Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 22 (2006), 179–191 www.emis.de/journals ISSN 1786-0091

FAMILY OF ANALYTIC FUNCTIONS OF COMPLEX ORDER

B.A. FRASIN

ABSTRACT. In this paper, we introduce the class $Q_T(\Phi, \Psi; \alpha, b)$ of analytic functions of complex order *b* and type $\alpha(0 \leq \alpha < 1)$. Coefficient inequalities, distortion theorems, closure theorems, radii of close-to-convexity, starlikeness, convexity and fractional calculus for functions belonging to the class $Q_T(\Phi, \Psi; \alpha, b)$ are obtained. Furthermore, we obtain the integral means inequality for the function f(z) belongs to the class $Q_T(\Phi, \Psi; \alpha, b)$ with the extremal function of this class. Also, we consider q- δ -neighborhood for functions in this class.

1. INTRODUCTION AND DEFINITIONS

Let \mathcal{A} denote the class of functions of the form:

(1.1)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the open unit disk $\mathcal{U} = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$. A function $f(z) \in \mathcal{A}$ is said to be starlike of complex order b ($b \in \mathbb{C} \setminus \{0\}$) and type $\alpha(0 \le \alpha < 1)$, that is $f(z) \in \mathcal{S}^*_{\alpha}(b)$, if and only if

(1.2)
$$\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{zf'(z)}{f(z)}-1\right)\right\} > \alpha \qquad (z \in \mathcal{U}; b \in \mathbb{C} \setminus \{0\}),$$

and is said to be convex of complex order b ($b \in \mathbb{C} \setminus \{0\}$) and type α ($0 \le \alpha < 1$), denoted by $\mathcal{C}_{\alpha}(b)$ if and only if

(1.3)
$$\operatorname{Re}\left\{1+\frac{1}{b}\frac{zf''(z)}{f'(z)}\right\} > \alpha \qquad (z \in \mathcal{U}; \ b \in \mathbb{C} \setminus \{0\}).$$

Note that $\mathcal{S}_{_{0}}^{*}(b) = \mathcal{S}^{*}(b)$ and $\mathcal{C}_{_{0}}(b) = \mathcal{C}(b)$ the classes considered earlier by Nasr and Aouf [2] and Wiatrowski [7].

²⁰⁰⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. Analytic functions, Coefficient inequalities, Distortion theorems, Fractional calculus, Integral means, Neighborhoods.

Further, let $\mathcal{P}_{\alpha}(b)$ denote the class of functions $f(z) \in \mathcal{A}$ such that

(1.4)
$$\operatorname{Re}\left\{1+\frac{1}{b}(f'(z)-1)\right\} > \alpha \qquad (z \in \mathcal{U}; \ b \in \mathbb{C} \setminus \{0\}).$$

Given two analytic functions $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ and $g(z) = z + \sum_{n=2}^{\infty} c_n z^n$ their convolution or Hadamard product f(z) * h(z), is defined by

(1.5)
$$f(z) * g(z) = z + \sum_{n=2}^{\infty} a_n c_n z^n \qquad (z \in \mathcal{U}).$$

Let \mathcal{T} denote the subclass of \mathcal{A} whose members have the form:

(1.6)
$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n, \qquad (a_n \ge 0)$$

we denote by $\mathcal{S}^*_{\alpha}[b]$, $\mathcal{C}_{\alpha}[b]$ and $\mathcal{P}_{\alpha}[b]$, respectively, the classes obtained by taking the intersections of $\mathcal{S}^*_{\alpha}(b)$, $\mathcal{C}_{\alpha}(b)$, and $\mathcal{P}_{\alpha}(b)$ with \mathcal{T} , that is,

(1.7)
$$\mathcal{S}^*_{\alpha}[b] = \mathcal{S}^*_{\alpha}(b) \cap \mathcal{T}, \ \mathcal{C}_{\alpha}[b] = \mathcal{C}_{\alpha}(b) \cap \mathcal{T}, \ \mathcal{P}_{\alpha}[b] = \mathcal{P}_{\alpha}(b) \cap \mathcal{T}.$$

We can obtain the above classes by using the following:

Definition 1.1. Given $b \ (b \in \mathbb{C} \setminus \{0\})$ and $\alpha \ (0 \le \alpha < 1)$. Let the functions

(1.8)
$$\Phi(z) = z + \sum_{n=2}^{\infty} \lambda_n z^n \text{ and } \Psi(z) = z + \sum_{n=2}^{\infty} \mu_n z^n$$

be analytic in \mathcal{U} , such that $\lambda_n \geq 0, \mu_n \geq 0$ and $\lambda_n \geq \mu_n$ for $n \geq 2$, we say that $f(z) \in \mathcal{A}$ is in $\mathcal{Q}(\Phi, \Psi; \alpha, b)$ if $f(z) * \Psi(z) \neq 0$ and

(1.9)
$$\operatorname{Re}\left\{1 + \frac{1}{b}\left(\frac{f(z) * \Phi(z)}{f(z) * \Psi(z)} - 1\right)\right\} > \alpha \qquad (z \in \mathcal{U})$$

Further, let

(1.10)
$$\mathcal{Q}_{\mathcal{T}}(\Phi, \Psi; \alpha, b) = \mathcal{Q}(\Phi, \Psi; \alpha, b) \cap \mathcal{T}.$$

We note that, by suitably choosing $\Phi(z), \Psi(z)$ we obtain the above subclasses of \mathcal{T} of complex order b and type

$$\alpha : \mathcal{Q}_{\mathcal{T}}\left(\frac{z}{(1-z)^2}, \frac{z}{1-z}; \alpha, b\right) = \mathcal{S}^*_{\alpha}[b]; \mathcal{Q}_{\mathcal{T}}\left(\frac{z+z^2}{(1-z)^3}, \frac{z}{(1-z)^2}; \alpha, b\right) = \mathcal{C}_{\alpha}[b];$$

and

$$\mathcal{Q}_{\mathcal{T}}\left(\frac{z}{(1-z)^2}, z; \alpha, b\right) = \mathcal{P}_{\alpha}[b].$$

In fact many new subclasses of \mathcal{T} of complex order b and type α can be defined and studied by suitably choosing $\Phi(z), \Psi(z)$. For example

$$\mathcal{Q}_{\mathcal{T}}\left(\frac{z}{1-z}, z; \alpha, b\right) = \left\{f(z) \in \mathcal{T}: \operatorname{Re}\left\{1 + \frac{1}{b}\left(\frac{f(z)}{z} - 1\right)\right\} > \alpha\right\},\$$

and

$$\mathcal{Q}_{\mathcal{T}}\left(\frac{z+z^2}{(1-z)^3}, z; \alpha, b\right) = \left\{f(z) \in \mathcal{T} : \operatorname{Re}\left\{1 + \frac{1}{b}\left((zf'(z))' - 1\right)\right\} > \alpha\right\}$$

and so on.

In this paper, we shall obtain coefficient inequalities, distortion theorems, closure theorems, radii of close-to-convexity, starlikeness, convexity and fractional calculus for functions belonging to the class $Q_T(\Phi, \Psi; \alpha, b)$. Furthermore, we obtain the integral means inequality for the function f(z) belongs to the class $Q_T(\Phi, \Psi; \alpha, b)$ with the extremal function of this class. Also, we consider q- δ -neighborhood for functions in this class.

2. Coefficient inequalities

Theorem 2.1. Let the function f(z) defined by (1.6) be in the class

 $\mathcal{Q}_{\mathcal{T}}(\Phi, \Psi; \alpha, b).$

Then

(2.1)
$$\sum_{n=2}^{\infty} \left[(\operatorname{Re}(b))\lambda_n + ((1-\alpha)|b|^2 - \operatorname{Re}(b))\mu_n \right] |a_n| \le |b|^2 (1-\alpha)$$

The result (2.1) is sharp.

Proof. Suppose that $f(z) \in \mathcal{Q}_{\mathcal{T}}(\Phi, \Psi; \alpha, b)$. Then

(2.2)
$$\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{f(z)*\Phi(z)}{f(z)*\Psi(z)}-1\right)\right\} > \alpha \qquad (z \in \mathcal{U}),$$

or equivalently

(2.3)
$$\operatorname{Re}\left\{\frac{1}{b}\left(\frac{-\sum_{n=2}^{\infty}(\lambda_n-\mu_n)a_nz^{n-1}}{1-\sum_{n=2}^{\infty}\mu_na_nz^{n-1}}\right)\right\} > \alpha-1 \qquad (z \in \mathcal{U})$$

Now choose values of z on the real axis and let $z \to 1^-$ through real values to find that

(2.4)
$$\left(\frac{-\sum_{n=2}^{\infty} (\lambda_n - \mu_n) |a_n|}{1 - \sum_{n=2}^{\infty} \mu_n |a_n|}\right) \operatorname{Re} \frac{1}{b} \ge \alpha - 1,$$

whence

(2.5)
$$\left(\frac{\sum\limits_{n=2}^{\infty} (\lambda_n - \mu_n) |a_n|}{1 - \sum\limits_{n=2}^{\infty} \mu_n |a_n|}\right) \frac{\operatorname{Re}(b)}{|b|^2} \le 1 - \alpha,$$

and so

(2.6)
$$\sum_{n=2}^{\infty} (\lambda_n - \mu_n) |a_n| \le \frac{|b|^2}{\operatorname{Re}(b)} (1 - \alpha) \left(1 - \sum_{n=2}^{\infty} \mu_n |a_n| \right),$$

which is equivalent to (2.1).

The equality in (2.1) holds true for the functions f(z) defined by

(2.7)
$$f(z) = z - \frac{|b|^2 (1-\alpha)}{(\operatorname{Re}(b))\lambda_n + ((1-\alpha)|b|^2 - \operatorname{Re}(b))\mu_n} z^n \qquad (n \ge 2).$$

Corollary 2.2. Let the function f(z) defined by (1.6) be in the class $\mathcal{Q}_{\mathcal{T}}(\Phi, \Psi; \alpha, b).$

Then

(2.8)
$$|a_n| \le \frac{|b|^2 (1-\alpha)}{(\operatorname{Re}(b))\lambda_n + ((1-\alpha)|b|^2 - \operatorname{Re}(b))\mu_n} \qquad (n \ge 2).$$

The result (2.8) is sharp for the function f(z) given by (2.7).

Putting $\Phi(z) = z/(1-z)^2$ and $\Psi(z) = z/(1-z)$ in Theorem 2.1, we have

Corollary 2.3. Let the function f(z) defined by (1.6) be in the class $S^*_{\alpha}[b]$. Then

(2.9)
$$\sum_{n=2}^{\infty} \left[(\operatorname{Re}(b))n + \left((1-\alpha) |b|^2 - \operatorname{Re}(b) \right) \right] |a_n| \le |b|^2 (1-\alpha)$$

The result is sharp for

$$f(z) = z - \frac{|b|^2 (1 - \alpha)}{(\operatorname{Re}(b))n + ((1 - \alpha) |b|^2 - \operatorname{Re}(b))} z^n \qquad (n \ge 2).$$

Putting $\Phi(z) = (z + z^2)/(1 - z)^3$ and $\Psi(z) = z/(1 - z)^2$ in Theorem 2.1, we have

Corollary 2.4. Let the function f(z) defined by (1.6) be in the class $C^*_{\alpha}[b]$. Then

(2.10)
$$\sum_{n=2}^{\infty} \left[(\operatorname{Re}(b))n^2 + ((1-\alpha)|b|^2 - \operatorname{Re}(b))n \right] |a_n| \le |b|^2 (1-\alpha)$$

The result is sharp for

$$f(z) = z - \frac{|b|^2 (1 - \alpha)}{(\operatorname{Re}(b))n^2 + ((1 - \alpha) |b|^2 - \operatorname{Re}(b)) n} z^n \qquad (n \ge 2).$$

Putting $\Phi(z) = z/(1-z)^2$ and $\Psi(z) = z$ in Theorem 2.1, we have

Corollary 2.5. Let the function f(z) defined by (1.6) be in the class $\mathcal{P}^*_{\alpha}[b]$. Then

(2.11)
$$\sum_{n=2}^{\infty} \left[(\operatorname{Re}(b))n \right] |a_n| \le |b|^2 (1-\alpha)$$

 \sim

The result is sharp for

$$f(z) = z - \frac{|b|^2 (1-\alpha)}{(\operatorname{Re}(b))n} z^n \qquad (n \ge 2).$$

For the notational convenience we shall henceforth denote

(2.12)
$$\sigma_n(\alpha, b) = (\operatorname{Re}(b))\lambda_n + ((1-\alpha)|b|^2 - \operatorname{Re}(b))\mu_n \qquad (n \ge 2).$$

3. Growth and distortion theorems

Theorem 3.1. Let the function f(z) defined by (1.6) be in the class

$$\mathcal{Q}_{\mathcal{T}}(\Phi,\Psi;\alpha,b).$$

If $\{\sigma_n(\alpha, b)\}_{n=2}^{\infty}$ is a non-decreasing sequence, then

(3.1)
$$|z| - \frac{|b|^2 (1-\alpha)}{\sigma_2(\alpha,b)} |z|^2 \le |f(z)| \le |z| + \frac{|b|^2 (1-\alpha)}{\sigma_2(\alpha,b)} |z|^2$$

where $\sigma_2(\alpha, b) = (\operatorname{Re}(b))\lambda_2 + ((1 - \alpha) |b|^2 - \operatorname{Re}(b))\mu_2$. The equality in (3.1) is attained for the function f(z) given by

(3.2)
$$f(z) = z - \frac{|b|^2 (1-\alpha)}{\sigma_2(\alpha, b)} z^2.$$

Proof. Note that

$$\sigma_2(\alpha, b) \sum_{n=2}^{\infty} |a_n| \le \sum_{n=2}^{\infty} \sigma_n(\alpha, b) |a_n| \le |b|^2 (1-\alpha)$$

or, equivalently

(3.3)
$$\sum_{n=2}^{\infty} |a_n| \le \frac{|b|^2 (1-\alpha)}{\sigma_2(\alpha, b)},$$

this last inequality following from Theorem 2.1. Thus we have

(3.4)
$$|f(z)| \ge |z| - \sum_{n=2}^{\infty} |a_n| |z|^n \ge |z| - |z|^2 \sum_{n=2}^{\infty} |a_n| \ge |z| - \frac{|b|^2 (1-\alpha)}{\sigma_2(\alpha,b)} |z|^2$$

and

$$(3.5) |f(z)| \le |z| + \sum_{n=2}^{\infty} |a_n| |z|^n \le |z| + |z|^2 \sum_{n=2}^{\infty} |a_n| \le |z| + \frac{|b|^2 (1-\alpha)}{\sigma_2(\alpha, b)} |z|^2$$

for $z \in \mathcal{U}$. From the inequalities (3.4) and (3.5) we obtain the inequality (3.1).

Theorem 3.2. The disk |z| < 1 is mapped onto a domain that contains the disk

$$|w| < \frac{\sigma_2(\alpha, b) - |b|^2 (1 - \alpha)}{\sigma_2(\alpha, b)}$$

by any $f(z) \in \mathcal{Q}_{\mathcal{T}}(\Phi, \Psi; \alpha, b)$. The theorem is sharp with the function f(z) given by (3.2).

Theorem 3.3. Let the function f(z) defined by (1.6) be in the class $\mathcal{Q}_{\mathcal{T}}(\Phi, \Psi; \alpha, b).$

If $\{\sigma_n(\alpha, b)/n\}_{n=2}^{\infty}$ is a non-decreasing sequence, then

(3.6)
$$1 - \frac{2|b|^2(1-\alpha)}{\sigma_2(\alpha,b)}|z| \le |f'(z)| \le 1 + \frac{2|b|^2(1-\alpha)}{\sigma_2(\alpha,b)}|z|.$$

The equality in (3.6) is attained for the function f(z) given by (3.2).

Proof. In view of Theorem 2.1,

(3.7)
$$\frac{\sigma_2(\alpha, b)}{2} \sum_{n=2}^{\infty} n |a_n| \le \sum_{n=2}^{\infty} \sigma_n(\alpha, b) |a_n| \le |b|^2 (1 - \alpha).$$

that is,

(3.8)
$$\sum_{n=2}^{\infty} n |a_n| \le \frac{2 |b|^2 (1-\alpha)}{\sigma_2(\alpha, b)}$$

Form (3.8), we can easily prove that

$$(3.9) |f'(z)| \ge 1 - \sum_{n=2}^{\infty} n |a_n| |z|^{n-1} \ge 1 - |z| \sum_{n=2}^{\infty} n |a_n| \ge 1 - \frac{2 |b|^2 (1-\alpha)}{\sigma_2(\alpha, b)} |z|$$

and

$$(3.10) |f'(z)| \le 1 + \sum_{n=2}^{\infty} n |a_n| |z|^{n-1} \le 1 + |z| \sum_{n=2}^{\infty} n |a_n| \le 1 + \frac{2 |b|^2 (1-\alpha)}{\sigma_2(\alpha, b)} |z|$$

for $z \in \mathcal{U}$. Combining the inequalities (3.9) and (3.10) we obtain the inequality (3.6).

4. RADII OF CLOSE-TO-CONVEXITY, STARLIKENESS AND CONVEXITY

Theorem 4.1. Let the function f(z) be defined by (1.6) be in the class

$$\mathcal{Q}_{\mathcal{T}}(\Phi,\Psi;\alpha,b).$$

Then f(z) is close-to-convex of complex order b in $|z| < r_1$, where

(4.1)
$$r_1 = r_1(\alpha, b) = \inf_n \left[\frac{\sigma_n(\alpha, b)}{|b| n (1 - \alpha)} \right]^{1/(n-1)} \quad (n \ge 2).$$

The result is sharp for the function f(z) being given by (3.2).

Proof. We must show that $|f'(z) - 1| \le |b|$ for $|z| < r_1$, where r_1 is given by (4.1). From (1.6) we have

$$|f'(z) - 1| < \sum_{n=2}^{\infty} na_n |z|^{n-1}.$$

Thus |f'(z) - 1| < |b| if

(4.2)
$$\sum_{n=2}^{\infty} \left(\frac{n}{|b|}\right) a_n |z|^{n-1} \le 1.$$

But, by Theorem 2.1, (4.2) will be true if

$$\left(\frac{n}{|b|}\right)|z|^{n-1} \le \frac{\sigma_n(\alpha, b)}{|b|^2 (1-\alpha)},$$

that is, if

(4.3)
$$|z| \le \left[\frac{\sigma_n(\alpha, b)}{|b| n (1 - \alpha)}\right]^{1/(n-1)} \quad (n \ge 2)$$

Theorem 4.1 follows easily from (4.3).

Theorem 4.2. Let the function f(z) be defined by (1.6) be in the class

 $\mathcal{Q}_{\mathcal{T}}(\Phi, \Psi; \alpha, b).$

Then f(z) is starlike of complex order b in $|z| < r_2$, where

(4.4)
$$r_2 = r_2(\alpha, b) = \inf_n \left[\frac{\sigma_n(\alpha, b)}{|b|(n+|b|-1)(1-\alpha)} \right]^{1/(n-1)} \quad (n \ge 2).$$

The result is sharp for the function f(z) being given by (3.2).

Proof. It is sufficient to show that

$$\left|\frac{zf'(z)}{f(z)} - 1\right| \le |b|$$

for $|z| < r_2$, where r_2 is given by (4.4). From (1.6) we find that

$$\left|\frac{zf'(z)}{f(z)} - 1\right| \le \frac{\sum_{n=2}^{\infty} (n-1)a_n |z|^{n-1}}{1 - \sum_{n=2}^{\infty} a_n |z|^{n-1}}$$

Thus $\left|\frac{zf'(z)}{f(z)} - 1\right| \le |b|$ if (4.5) $\sum_{n=2}^{\infty} \left(\frac{n+|b|-1}{|b|}\right) a_n |z|^{n-1} \le 1$

But, by Theorem 2.1, (4.5) will be true if

$$\left(\frac{n+|b|-1}{|b|}\right)|z|^{n-1} \le \frac{\sigma_n(\alpha,b)}{|b|^2(1-\alpha)}$$

that is, if

(4.6)
$$|z| \le \left[\frac{\sigma_n(\alpha, b)}{|b|(n+|b|-1)(1-\alpha)}\right]^{1/(n-1)} \quad (n \ge 2).$$

Theorem 4.2 follows easily from (4.6).

Corollary 4.3. Let the function f(z) be defined by (1.6) be in the class

 $\mathcal{Q}_{\mathcal{T}}(\Phi, \Psi; \alpha, b).$

Then f(z) is convex of complex order b in $|z| < r_3$, where

(4.7)
$$r_3 = r_3(\alpha, b) = \inf_n \left[\frac{\sigma_n(\alpha, b)}{|b| n(n+|b|-1) (1-\alpha)} \right]^{1/(n-1)} \quad (n \ge 2).$$

The result is sharp for the function f(z) being given by (3.2).

5. FRACTIONAL CALCULUS

In this section, we find it to be convenient to recall here the following of fractional calculus which were introduced by by Owa ([3], [4]).

Definition 5.1. The fractional integral of order δ is defined, for a function f(z), by

(5.1)
$$D_z^{-\delta}f(z) = \frac{1}{\Gamma(\delta)} \int_0^z \frac{f(\zeta)}{(z-\zeta)^{1-\delta}} d\zeta \qquad (\delta > 0),$$

where the function f(z) is analytic in a simply-connected region of the z-plane containing the origin and the multiplicity of the function $(z - \zeta)^{\delta-1}$ is removed by requiring the function $\log(z - \zeta)$ to be real when $z - \zeta > 0$.

Definition 5.2. The fractional derivative of order δ is defined, for a function f(z), by

(5.2)
$$D_z^{\delta} f(z) = \frac{1}{\Gamma(1-\delta)} \frac{d}{dz} \int_0^z \frac{f(\zeta)}{(z-\zeta)^{1-\delta}} d\zeta \qquad (0 \le \delta < 1),$$

where the function f(z) is constrained, and the multiplicity of the function $(z - \zeta)^{-\delta}$ is removed as in Definition 5.1.

Definition 5.3. Under the hypotheses of Definition 5.2, the fractional derivative of order $n + \delta$ is defined by

(5.3)
$$D_z^{n+\delta}f(z) = \frac{d^n}{dz^n} D_z^{\delta}f(z) \qquad (0 \le \delta < 1; n \in N_0).$$

186

Remark 5.4. From Definition 5.1, we have $D_z^0 f(z) = f(z)$, which in view of Definition 5.3 yields $D_z^{n+0} f(z) = \frac{d^n}{dz^n} D_z^0 f(z) = f^{(n)}(z)$. Thus, $\lim_{\delta \to 0} D_z^{-\delta} f(z) = f(z)$ and $\lim_{\delta \to 0} D_z^{1-\delta} f(z) = f'(z)$.

Theorem 5.5. Let the function f(z) be defined by (1.6) be in the class $\mathcal{Q}_{\mathcal{T}}(\Phi, \Psi; \alpha, b)).$

If $\{\sigma_n(\alpha, b)\}_{n=2}^{\infty}$ is a non-decreasing sequence, then

(5.4)
$$|D_z^{-\delta} f(z)| \ge \frac{|z|^{1+\delta}}{\Gamma(2+\delta)} \left\{ 1 - \frac{2|b|^2(1-\alpha)}{\sigma_2(\alpha,b)(2+\delta)} |z| \right\}$$

and

(5.5)
$$|D_z^{-\delta} f(z)| \le \frac{|z|^{1+\delta}}{\Gamma(2+\delta)} \left\{ 1 + \frac{2|b|^2(1-\alpha)}{\sigma_2(\alpha,b)(2+\delta)} |z| \right\}$$

for $\delta > 0$, and $z \in \mathcal{U}$. The result is sharp.

Proof. Let

(5.6)
$$F(z) = \Gamma(2+\delta)z^{-\delta}D_z^{-\delta}f(z)$$
$$= z - \sum_{n=2}^{\infty} \frac{\Gamma(n+1)\Gamma(2+\delta)}{\Gamma(n+1+\delta)} a_n z^n = z - \sum_{n=2}^{\infty} \Delta(n)a_n z^n,$$

where

(5.7)
$$\Delta(n) = \frac{\Gamma(n+1)\Gamma(2+\delta)}{\Gamma(n+1+\delta)} \qquad (n \ge 2).$$

It is easy to see that

(5.8)
$$0 < \Delta(n) \le \Delta(2) = \frac{2}{2+\delta}$$

Therefore, by using (3.3) and (5.8), we can see that

(5.9)
$$|F(z)| \ge |z| - \Delta(2) |z|^2 \sum_{n=2}^{\infty} a_n \ge |z| - \frac{2 |b|^2 (1-\alpha)}{\sigma_2(\alpha, b)(2+\delta)} |z|^2$$

(5.10)
$$|F(z)| \le |z| + \Delta(2) |z|^2 \sum_{n=2}^{\infty} a_n \le |z| + \frac{2 |b|^2 (1-\alpha)}{\sigma_2(\alpha, b)(2+\delta)} |z|^2$$

which prove the inequality of Theorem 5.5. Further, equalities are attained for the function f(z) defined by

(5.11)
$$D_z^{-\delta} f(z) = \frac{z^{1+\delta}}{\Gamma(2+\delta)} \left\{ 1 + \frac{2|b|^2 (1-\alpha)}{\sigma_2(\alpha,b)(2+\delta)} z \right\}$$

Theorem 5.6. Let the function f(z) be defined by (1.6) be in the class

 $\mathcal{Q}_{\mathcal{T}}(\Phi,\Psi;\alpha,b).$

If $\{\sigma_n(\alpha, b)/n\}_{n=2}^{\infty}$ is a non-decreasing sequence, then

(5.12)
$$|D_z^{\delta} f(z)| \ge \frac{|z|^{1-\delta}}{\Gamma(2-\delta)} \left\{ 1 - \frac{2|b|^2(1-\alpha)}{\sigma_2(\alpha,b)(2-\delta)} |z| \right\}$$

and

(5.13)
$$\left| D_{z}^{\delta} f(z) \right| \leq \frac{|z|^{1-\delta}}{\Gamma(2-\delta)} \left\{ 1 + \frac{2|b|^{2}(1-\alpha)}{\sigma_{2}(\alpha,b)(2-\delta)} |z| \right\}$$

for $0 \leq \delta < 1$, and $z \in \mathcal{U}$. The result is sharp.

Proof. Let

(5.14)
$$H(z) = \Gamma(2-\delta)z^{\delta}D_{z}^{\delta}f(z)$$
$$= z - \sum_{n=2}^{\infty} \frac{\Gamma(n+1)\Gamma(2-\delta)}{\Gamma(n+1-\delta)}a_{n}z^{n} = z - \sum_{n=2}^{\infty}n\Omega(n)a_{n}z^{n},$$

where

(5.15)
$$\Omega(n) = \frac{\Gamma(n)\Gamma(2-\delta)}{\Gamma(n+1-\delta)} \qquad (n \ge 2).$$

Since

(5.16)
$$0 < \Omega(n) \le \Omega(2) = \frac{1}{2-\delta}.$$

Therefore, by using (3.8) and (5.16), we can see that

(5.17)
$$|H(z)| \ge |z| - \Delta(2) |z|^2 \sum_{n=2}^{\infty} na_n \ge |z| - \frac{2 |b|^2 (1-\alpha)}{\sigma_2(\alpha, b)(2-\delta)} |z|^2$$

(5.18)
$$|H(z)| \le |z| + \Delta(2) |z|^2 \sum_{n=2}^{\infty} a_n \le |z| + \frac{2 |b|^2 (1-\alpha)}{\sigma_2(\alpha, b)(2-\delta)} |z|^2$$

which give the inequalities of Theorem 5.6. Since equalities are attained for the function f(z) defined by

(5.19)
$$D_{z}^{\delta}f(z) = \frac{z^{1-\delta}}{\Gamma(2-\delta)} \left\{ 1 + \frac{2|b|^{2}(1-\alpha)}{\sigma_{2}(\alpha,b)(2-\delta)}z \right\}$$

Remark 5.7. Letting $\delta = 0$ in Theorem 5.5, we have (3.1) of Theorem 3.1, and letting $\delta \longrightarrow 1$ in Theorem 5.6, we have (3.6) in Theorem 3.3.

6. INTEGRAL MEANS INEQUALITIES

The following subordination result will be required in our present investigation.

Lemma 6.1 ([1]). If f and g are analytic in \mathcal{U} with $g \prec f$, then

(6.1)
$$\int_{0}^{2\pi} \left| g(re^{i\theta}) \right|^{\delta} d\theta \leq \int_{0}^{2\pi} \left| f(re^{i\theta}) \right|^{\delta} d\theta$$

where $\delta > 0$, $z = re^{i\theta}$ and 0 < r < 1.

Applying Theorem 2.1 and Lemma 6.1, we prove the following

Theorem 6.2. Let $\delta > 0$. If $f(z) \in \mathcal{Q}_T(\Phi, \Psi; \alpha, b)$, and $\{\sigma_n(\alpha, b)\}_{n=2}^{\infty}$ is non-decreasing sequence, then, for $z = re^{i\theta}$, 0 < r < 1, we have

(6.2)
$$\int_{0}^{2\pi} \left| f(re^{i\theta}) \right|^{\delta} d\theta \leq \int_{0}^{2\pi} \left| f_2(re^{i\theta}) \right|^{\delta} d\theta$$

where $f_2(z) = z - |b|^2 (1 - \alpha) / \sigma_2(\alpha, b) z^2$.

Proof. Let

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n \quad (a_n \ge 0, \ z \in \mathcal{U})$$

and

$$f_2(z) = z - |b|^2 (1 - \alpha) / \sigma_2(\alpha, b) z^2$$

then we must show that

$$\int_{0}^{2\pi} \left| 1 - \sum_{n=2}^{\infty} a_n z^{n-1} \right|^{\delta} d\theta \le \int_{0}^{2\pi} \left| 1 - \frac{|b|^2 (1-\alpha)}{\sigma_2(\alpha,b)} z \right|^{\delta} d\theta.$$

By Lemma 6.1, it suffices to show that

$$1 - \sum_{n=2}^{\infty} a_n z^{n-1} \prec 1 - \frac{|b|^2 (1-\alpha)}{\sigma_2(\alpha, b)} z.$$

Setting

(6.3)
$$1 - \sum_{n=2}^{\infty} a_n z^{n-1} = 1 - \frac{|b|^2 (1-\alpha)}{\sigma_2(\alpha, b)} w(z).$$

From (6.2) and (2.1), we obtain

$$|w(z)| = \left| \sum_{n=2}^{\infty} \frac{\sigma_2(\alpha, b)}{|b|^2 (1-\alpha)} a_n z^{n-1} \right|$$

$$\leq |z| \sum_{n=2}^{\infty} \frac{\sigma_n(\alpha, b)}{|b|^2 (1-\alpha)} a_n \leq |z|.$$

This the completes the proof of the theorem.

Remark 6.3. Taking different choices of $\Phi(z)$ and $\Psi(z)$ in Theorem 6.2, we can obtain integral means inequalities for functions belonging the classes $\mathcal{S}^*_{\alpha}[b]$, $\mathcal{C}_{\alpha}[b]$ and $\mathcal{P}_{\alpha}[b]$.

7. NEIGHBORHOODS OF THE CLASS $\mathcal{Q}_{\mathcal{T}}(\Phi, \Psi; \alpha, b)$.

For $f \in \mathcal{T}$ of the form (1.6) and $\delta \geq 0$, we define

(7.1)
$$M^p_{\delta}(f) = \{g \in \mathcal{T} \colon g(z) = z - \sum_{n=2}^{\infty} b_n z^n, \sum_{n=2}^{\infty} n^{p+1} |a_n - b_n| \le \delta\},\$$

which was called the *p*- δ -neighborhood of *f*. So, for e(z) = z, we see that

(7.2)
$$M^p_{\delta}(e) = \{ g \in \mathcal{T} \colon g(z) = z - \sum_{n=2}^{\infty} b_n z^n, \sum_{n=2}^{\infty} n^{p+1} |b_n| \le \delta \},$$

where p is a fixed positive integer. Note that $M^0_{\delta}(f) \equiv N_{\delta}(f)$ and $M^1_{\delta}(f) \equiv M_{\delta}(f)$. $\equiv M_{\delta}(f)$. $N_{\delta}(f)$ called a δ -neighborhood of f by Ruscheweyh [5] and $M_{\delta}(f)$ was defined by Silverman [6].

In this section, we consider p- δ -neighborhood for function in the class

 $\mathcal{Q}_{\mathcal{T}}(\Phi, \Psi; \alpha, b).$

Theorem 7.1. If $\{\sigma_n(\alpha, b)/n^{p+1}\}_{n=2}^{\infty}$ is a non-decreasing sequence, then,

$$\mathcal{Q}_{\mathcal{T}}(\Phi, \Psi; \alpha, b) \subset M^p_{\delta}(e),$$

where $\delta = 2^{p+1} |b|^2 (1-\alpha) / \sigma_2(\alpha, b)$.

Proof. It follows from (2.1) that if $f(z) \in \mathcal{Q}_{\mathcal{T}}(\Phi, \Psi; \alpha, b)$, then

(7.3)
$$\sum_{n=2}^{\infty} n^{p+1} a_n \le \frac{2^{p+1} |b|^2 (1-\alpha)}{\sigma_2(\alpha, b)}$$

This gives that $\mathcal{Q}_{\mathcal{T}}(\Phi, \Psi; \alpha, b) \subset M^p_{\delta}(e)$.

Putting $\Phi(z) = z/(1-z)^2$ and $\Psi(z) = z/(1-z)$ in Theorem 7.1, we have

Corollary 7.2. $\mathcal{S}^*_{\alpha}[b] \subset M^p_{\delta}(e)$, where $\delta = 2^{p+1} |b|^2 (1-\alpha) / [\operatorname{Re}(b) + (1-\alpha) |b|^2]$.

Putting $\Phi(z) = (z + z^2)/(1 - z)^3$ and $\Psi(z) = z/(1 - z)^2$ in Theorem 7.1, we have

Corollary 7.3. $\mathcal{C}_{\alpha}[b] \subset M^p_{\delta}(e)$, where $\delta = 2^p |b|^2 (1-\alpha) / [\operatorname{Re}(b) + (1-\alpha) |b|^2]$.

Putting $\Phi(z) = z/(1-z)^2$ and $\Psi(z) = z$ in Theorem 7.1, we have

Corollary 7.4. $\mathcal{P}_{\alpha}[b]$. $\subset M^p_{\delta}(e)$, where $\delta = 2^p |b|^2 (1-\alpha) / \operatorname{Re}(b)$.

_	

References

- J. E. Littlewood. On inequalities in the theory of functions. Proc. London Math Soc., 23:481–519, 1925.
- [2] M. Nasr and M. Aouf. Starlike function of complex order. J. Nat. Sci. Math., 25(1):1–12, 1985.
- [3] S. Owa. On the distortion theorems. I. Kyungpook Math. J., 18:53–59, 1978.
- [4] S. Owa. Some applications of the fractional calculus. In Fractional calculus, Proc. Workshop, Ross Priory, Univ. Strathclyde/Engl. 1984, Res. Notes Math. 138, 164-175. 1985.
- [5] S. Ruscheweyh. Neighborhoods of univalent functions. Proc. Am. Math. Soc., 81:521–527, 1981.
- [6] H. Silverman. Neighborhoods of classes of analytic functions. Far East J. Math. Sci., 3(2):165–169, 1995.
- [7] P. Wiatrowski. On the coefficients of some family of holomorphic functions. Zeszyty Nauk. Uniw. Lódz Nauk. Mat.-Przyrod, 2(39):75-85, 1970.

Received December 8, 2005.

DEPARTMENT OF MATHEMATICS, AL AL-BAYT UNIVERSITY, PO BOX NUMBER 130095, MAFRAQ, JORDAN *E-mail address*: bafrasin@yaoo.com