\frac{2|b|^{2}(1-\alpha)}{\sigma_{2}(\alpha, b)(2+\delta)}|z|\right\} \tag{5.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|D_{z}^{-\delta} f(z)\right| \leq \frac{|z|^{1+\delta}}{\Gamma(2+\delta)}\left\{1+\frac{2|b|^{2}(1-\alpha)}{\sigma_{2}(\alpha, b)(2+\delta)}|z|\right\} \tag{5.5}
\end{equation*}
$$

for $\delta>0$, and $z \in \mathcal{U}$. The result is sharp.
Proof. Let

$$
\begin{align*}
F(z) & =\Gamma(2+\delta) z^{-\delta} D_{z}^{-\delta} f(z) \\
& =z-\sum_{n=2}^{\infty} \frac{\Gamma(n+1) \Gamma(2+\delta)}{\Gamma(n+1+\delta)} a_{n} z^{n}=z-\sum_{n=2}^{\infty} \Delta(n) a_{n} z^{n}, \tag{5.6}
\end{align*}
$$

where

$$
\begin{equation*}
\Delta(n)=\frac{\Gamma(n+1) \Gamma(2+\delta)}{\Gamma(n+1+\delta)} \quad(n \geq 2) \tag{5.7}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
0<\Delta(n) \leq \Delta(2)=\frac{2}{2+\delta} \tag{5.8}
\end{equation*}
$$

Therefore, by using (3.3) and (5.8), we can see that

$$
\begin{align*}
& |F(z)| \geq|z|-\Delta(2)|z|^{2} \sum_{n=2}^{\infty} a_{n} \geq|z|-\frac{2|b|^{2}(1-\alpha)}{\sigma_{2}(\alpha, b)(2+\delta)}|z|^{2} \tag{5.9}\\
& \quad|F(z)| \leq|z|+\Delta(2)|z|^{2} \sum_{n=2}^{\infty} a_{n} \leq|z|+\frac{2|b|^{2}(1-\alpha)}{\sigma_{2}(\alpha, b)(2+\delta)}|z|^{2} \tag{5.10}
\end{align*}
$$

which prove the inequality of Theorem 5.5. Further, equalities are attained for the function $f(z)$ defined by

$$
\begin{equation*}
D_{z}^{-\delta} f(z)=\frac{z^{1+\delta}}{\Gamma(2+\delta)}\left\{1+\frac{2|b|^{2}(1-\alpha)}{\sigma_{2}(\alpha, b)(2+\delta)} z\right\} \tag{5.11}
\end{equation*}
$$

Theorem 5.6. Let the function $f(z)$ be defined by (1.6) be in the class

$$
\mathcal{Q}_{\mathcal{T}}(\Phi, \Psi ; \alpha, b) .
$$

If $\left\{\sigma_{n}(\alpha, b) / n\right\}_{n=2}^{\infty}$ is a non-decreasing sequence, then

$$
\begin{equation*}
\left|D_{z}^{\delta} f(z)\right| \geq \frac{|z|^{1-\delta}}{\Gamma(2-\delta)}\left\{1-\frac{2|b|^{2}(1-\alpha)}{\sigma_{2}(\alpha, b)(2-\delta)}|z|\right\} \tag{5.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|D_{z}^{\delta} f(z)\right| \leq \frac{|z|^{1-\delta}}{\Gamma(2-\delta)}\left\{1+\frac{2|b|^{2}(1-\alpha)}{\sigma_{2}(\alpha, b)(2-\delta)}|z|\right\} \tag{5.13}
\end{equation*}
$$

for $0 \leq \delta<1$, and $z \in \mathcal{U}$. The result is sharp.
Proof. Let

$$
\begin{align*}
H(z) & =\Gamma(2-\delta) z^{\delta} D_{z}^{\delta} f(z) \\
& =z-\sum_{n=2}^{\infty} \frac{\Gamma(n+1) \Gamma(2-\delta)}{\Gamma(n+1-\delta)} a_{n} z^{n}=z-\sum_{n=2}^{\infty} n \Omega(n) a_{n} z^{n}, \tag{5.14}
\end{align*}
$$

where

$$
\begin{equation*}
\Omega(n)=\frac{\Gamma(n) \Gamma(2-\delta)}{\Gamma(n+1-\delta)} \quad(n \geq 2) \tag{5.15}
\end{equation*}
$$

Since

$$
\begin{equation*}
0<\Omega(n) \leq \Omega(2)=\frac{1}{2-\delta} \tag{5.16}
\end{equation*}
$$

Therefore, by using (3.8) and (5.16), we can see that

$$
\begin{align*}
& |H(z)| \geq|z|-\Delta(2)|z|^{2} \sum_{n=2}^{\infty} n a_{n} \geq|z|-\frac{2|b|^{2}(1-\alpha)}{\sigma_{2}(\alpha, b)(2-\delta)}|z|^{2} \tag{5.17}\\
& |H(z)| \leq|z|+\Delta(2)|z|^{2} \sum_{n=2}^{\infty} a_{n} \leq|z|+\frac{2|b|^{2}(1-\alpha)}{\sigma_{2}(\alpha, b)(2-\delta)}|z|^{2} \tag{5.18}
\end{align*}
$$

which give the inequalities of Theorem 5.6. Since equalities are attained for the function $f(z)$ defined by

$$
\begin{equation*}
D_{z}^{\delta} f(z)=\frac{z^{1-\delta}}{\Gamma(2-\delta)}\left\{1+\frac{2|b|^{2}(1-\alpha)}{\sigma_{2}(\alpha, b)(2-\delta)} z\right\} \tag{5.19}
\end{equation*}
$$

Remark 5.7. Letting $\delta=0$ in Theorem 5.5, we have (3.1) of Theorem 3.1, and letting $\delta \longrightarrow 1$ in Theorem 5.6, we have (3.6) in Theorem 3.3.

6. Integral Means Inequalities

The following subordination result will be required in our present investigation.

Lemma 6.1 ([1]). If f and g are analytic in \mathcal{U} with $g \prec f$, then

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|g\left(r e^{i \theta}\right)\right|^{\delta} d \theta \leq \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{\delta} d \theta \tag{6.1}
\end{equation*}
$$

where $\delta>0, z=r e^{i \theta}$ and $0<r<1$.
Applying Theorem 2.1 and Lemma 6.1, we prove the following
Theorem 6.2. Let $\delta>0$. If $f(z) \in \mathcal{Q}_{\mathcal{T}}(\Phi, \Psi ; \alpha, b)$, and $\left\{\sigma_{n}(\alpha, b)\right\}_{n=2}^{\infty}$ is non-decreasing sequence, then, for $z=r e^{i \theta}, 0<r<1$, we have

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{\delta} d \theta \leq \int_{0}^{2 \pi}\left|f_{2}\left(r e^{i \theta}\right)\right|^{\delta} d \theta \tag{6.2}
\end{equation*}
$$

where $f_{2}(z)=z-|b|^{2}(1-\alpha) / \sigma_{2}(\alpha, b) z^{2}$.
Proof. Let

$$
f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n} \quad\left(a_{n} \geq 0, z \in \mathcal{U}\right)
$$

and

$$
f_{2}(z)=z-|b|^{2}(1-\alpha) / \sigma_{2}(\alpha, b) z^{2}
$$

then we must show that

$$
\int_{0}^{2 \pi}\left|1-\sum_{n=2}^{\infty} a_{n} z^{n-1}\right|^{\delta} d \theta \leq \int_{0}^{2 \pi}\left|1-\frac{|b|^{2}(1-\alpha)}{\sigma_{2}(\alpha, b)} z\right|^{\delta} d \theta
$$

By Lemma 6.1, it suffices to show that

$$
1-\sum_{n=2}^{\infty} a_{n} z^{n-1} \prec 1-\frac{|b|^{2}(1-\alpha)}{\sigma_{2}(\alpha, b)} z .
$$

Setting

$$
\begin{equation*}
1-\sum_{n=2}^{\infty} a_{n} z^{n-1}=1-\frac{|b|^{2}(1-\alpha)}{\sigma_{2}(\alpha, b)} w(z) . \tag{6.3}
\end{equation*}
$$

From (6.2) and (2.1), we obtain

$$
\begin{aligned}
|w(z)| & =\left|\sum_{n=2}^{\infty} \frac{\sigma_{2}(\alpha, b)}{|b|^{2}(1-\alpha)} a_{n} z^{n-1}\right| \\
& \leq|z| \sum_{n=2}^{\infty} \frac{\sigma_{n}(\alpha, b)}{|b|^{2}(1-\alpha)} a_{n} \leq|z| .
\end{aligned}
$$

This the completes the proof of the theorem.

Remark 6.3. Taking different choices of $\Phi(z)$ and $\Psi(z)$ in Theorem 6.2, we can obtain integral means inequalities for functions belonging the classes $\mathcal{S}_{\alpha}^{*}[b]$, $\mathcal{C}_{\alpha}[b]$ and $\mathcal{P}_{\alpha}[b]$.

7. Neighborhoods of The Class $\mathcal{Q}_{\mathcal{T}}(\Phi, \Psi ; \alpha, b)$.

For $f \in \mathcal{T}$ of the form (1.6) and $\delta \geq 0$, we define

$$
\begin{equation*}
M_{\delta}^{p}(f)=\left\{g \in \mathcal{T}: g(z)=z-\sum_{n=2}^{\infty} b_{n} z^{n}, \sum_{n=2}^{\infty} n^{p+1}\left|a_{n}-b_{n}\right| \leq \delta\right\}, \tag{7.1}
\end{equation*}
$$

which was called the p - δ-neighborhood of f. So, for $e(z)=z$, we see that

$$
\begin{equation*}
M_{\delta}^{p}(e)=\left\{g \in \mathcal{T}: g(z)=z-\sum_{n=2}^{\infty} b_{n} z^{n}, \sum_{n=2}^{\infty} n^{p+1}\left|b_{n}\right| \leq \delta\right\}, \tag{7.2}
\end{equation*}
$$

where p is a fixed positive integer. Note that $M_{\delta}^{0}(f) \equiv N_{\delta}(f)$ and $M_{\delta}^{1}(f)$ $\equiv M_{\delta}(f) . N_{\delta}(f)$ called a δ-neighborhood of f by Ruscheweyh [5] and $M_{\delta}(f)$ was defined by Silverman [6].

In this section, we consider p - δ-neighborhood for function in the class

$$
\mathcal{Q}_{\mathcal{T}}(\Phi, \Psi ; \alpha, b) .
$$

Theorem 7.1. If $\left\{\sigma_{n}(\alpha, b) / n^{p+1}\right\}_{n=2}^{\infty}$ is a non-decreasing sequence, then,

$$
\mathcal{Q}_{\mathcal{T}}(\Phi, \Psi ; \alpha, b) \subset M_{\delta}^{p}(e),
$$

where $\delta=2^{p+1}|b|^{2}(1-\alpha) / \sigma_{2}(\alpha, b)$.
Proof. It follows from (2.1) that if $f(z) \in \mathcal{Q}_{\mathcal{T}}(\Phi, \Psi ; \alpha, b)$, then

$$
\begin{equation*}
\sum_{n=2}^{\infty} n^{p+1} a_{n} \leq \frac{2^{p+1}|b|^{2}(1-\alpha)}{\sigma_{2}(\alpha, b)} \tag{7.3}
\end{equation*}
$$

This gives that $\mathcal{Q}_{\mathcal{T}}(\Phi, \Psi ; \alpha, b) \subset M_{\delta}^{p}(e)$.
Putting $\Phi(z)=z /(1-z)^{2}$ and $\Psi(z)=z /(1-z)$ in Theorem 7.1, we have
Corollary 7.2. $\mathcal{S}_{\alpha}^{*}[b] \subset M_{\delta}^{p}(e)$, where $\delta=2^{p+1}|b|^{2}(1-\alpha) /[\operatorname{Re}(b)+(1-$ a) $\left.|b|^{2}\right]$.

Putting $\Phi(z)=\left(z+z^{2}\right) /(1-z)^{3}$ and $\Psi(z)=z /(1-z)^{2}$ in Theorem 7.1, we have
Corollary 7.3. $\mathcal{C}_{\alpha}[b] \subset M_{\delta}^{p}(e)$, where $\delta=2^{p}|b|^{2}(1-\alpha) /\left[\operatorname{Re}(b)+(1-\alpha)|b|^{2}\right]$.
Putting $\Phi(z)=z /(1-z)^{2}$ and $\Psi(z)=z$ in Theorem 7.1, we have
Corollary 7.4. $\mathcal{P}_{\alpha}[b] . \subset M_{\delta}^{p}(e)$, where $\delta=2^{p}|b|^{2}(1-\alpha) / \operatorname{Re}(b)$.

References

[1] J. E. Littlewood. On inequalities in the theory of functions. Proc. London Math Soc., 23:481-519, 1925.
[2] M. Nasr and M. Aouf. Starlike function of complex order. J. Nat. Sci. Math., 25(1):1-12, 1985.
[3] S. Owa. On the distortion theorems. I. Kyungpook Math. J., 18:53-59, 1978.
[4] S. Owa. Some applications of the fractional calculus. In Fractional calculus, Proc. Workshop, Ross Priory, Univ. Strathclyde/Engl. 1984, Res. Notes Math. 138, 164-175 . 1985.
[5] S. Ruscheweyh. Neighborhoods of univalent functions. Proc. Am. Math. Soc., 81:521-527, 1981.
[6] H. Silverman. Neighborhoods of classes of analytic functions. Far East J. Math. Sci., 3(2):165-169, 1995.
[7] P. Wiatrowski. On the coefficients of some family of holomorphic functions. Zeszyty Nauk. Uniw. Lódz Nauk. Mat.-Przyrod, 2(39):75-85, 1970.

Received December 8, 2005.

Department of Mathematics,
Al al-Bayt University, Po Box Number 130095, Mafraq, Jordan
E-mail address: bafrasin@yaoo.com

[^0]: 2000 Mathematics Subject Classification. 30C45.
 Key words and phrases. Analytic functions, Coefficient inequalities, Distortion theorems, Fractional calculus, Integral means, Neighborhoods.

