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FAMILY OF ANALYTIC FUNCTIONS OF COMPLEX ORDER

B.A. FRASIN

Abstract. In this paper, we introduce the class QT (Φ,Ψ; α, b) of analytic
functions of complex order b and type α(0 ≤ α < 1). Coefficient inequalities,
distortion theorems, closure theorems, radii of close-to-convexity, starlike-
ness, convexity and fractional calculus for functions belonging to the class
QT (Φ, Ψ;α, b) are obtained. Furthermore, we obtain the integral means
inequality for the function f(z) belongs to the class QT (Φ, Ψ;α, b) with
the extremal function of this class. Also, we consider q-δ-neighborhood for
functions in this class.

1. Introduction and definitions

Let A denote the class of functions of the form:

(1.1) f(z) = z +
∞∑

n=2

anzn,

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1}. A
function f(z) ∈ A is said to be starlike of complex order b (b ∈ C \ {0}) and
type α(0 ≤ α < 1), that is f(z) ∈ S∗

α
(b), if and only if

(1.2) Re

{
1 +

1

b

(
zf ′(z)

f(z)
− 1

)}
> α (z ∈ U ; b ∈ C \ {0}),

and is said to be convex of complex order b (b ∈ C\{0}) and type α (0 ≤ α < 1),
denoted by Cα(b) if and only if

(1.3) Re

{
1 +

1

b

zf ′′(z)

f ′(z)

}
> α (z ∈ U ; b ∈ C \ {0}).

Note that S∗
0
(b) = S∗(b) and C0(b) = C(b) the classes considered earlier by

Nasr and Aouf [2] and Wiatrowski [7].
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180 B.A. FRASIN

Further, let Pα(b) denote the class of functions f(z) ∈ A such that

(1.4) Re

{
1 +

1

b
(f ′(z)− 1)

}
> α (z ∈ U ; b ∈ C \ {0}).

Given two analytic functions f(z) = z +
∞∑

n=2

anz
n and g(z) = z +

∞∑
n=2

cnz
n

their convolution or Hadamard product f(z) ∗ h(z), is defined by

(1.5) f(z) ∗ g(z) = z +
∞∑

n=2

ancnz
n (z ∈ U).

Let T denote the subclass of A whose members have the form:

(1.6) f(z) = z −
∞∑

n=2

anzn, (an ≥ 0)

we denote by S∗
α
[b], Cα [b] and Pα [b], respectively, the classes obtained by taking

the intersections of S∗
α
(b), Cα(b), and Pα(b) with T , that is,

(1.7) S∗
α
[b] = S∗

α
(b) ∩ T , Cα [b] = Cα(b) ∩ T , Pα [b] = Pα(b) ∩ T .

We can obtain the above classes by using the following:

Definition 1.1. Given b (b ∈ C \ {0}) and α (0 ≤ α < 1). Let the functions

(1.8) Φ(z) = z +
∞∑

n=2

λnzn and Ψ(z) = z +
∞∑

n=2

µnz
n

be analytic in U , such that λn ≥ 0, µn ≥ 0 and λn ≥ µn for n ≥ 2, we say that
f(z) ∈ A is in Q(Φ, Ψ; α, b) if f(z) ∗Ψ(z) 6= 0 and

(1.9) Re

{
1 +

1

b

(
f(z) ∗ Φ(z)

f(z) ∗Ψ(z)
− 1

)}
> α (z ∈ U)

Further, let

(1.10) QT (Φ, Ψ; α, b) = Q(Φ, Ψ; α, b) ∩ T .

We note that, by suitably choosing Φ(z),Ψ(z) we obtain the above subclasses
of T of complex order b and type

α : QT

(
z

(1− z)2
,

z

1− z
; α, b

)
= S∗

α
[b];QT

(
z + z2

(1− z)3
,

z

(1− z)2
; α, b

)
= Cα [b];

and

QT

(
z

(1− z)2
, z; α, b

)
= Pα [b].

In fact many new subclasses of T of complex order b and type α can be
defined and studied by suitably choosing Φ(z),Ψ(z). For example

QT

(
z

1− z
, z; α, b

)
=

{
f(z) ∈ T : Re

{
1 +

1

b

(
f(z)

z
− 1

)}
> α

}
,
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and

QT

(
z + z2

(1− z)3
, z; α, b

)
=

{
f(z) ∈ T : Re

{
1 +

1

b
((zf ′(z))′ − 1)

}
> α

}

and so on.
In this paper, we shall obtain coefficient inequalities, distortion theorems,

closure theorems, radii of close-to-convexity, starlikeness, convexity and frac-
tional calculus for functions belonging to the class QT (Φ, Ψ; α, b). Further-
more, we obtain the integral means inequality for the function f(z) belongs
to the class QT (Φ, Ψ; α, b) with the extremal function of this class. Also, we
consider q-δ-neighborhood for functions in this class.

2. Coefficient inequalities

Theorem 2.1. Let the function f(z) defined by (1.6) be in the class

QT (Φ, Ψ; α, b).

Then

(2.1)
∞∑

n=2

[
(Re(b))λn +

(
(1− α) |b|2 − Re(b)

)
µn

] |an| ≤ |b|2 (1− α)

The result (2.1) is sharp.

Proof. Suppose that f(z) ∈ QT (Φ, Ψ; α, b). Then

(2.2) Re

{
1 +

1

b

(
f(z) ∗ Φ(z)

f(z) ∗Ψ(z)
− 1

)}
> α (z ∈ U),

or equivalently

(2.3) Re





1

b



−

∞∑
n=2

(λn − µn)anz
n−1

1−
∞∑

n=2

µnanzn−1








> α− 1 (z ∈ U)

Now choose values of z on the real axis and let z → 1− through real values to
find that

(2.4)



−

∞∑
n=2

(λn − µn) |an|

1−
∞∑

n=2

µn |an|


 Re

1

b
≥ α− 1,

whence

(2.5)




∞∑
n=2

(λn − µn) |an|

1−
∞∑

n=2

µn |an|




Re(b)

|b|2 ≤ 1− α,
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and so

(2.6)
∞∑

n=2

(λn − µn) |an| ≤ |b|2
Re(b)

(1− α)

(
1−

∞∑
n=2

µn |an|
)

,

which is equivalent to (2.1).
The equality in (2.1) holds true for the functions f(z) defined by

(2.7) f(z) = z − |b|2 (1− α)

(Re(b))λn +
(
(1− α) |b|2 − Re(b)

)
µn

zn (n ≥ 2).

¤
Corollary 2.2. Let the function f(z) defined by (1.6) be in the class

QT (Φ, Ψ; α, b).

Then

(2.8) |an| ≤ |b|2 (1− α)

(Re(b))λn +
(
(1− α) |b|2 − Re(b)

)
µn

(n ≥ 2).

The result (2.8) is sharp for the function f(z) given by (2.7).

Putting Φ(z) = z/(1− z)2 and Ψ(z) = z/(1− z) in Theorem 2.1, we have

Corollary 2.3. Let the function f(z) defined by (1.6) be in the class S∗
α
[b].

Then

(2.9)
∞∑

n=2

[
(Re(b))n +

(
(1− α) |b|2 − Re(b)

)] |an| ≤ |b|2 (1− α)

The result is sharp for

f(z) = z − |b|2 (1− α)

(Re(b))n +
(
(1− α) |b|2 − Re(b)

)zn (n ≥ 2).

Putting Φ(z) = (z + z2)/(1− z)3 and Ψ(z) = z/(1− z)2 in Theorem 2.1, we
have

Corollary 2.4. Let the function f(z) defined by (1.6) be in the class C∗
α
[b].

Then

(2.10)
∞∑

n=2

[
(Re(b))n2 +

(
(1− α) |b|2 − Re(b)

)
n
] |an| ≤ |b|2 (1− α)

The result is sharp for

f(z) = z − |b|2 (1− α)

(Re(b))n2 +
(
(1− α) |b|2 − Re(b)

)
n

zn (n ≥ 2).

Putting Φ(z) = z/(1− z)2 and Ψ(z) = z in Theorem 2.1, we have
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Corollary 2.5. Let the function f(z) defined by (1.6) be in the class P∗
α
[b].

Then

(2.11)
∞∑

n=2

[(Re(b))n] |an| ≤ |b|2 (1− α)

The result is sharp for

f(z) = z − |b|2 (1− α)

(Re(b))n
zn (n ≥ 2).

For the notational convenience we shall henceforth denote

(2.12) σn(α, b) = (Re(b))λn +
(
(1− α) |b|2 − Re(b)

)
µn (n ≥ 2).

3. Growth and distortion theorems

Theorem 3.1. Let the function f(z) defined by (1.6) be in the class

QT (Φ, Ψ; α, b).

If {σn(α, b)}∞n=2 is a non-decreasing sequence, then

(3.1) |z| − |b|2 (1− α)

σ2(α, b)
|z|2 ≤ |f(z)| ≤ |z|+ |b|2 (1− α)

σ2(α, b)
|z|2

where σ2(α, b) = (Re(b))λ2 +
(
(1− α) |b|2 − Re(b)

)
µ2. The equality in (3.1) is

attained for the function f(z) given by

(3.2) f(z) = z − |b|2 (1− α)

σ2(α, b)
z2.

Proof. Note that

σ2(α, b)
∞∑

n=2

|an| ≤
∞∑

n=2

σn(α, b) |an| ≤ |b|2 (1− α)

or, equivalently

(3.3)
∞∑

n=2

|an| ≤ |b|2 (1− α)

σ2(α, b)
,

this last inequality following from Theorem 2.1. Thus we have

(3.4) |f(z)| ≥ |z| −
∞∑

n=2

|an| |z|n ≥ |z| − |z|2
∞∑

n=2

|an| ≥ |z| − |b|2 (1− α)

σ2(α, b)
|z|2

and

(3.5) |f(z)| ≤ |z|+
∞∑

n=2

|an| |z|n ≤ |z|+ |z|2
∞∑

n=2

|an| ≤ |z|+ |b|2 (1− α)

σ2(α, b)
|z|2

for z ∈ U . From the inequalities (3.4) and (3.5) we obtain the inequality
(3.1). ¤
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Theorem 3.2. The disk |z| < 1 is mapped onto a domain that contains the
disk

|w| < σ2(α, b)− |b|2 (1− α)

σ2(α, b)

by any f(z) ∈ QT (Φ, Ψ; α, b). The theorem is sharp with the function f(z)
given by (3.2).

Theorem 3.3. Let the function f(z) defined by (1.6) be in the class

QT (Φ, Ψ; α, b).

If {σn(α, b)/n}∞n=2 is a non-decreasing sequence, then

(3.6) 1− 2 |b|2 (1− α)

σ2(α, b)
|z| ≤ |f ′(z)| ≤ 1 +

2 |b|2 (1− α)

σ2(α, b)
|z| .

The equality in (3.6) is attained for the function f(z) given by (3.2).

Proof. In view of Theorem 2.1,

(3.7)
σ2(α, b)

2

∞∑
n=2

n |an| ≤
∞∑

n=2

σn(α, b) |an| ≤ |b|2 (1− α) .

that is,

(3.8)
∞∑

n=2

n |an| ≤ 2 |b|2 (1− α)

σ2(α, b)
.

Form (3.8), we can easily prove that

(3.9) |f ′(z)| ≥ 1−
∞∑

n=2

n |an| |z|n−1 ≥ 1− |z|
∞∑

n=2

n |an| ≥ 1− 2 |b|2 (1− α)

σ2(α, b)
|z|

and

(3.10) |f ′(z)| ≤ 1+
∞∑

n=2

n |an| |z|n−1 ≤ 1+ |z|
∞∑

n=2

n |an| ≤ 1+
2 |b|2 (1− α)

σ2(α, b)
|z|

for z ∈ U . Combining the inequalities (3.9) and (3.10) we obtain the inequality
(3.6). ¤

4. Radii of close-to-convexity, starlikeness and convexity

Theorem 4.1. Let the function f(z) be defined by (1.6) be in the class

QT (Φ, Ψ; α, b).

Then f(z) is close-to-convex of complex order b in |z| < r1, where

(4.1) r1 = r1(α, b) = inf
n

[
σn(α, b)

|b|n (1− α)

]1/(n−1)

(n ≥ 2).

The result is sharp for the function f(z) being given by (3.2).
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Proof. We must show that |f ′(z)− 1| ≤ |b| for |z| < r1, where r1 is given by
(4.1). From (1.6) we have

|f ′(z)− 1| <
∞∑

n=2

nan |z|n−1 .

Thus |f ′(z)− 1| < |b| if

(4.2)
∞∑

n=2

(
n

|b|
)

an |z|n−1 ≤ 1.

But, by Theorem 2.1, (4.2) will be true if
(

n

|b|
)
|z|n−1 ≤ σn(α, b)

|b|2 (1− α)
,

that is, if

(4.3) |z| ≤
[

σn(α, b)

|b|n (1− α)

]1/(n−1)

(n ≥ 2).

Theorem 4.1 follows easily from (4.3). ¤

Theorem 4.2. Let the function f(z) be defined by (1.6) be in the class

QT (Φ, Ψ; α, b).

Then f(z) is starlike of complex order b in |z| < r2, where

(4.4) r2 = r2(α, b) = inf
n

[
σn(α, b)

|b| (n + |b| − 1) (1− α)

]1/(n−1)

(n ≥ 2).

The result is sharp for the function f(z) being given by (3.2).

Proof. It is sufficient to show that
∣∣∣∣
zf ′(z)

f(z)
− 1

∣∣∣∣ ≤ |b|

for |z| < r2, where r2 is given by (4.4). From (1.6) we find that

∣∣∣∣
zf ′(z)

f(z)
− 1

∣∣∣∣ ≤

∞∑
n=2

(n− 1)an |z|n−1

1−
∞∑

n=2

an |z|n−1
.

Thus
∣∣∣ zf ′(z)

f(z)
− 1

∣∣∣ ≤ |b| if

(4.5)
∞∑

n=2

(
n + |b| − 1

|b|
)

an |z|n−1 ≤ 1
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But, by Theorem 2.1, (4.5) will be true if
(

n + |b| − 1

|b|
)
|z|n−1 ≤ σn(α, b)

|b|2 (1− α)

that is, if

(4.6) |z| ≤
[

σn(α, b)

|b| (n + |b| − 1) (1− α)

]1/(n−1)

(n ≥ 2).

Theorem 4.2 follows easily from (4.6). ¤

Corollary 4.3. Let the function f(z) be defined by (1.6) be in the class

QT (Φ, Ψ; α, b).

Then f(z) is convex of complex order b in |z| < r3, where

(4.7) r3 = r3(α, b) = inf
n

[
σn(α, b)

|b|n(n + |b| − 1) (1− α)

]1/(n−1)

(n ≥ 2).

The result is sharp for the function f(z) being given by (3.2).

5. Fractional Calculus

In this section, we find it to be convenient to recall here the following of
fractional calculus which were introduced by by Owa ([3], [4]).

Definition 5.1. The fractional integral of order δ is defined, for a function
f(z), by

(5.1) D−δ
z f(z) =

1

Γ(δ)

∫ z

0

f(ζ)

(z − ζ)1−δ
dζ (δ > 0),

where the function f(z) is analytic in a simply-connected region of the z-plane
containing the origin and the multiplicity of the function (z− ζ)δ−1 is removed
by requiring the function log(z − ζ) to be real when z − ζ > 0.

Definition 5.2. The fractional derivative of order δ is defined, for a function
f(z), by

(5.2) D
δ

zf(z) =
1

Γ(1− δ)

d

dz

∫ z

0

f(ζ)

(z − ζ)1−δ
dζ (0 ≤ δ < 1),

where the function f(z) is constrained, and the multiplicity of the function
(z − ζ)−δ is removed as in Definition 5.1.

Definition 5.3. Under the hypotheses of Definition 5.2, the fractional deriv-
ative of order n + δ is defined by

(5.3) Dn+δ
z f(z) =

dn

dzn
D

δ

zf(z) (0 ≤ δ < 1; n ∈ N0).
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Remark 5.4. From Definition 5.1, we have D0
zf(z) = f(z), which in view of

Definition 5.3 yields Dn+0
z f(z) = dn

dzn D0
zf(z) = f (n)(z). Thus, lim

δ→0
D−δ

z f(z) =

f(z) and lim
δ→0

D1−δ
z f(z) = f ′(z).

Theorem 5.5. Let the function f(z) be defined by (1.6) be in the class

QT (Φ, Ψ; α, b)).

If {σn(α, b)}∞n=2 is a non-decreasing sequence, then

(5.4)
∣∣D−δ

z f(z)
∣∣ ≥ |z|1+δ

Γ(2 + δ)

{
1− 2 |b|2 (1− α)

σ2(α, b)(2 + δ)
|z|

}

and

(5.5)
∣∣D−δ

z f(z)
∣∣ ≤ |z|1+δ

Γ(2 + δ)

{
1 +

2 |b|2 (1− α)

σ2(α, b)(2 + δ)
|z|

}

for δ > 0, and z ∈ U . The result is sharp.

Proof. Let

F (z) = Γ(2 + δ)z−δD−δ
z f(z)

= z −
∞∑

n=2

Γ(n + 1)Γ(2 + δ)

Γ(n + 1 + δ)
anzn = z −

∞∑
n=2

∆(n)anz
n,

(5.6)

where

(5.7) ∆(n) =
Γ(n + 1)Γ(2 + δ)

Γ(n + 1 + δ)
(n ≥ 2).

It is easy to see that

(5.8) 0 < ∆(n) ≤ ∆(2) =
2

2 + δ
.

Therefore, by using (3.3) and (5.8), we can see that

(5.9) |F (z)| ≥ |z| −∆(2) |z|2
∞∑

n=2

an ≥ |z| − 2 |b|2 (1− α)

σ2(α, b)(2 + δ)
|z|2

(5.10) |F (z)| ≤ |z|+ ∆(2) |z|2
∞∑

n=2

an ≤ |z|+ 2 |b|2 (1− α)

σ2(α, b)(2 + δ)
|z|2

which prove the inequality of Theorem 5.5. Further, equalities are attained for
the function f(z) defined by

(5.11) D−δ
z f(z) =

z1+δ

Γ(2 + δ)

{
1 +

2 |b|2 (1− α)

σ2(α, b)(2 + δ)
z

}

¤
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Theorem 5.6. Let the function f(z) be defined by (1.6) be in the class

QT (Φ, Ψ; α, b).

If {σn(α, b)/n}∞n=2 is a non-decreasing sequence, then

(5.12)
∣∣∣Dδ

zf(z)
∣∣∣ ≥ |z|1−δ

Γ(2− δ)

{
1− 2 |b|2 (1− α)

σ2(α, b)(2− δ)
|z|

}

and

(5.13)
∣∣∣Dδ

zf(z)
∣∣∣ ≤ |z|1−δ

Γ(2− δ)

{
1 +

2 |b|2 (1− α)

σ2(α, b)(2− δ)
|z|

}

for 0 ≤ δ < 1, and z ∈ U . The result is sharp.

Proof. Let

H(z) = Γ(2− δ)z
δ

D
δ

zf(z)

= z −
∞∑

n=2

Γ(n + 1)Γ(2− δ)

Γ(n + 1− δ)
anz

n = z −
∞∑

n=2

nΩ(n)anz
n,

(5.14)

where

(5.15) Ω(n) =
Γ(n)Γ(2− δ)

Γ(n + 1− δ)
(n ≥ 2).

Since

(5.16) 0 < Ω(n) ≤ Ω(2) =
1

2− δ
.

Therefore, by using (3.8) and (5.16), we can see that

(5.17) |H(z)| ≥ |z| −∆(2) |z|2
∞∑

n=2

nan ≥ |z| − 2 |b|2 (1− α)

σ2(α, b)(2− δ)
|z|2

(5.18) |H(z)| ≤ |z|+ ∆(2) |z|2
∞∑

n=2

an ≤ |z|+ 2 |b|2 (1− α)

σ2(α, b)(2− δ)
|z|2

which give the inequalities of Theorem 5.6. Since equalities are attained for
the function f(z) defined by

(5.19) D
δ

zf(z) =
z1−δ

Γ(2− δ)

{
1 +

2 |b|2 (1− α)

σ2(α, b)(2− δ)
z

}

¤

Remark 5.7. Letting δ = 0 in Theorem 5.5, we have (3.1) of Theorem 3.1, and
letting δ −→ 1 in Theorem 5.6, we have (3.6) in Theorem 3.3.
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6. Integral Means Inequalities

The following subordination result will be required in our present investiga-
tion.

Lemma 6.1 ([1]). If f and g are analytic in U with g ≺ f , then

(6.1)

∫ 2π

0

∣∣g(reiθ)
∣∣δ dθ ≤

∫ 2π

0

∣∣f(reiθ)
∣∣δ dθ

where δ > 0, z = reiθ and 0 < r < 1.

Applying Theorem 2.1 and Lemma 6.1, we prove the following

Theorem 6.2. Let δ > 0. If f(z) ∈ QT (Φ, Ψ; α, b), and {σn(α, b)}∞n=2 is
non-decreasing sequence, then, for z = reiθ, 0 < r < 1, we have

(6.2)

∫ 2π

0

∣∣f(reiθ)
∣∣δ

dθ ≤
∫ 2π

0

∣∣f2(re
iθ)

∣∣δ

dθ

where f2(z) = z − |b|2 (1− α) /σ2(α, b)z2.

Proof. Let

f(z) = z −
∞∑

n=2

anzn (an ≥ 0, z ∈ U)

and
f2(z) = z − |b|2 (1− α) /σ2(α, b)z2,

then we must show that
∫ 2π

0

∣∣∣∣∣1−
∞∑

n=2

anzn−1

∣∣∣∣∣

δ

dθ ≤
∫ 2π

0

∣∣∣∣∣1−
|b|2 (1− α)

σ2(α, b)
z

∣∣∣∣∣

δ

dθ.

By Lemma 6.1, it suffices to show that

1−
∞∑

n=2

anzn−1 ≺ 1− |b|2 (1− α)

σ2(α, b)
z.

Setting

(6.3) 1−
∞∑

n=2

anz
n−1 = 1− |b|2 (1− α)

σ2(α, b)
w(z).

From (6.2) and (2.1), we obtain

|w(z)| =
∣∣∣∣∣
∞∑

n=2

σ2(α, b)

|b|2 (1− α)
anz

n−1

∣∣∣∣∣

≤ |z|
∞∑

n=2

σn(α, b)

|b|2 (1− α)
an ≤ |z| .

This the completes the proof of the theorem. ¤
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Remark 6.3. Taking different choices of Φ(z) and Ψ(z) in Theorem 6.2, we can
obtain integral means inequalities for functions belonging the classes S∗

α
[b],

Cα [b] and Pα [b].

7. Neighborhoods of The Class QT (Φ, Ψ; α, b).

For f ∈ T of the form (1.6) and δ ≥ 0, we define

(7.1) Mp
δ
(f) = {g ∈ T : g(z) = z −

∞∑
n=2

bnz
n,

∞∑
n=2

np+1 |an − bn| ≤ δ},

which was called the p-δ-neighborhood of f . So, for e(z) = z, we see that

(7.2) Mp
δ
(e) = {g ∈ T : g(z) = z −

∞∑
n=2

bnzn,
∞∑

n=2

np+1 |bn| ≤ δ},

where p is a fixed positive integer. Note that M0
δ
(f) ≡ N

δ
(f) and M1

δ
(f)

≡ M
δ
(f). N

δ
(f) called a δ-neighborhood of f by Ruscheweyh [5] and M

δ
(f)

was defined by Silverman [6].
In this section, we consider p-δ-neighborhood for function in the class

QT (Φ, Ψ; α, b).

Theorem 7.1. If {σn(α, b)/np+1}∞n=2 is a non-decreasing sequence, then,

QT (Φ, Ψ; α, b) ⊂ Mp
δ
(e),

where δ = 2p+1 |b|2 (1− α) /σ2(α, b).

Proof. It follows from (2.1) that if f(z) ∈ QT (Φ, Ψ; α, b), then

(7.3)
∞∑

n=2

np+1an ≤ 2p+1 |b|2 (1− α)

σ2(α, b)

This gives that QT (Φ, Ψ; α, b) ⊂ Mp
δ
(e). ¤

Putting Φ(z) = z/(1− z)2 and Ψ(z) = z/(1− z) in Theorem 7.1, we have

Corollary 7.2. S∗
α
[b] ⊂ Mp

δ
(e), where δ = 2p+1 |b|2 (1− α) /[Re(b) + (1 −

α) |b|2].
Putting Φ(z) = (z + z2)/(1− z)3and Ψ(z) = z/(1− z)2 in Theorem 7.1, we

have

Corollary 7.3. Cα [b] ⊂ Mp
δ
(e), where δ = 2p |b|2 (1− α) /[Re(b)+(1−α) |b|2].

Putting Φ(z) = z/(1− z)2and Ψ(z) = z in Theorem 7.1, we have

Corollary 7.4. Pα [b]. ⊂ Mp
δ
(e), where δ = 2p |b|2 (1− α) / Re(b).
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