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SOME PROPERTIES OF OCTONION AND QUATERNION
ALGEBRAS

CRISTINA FLAUT

Abstract. In 1988, J.R. Faulkner has given a procedure to construct an
octonion algebra on a finite dimensional unitary alternative algebra of de-
gree three over a field K. Here we use a similar procedure to get a quaternion
algebra. Then we obtain some conditions for these octonion and quaternion
algebras to be split or division algebras. Then we consider the implications
of the found conditions to the underlying algebra, when K contains a cubic
root of unity.

1. Preliminaries

A lot of concepts used in this paper as well as their properties can be found
in details in R.D. Schafer’s classical book An Introduction to Nonassociative
Algebras [Sch66].

We recall only some definitions and results, which will be necessary in our
paper. First, we define the notions used in that follows. K will denote, every-
where in the paper, a field with char K 6= 2, 3.

Definition 1.1. Let A be a nonassociative algebra over K.
i) The algebra A is a flexible algebra if

x (yx) = (xy) x, ∀x, y ∈ A.

ii) The algebra A is a composition algebra if there is a quadratic form q : A →
K such that, for every x, y ∈ A, we have q (xy) = q (x) q (y) and the associated
bilinear form

f : A× A → K, f(x, y) =
1

2
[n(x + y)− n(x)− n(y)]

is nondegenerate. A unitary composition algebra is called a Hurwitz algebra.
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iii) The algebra A is a power-associative algebra if for every x ∈ A the
subalgebra generated by x is an associative algebra.

iv) The algebra A is an alternative algebra if

x2y = x (xy) and yx2 = (yx) x,∀x, y ∈ A.

Each alternative algebra is a power-associative algebra.
v) If A 6= 0 and the equations

ax = b, ya = b, ∀a, b ∈ A, a 6= 0,

have unique solutions, then the algebra A is a division algebra.
v) A Hurwitz algebra A is called a split Hurwitz algebra if it satisfies one of

the following equivalent conditions:
1) There are x, y ∈ A, x 6= 0, y 6= 0 such that xy = 0.
2) There is x ∈ A, x 6= 0 such that q (x) = 0.
3) There is e ∈ A, e 6= 0, e 6= 1, such that e2 = e.

We note that each Hurwitz algebra is either split or it is a division algebra.
In [Fau88] J.R. Faulkner proved some relations in a unitary finite dimen-

sional of degree three alternative algebra, having the generic minimum poly-
nomial

Px(λ) = λ3 − T (x) λ2 + S (x) λ−N (x) · 1.
We recall only the relation 2S (x) = T (x)2− T (x2), which we use in the next.
The coefficient T (x) is called the trace of x, while N (x) the norm of x.

Definition 1.2. Let A be a composition algebra. Then its associated bilinear
form f is associative (or invariant) if

f (xy, z) = f (x, yz) ,∀x, y, z ∈ A.

If A is a composition algebra then its associated bilinear form f is associative
if and only if, for the quadratic form q associated to f , we have the relation:

(1.1) (xy) x = x (yx) = q (x) y, ∀x, y ∈ A.

Let ω be the cubic root of unity and ε be the root of the equation x2 +3 = 0.
If µ is a root of the equation 3x2 − 3x + 1 = 0, then:

(1.2) µ−1 = 3 (1− µ) , ω = µ−1 (µ− 1) = 3µ− 2,

ε = µ−1ω = 3 (2µ− 1) , ω − ω2 = ε = 2ω + 1.

Definition 1.3. Let A be a finite dimensional algebra over the field K, and
K ⊂ F be a field extension. The algebra A is a separable algebra if the algebra
AF = F ⊗K A is a direct sum of simple ideals, for every extension F of the
field K. The algebra A is called a central simple algebra if the algebra AF is
a simple algebra, for every extension F of the field K.

If A is an associative central simple algebra, then each automorphism of A
is inner [EP96].
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Remark 1.4 ([McC69]). If A is a unitary finite dimensional alternative algebra
of degree three over K, then the trace form T is nondegenerate if and only if
A is a separable algebra.

Now, we suppose ω ∈ K; then ε, µ ∈ K. Let A be a unitary finite dimen-
sional of degree three separable alternative algebra and

A0 = {x ∈ A/ T (x) = 0}
be its K-subspace of trace zero elements. The bilinear form S is nondegenerate
over A if and only if S is nondegenerate over A0 ([EM93]).

Proposition 1.5 ([Fau88]). Let A be a finite dimensional unitary of degree
three alternative algebra over the field K. Define the multiplication ∗ on A0

(1.3) a ∗ b = ωab− ω2ba− 2ω + 1

3
T (ab) · 1,∀a, b ∈ A0.

Then S preserves composition, that is S (a ∗ b) = S (a) S (b). If A is a
separable algebra over K, then the quadratic form S is nondegenerate and if
dim A = 9 there exists an operation ∇ such that (A0, ∇) becomes an octonion
algebra.

In Proposition 1.5, if dim A ∈ {5, 9}, then we can find an operation ∇ such
that (A0, ∇) is a Hurwitz algebra (hence a quaternion algebra and octonion
algebra).

Now we try to see if these algebras can be split or division algebras.
A. Elduque and H.C. Myung, in [EM93] proved that, if A is an alternative

algebra over K with the generic minimum polynomial Px (λ) = λ3−T (x) λ2 +
S (x) λ−N (x) · 1 and the subspace A0, and we define the multiplication ∗ by
the relation (1.3), then the following identity holds:

(1.4) (a ∗ b) ∗ a = a ∗ (b ∗ a) = S (a) b, for all a, b ∈ A0.

Moreover, S preserves composition and it is associative, so that S (x ∗ y, z) =
S (x, y ∗ z) , for all x, y, z ∈ (A0, ∗) . (A0, ∗) does not have a unit element and
there is an element a ∈ A0, such that {a, a∗a} is a linearly independent system.
The above alternative algebra A is finite dimensional and separable if and only
if S is nondegenerate.

In the same paper, they proved that the converse of this statement is true.
Indeed, if (B, ∗) is a nonunitary algebra over the field K,with its associated
quadratic form S satisfying the condition (1.3) and if B has an element b0 such
that {b0, b0 ∗ b0} are linearly independent, then we can build an alternative
algebra A of degree three over K such that (B, ∗) is isomorphic with the
algebra (A0, ∗) defined above. Indeed, let S (x, y) be the symmetric bilinear
form associated to the quadratic form S. For A = K · 1 ⊕ B if we define the
following multiplication on A:

(1.5) ab=− 2S (a, b)

3
· 1+

1

3
[
(
ω2-1

)
a ∗ b- (ω-1) b ∗ a] ,∀a, b ∈ B
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and 1x = x1 = x, ∀x ∈ A, then the algebra A is an alternative algebra of
degree three.

2. Octonion algebras and quaternion algebras

By using the above procedure (i.e. the multiplication (1.5)), we obtained an
alternative algebra A = K · 1⊕B. Now we are looking for conditions on A to
be associative. We get the following proposition.

Proposition 2.1. The algebra A = K ·1⊕B, constructed above, is associative
if and only if:

(2.1) (a, c, b)∗ + (b, a, c)∗ = (a, b, c)∗ , ∀a, b, c ∈ B,

with (a, b, c)∗ = (a ∗ b) ∗ c− a ∗ (b ∗ c).

Proof. Let a, b, c ∈ B, then we have:

c (ab) = c

[
-
2S (a, b)

3
· 1 +

1

3

((
ω2-1

)
a ∗ b− (ω-1) b ∗ a

)]

= −2S (a, b)

3
c +

ω2 − 1

3
c (a ∗ b) +

ω − 1

3
c (b ∗ a)

= −2S (a, b)

3
c

+
ω2 − 1

3

[
−2S (c, a ∗ b)

3
· 1 +

ω2 − 1

3
c ∗ (a ∗ b)− ω − 1

3
(a ∗ b) ∗ c

]

− ω − 1

3

[
−2S (c, b ∗ a)

3
+

ω2 − 1

3
c ∗ (b ∗ a)− ω − 1

3
(b ∗ a) ∗ c

]
.

(ca) b =

[
-
2S (c, a)

3
· 1+

1

3

((
ω2 − 1

)
c ∗ a− (ω − 1) a ∗ c

)]
b

= −2S (c, a)

3
b +

ω2 − 1

3
(c ∗ a) b− ω-1

3
(a ∗ c) b

= −2S (c, a)

3
b

+
ω2 − 1

3

[
−2S (c ∗ a, b)

3
· 1 +

ω2-1

3
(c ∗ a) ∗ b− ω − 1

3
b ∗ (c ∗ a)

]

− ω − 1

3

[
−2S (a ∗ c, b)

3
· 1 +

ω2 − 1

3
(a ∗ c) ∗ b− ω − 1

3
b ∗ (a ∗ c)

]
.

We use the relations:

(a ∗ b) ∗ c + (c ∗ b) ∗ a = 2S (a, c) b = 2S (c, a) b

obtained by linearization of the relation (1.4), and we get:
(
ω2 − 1

)2
= −3ω2,

(
ω2 − 1

)
(ω − 1) = 3, (ω − 1)2 = −3ω.
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Then:

c (ab)− (ca) b = −2S (a, b)

3
c− 2 (ω2 − 1)

9
S (c, a ∗ b) +

(ω2 − 1)
2

9
c ∗ (a ∗ b)

− (ω2 − 1) (ω − 1)

9
(a ∗ b) ∗ c +

2 (ω − 1)

9
S (c, b ∗ a)

− (ω2 − 1) (ω − 1)

9
c ∗ (b ∗ a) +

(ω − 1)2

3
(b ∗ a) ∗ c

+
2S (c, a)

3
b +

2 (ω2 − 1)

9
S(c ∗ a, b)− (ω2 − 1)

2

9
(c ∗ a) ∗ b

+
(ω2 − 1) (ω − 1)

9
b ∗ (c ∗ a)− 2 (ω − 1)

9
S (a ∗ c, b)

+
(ω2 − 1) (ω − 1)

9
(a ∗ c) ∗ b− (ω − 1)2

9
b ∗ (a ∗ c)

= −1

3
(a ∗ c) ∗ b− 1

3
(b ∗ c) ∗ a− 2 (ω2-1)

9
S (c, a ∗ b)

− ω2

3
c ∗ (a ∗ b)− 1

3
(a ∗ b) ∗ c +

2 (ω − 1)

9
S (c, b ∗ a)− 1

3
c ∗ (b ∗ a)

− ω

3
(b ∗ a) ∗ c +

1

3
(a ∗ b) ∗ c +

1

3
(c ∗ b) ∗ a +

2 (ω2 − 1)

9
S (c ∗ a, b)

+
ω2

3
(c ∗ a) ∗ b +

1

3
b ∗ (c ∗ a)− 2 (ω − 1)

9
S (a ∗ c, b)

+
1

3
(a ∗ c) ∗ b +

ω

3
b ∗ (a ∗ c) .

Since S is associative over B, we have:

S (c, a ∗ b) = S(c ∗ a, b) and S (c, b ∗ a) = S (b ∗ a, c) = S (b, a ∗ c) .

It results that:

c (ab)− (ca) b = −1

3
[(b ∗ c) ∗ a− b ∗ (c ∗ a)]− ω

3
[(b ∗ a) ∗ c− b ∗ (a ∗ c)]

+
1

3
[(c ∗ b) ∗ a− c ∗ (b ∗ a)]− ω2

3
c ∗ (a ∗ b) +

ω2

3
(c ∗ a) ∗ b

= −1

3
(b, c, a)∗ − ω

3
(b, a, c)∗ +

1

3
(c, b, a)∗

+
ω2

3
(c, a, b)∗ − ω2

3
(c ∗ a) ∗ b +

ω2

3
(c ∗ a) ∗ b

= −1

3
(b, c, a)∗ +

1

3
(c, b, a)∗ +

1

3
(b, a, c)∗ ,

therefore the required relation holds. ¤

If (A, ·) is a flexible composition finite dimensional algebra and it satisfies
the condition (x · y) · x = x · (y · x) = f (x, x) y, ∀x, y ∈ A then A is a division
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algebra if and only if its associated bilinear form f has the property f (x, x) 6=
0, for each x 6= 0 [EM93]. By using the above conditions, we get that (A0, ∗)
is a division algebra if and only if S (x, x) 6= 0 for all x 6= 0.

Definition 2.2. An associative algebra A is a cyclic algebra if there exists
F, a maximal subfield of the algebra A,F 6= K, such that K ⊂ F is a cyclic
extension (i.e. a Galois extension with a cyclic associated Galois group).

Each associative finite dimensional central simple algebra, over an arbitrary
field is a separable algebra and each finite dimensional of degree three division
associative algebra is a cyclic algebra [Pie82].

Proposition 2.3. Let (A, ∗) be a composition algebra with an associative bi-
linear form f and u ∈ A be a nonzero idempotent. If dim A ∈ {4, 8}, then we
find an operation ∇ such that (A, ∇) becomes a Hurwitz algebra with the norm
q, and conversely. If dim A 6= 8, then x ∗ y = x̄∇ȳ, where x̄ is the conjugate
of x in (A, ∇).

Proof. Since f is associative, we have the relation (1.1). Therefore u = (u ∗ u)∗
u = q (u) u and then q (u) = 1. We obtain also (u ∗ x)∗u = q (u) x = x,∀x ∈ A.
By linearizing the relation (1.1), we get

(2.2) (x ∗ y) ∗ z + (z ∗ y) ∗ x = 2f (x, z) y, ∀x, y, z ∈ A.

By relation (2.2) we have (x ∗ u) ∗ u + u ∗ x = 2f (u, x) u, hence

((x ∗ u) ∗ u) ∗ u = 2f (u, x) u− x

and we have

R3
u (x) = 2f (u, x) u− x,

where Ru : (A, ∗) → (A, ∗) is the right multiplication. In [EP96] since q (u) 6= 0
we have Ru = L−1

u where Lu is the left multiplication. Defining

x∇y = (u ∗ x) ∗ (y ∗ u) ,

(A, ∇) is a Hurwitz algebra with the norm q and u the unit element. Then
f (u, x) u− x is the conjugate of x so that

R3
u (x) = 2f (u, x) u− x = x̄.

Since

R3
u (x̄) = 2f (u, x̄) u− x̄ = 4f (u, x) u− 2f (u, x) u− 2f (u, x) u + x = x,

the map ϕ : (A,∇) → (A,∇), where ϕ (x) = x̄ ∗ u is an automorphism with
the property ϕ3 = 1A. Now, defining

x ⊥ y = (ϕ (x̄))∇ (
ϕ−1 (ȳ)

)
= (x ∗ u)∇ (u ∗ y) ,

we have x ⊥ y = (u ∗ (x ∗ u)) ∗ ((u ∗ y) ∗ u) = x ∗ y, therefore

(2.3) x ∗ y = (ϕ (x̄))∇ (
ϕ−1 (ȳ)

)
.
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If (A, ∇) is a quaternion algebra, then it is an associative central simple
algebra and its automorphisms are inner. For an automorphism ϕ with

ϕ3 = 1A, ϕ 6= 1A,

there exist an element v ∈ (A, ∇) such that q (v) 6= 0 and ϕ (x) = v−1∇x∇v.

Therefore we have v3 = a∇u, a ∈ K. For z = v2

q(v)
, we have z3 = u and

q(z) = 1, hence z̄ = z2. Then we have

z∇x∇z2 = v−1∇x∇v = ϕ (x) .

By the relation (2.3), we have

z ∗ z = (ϕ (z̄))∇ (
ϕ−1 (z̄)

)
= z∇z̄∇z2∇z2∇z̄∇z = z.

We compute

x ∗ z = z∇x̄∇z2∇z2∇z̄∇z = z∇x̄∇z

=
(
2f (z∇x̄, u)∇u− z∇x̄

)∇z

=
(
2f (z∇x̄, u)− x∇z2

)∇z

= 2f (z, x̄)∇z − x = 2f (z, x)∇z − x.

In the same way, z ∗ x = 2 f (z, x)∇z − x. It results that x ∗ z = z ∗ x = x̄
and ϕ : (A,∇) → (A,∇) , ϕ (x) = x̄∗ z, is an automorphism with the property
ϕ3 = 1A. Then x ∗ y = (ϕ (x̄))∇ (ϕ−1 (ȳ)) = (x ∗ z)∇ (z ∗ y) = x̄∇ȳ. ¤
Proposition 2.4. Let A be a finite dimensional of degree three alternative
algebra with the generic minimum polynomial

Px(λ) = λ3 − T (x) λ2 + +S (x) λ−N (x) · 1.
The algebra (A0, ∗) is a division algebra (with ω ∈ K or ω /∈ K) if and only if
A0 does not contain the nonzero elements x ∈ A0 such that x2 ∈ A0.

Proof. We have 2S (x, x) = 2S (x) = T 2 (x) − T (x2). If there is an element
x1 ∈ A0, x1 6= 0, such that x2

1 ∈ A0, we have T (x1) = T (x2
1) = 0. It results

that
2S (x1, x1) = 2S (x1) = T 2 (x1)− T

(
x2

1

)
= 0,

therefore x1 = 0, contradiction. ¤
Proposition 2.5. Let A be a finite dimensional central simple of degree three
alternative algebra over the field K. Define the multiplication ∗ on A0:

a ∗ b = ωab− ω2ba− 2ω + 1

3
T (ab) · 1.

Then S preserves composition, that is S (a ∗ b) = S (a) S (b). If

(a, c, b)∗ + (b, a, c)∗ = (a, b, c)∗ , ∀a, b, c ∈ A0

and dim A = 9, then there is an operation ∇ such that (A0, ∇) becomes an
octonion algebra. This algebra is not a division algebra.
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Proof. If (a, c, b)∗ + (b, a, c)∗ = (a, b, c)∗ , then the algebra A is an associative
central simple algebra and it is separable. (For a classification of central simple
associative algebras, see [Pie82]). Therefore the quadratic form is nondegener-
ate on A and A0. Then, there is an element u ∈ A, u 6= 0, such that S (u) 6= 0.
We define a∇b = (u ∗ a)∗ (b ∗ u) and the algebra (A0,∇) becomes an octonion
algebra with the unit element S−1 (u) u ∗ u. To end the proof we need the
following lemma:

Lemma 2.6. If dim A0 ∈ {4, 8}, then the algebra (A0, ∗) is a division algebra
if and only if (A0,∇) is a division algebra.

Proof of the Lemma. Indeed, we suppose that (A0, ∗) is a division algebra.
The equations a∇x = b and y∇a = b can be written (u ∗ a) ∗ ∗ (x ∗ u) = b and
(u ∗ y) ∗ (a ∗ u) = b and they have unique solutions.

Conversely, if (A0,∇) is a division algebra, by using the relation (2.3), the
equations a ∗ x = b and y ∗ a = b, can be written (ϕ (ā))∇ (ϕ−1 (x̄)) = b and
(ϕ (ȳ))∇ (ϕ−1 (ā)) = b and they have unique solutions. ¤

If A is not a division algebra, then A ' M3 (K). In this case, we find an

element, for example X =




0 0 γ
0 ε 0
γ 0 ε̄


 , where γ2 = 3 and ε2 = −3 with the

property X2 =




3 0 γε̄
0 −3 0
γε̄ 0 0


, therefore T (X2) = 0 and (A0, ∗) is not a

division a algebra hence the octonion algebra (A0,∇) is a split algebra.

If we take the element Y =




0 0
√

3

0 i
√

3 0√
3 0 −i

√
3


, we have

Y 2 =




3 0 −3i
0 −3 0
−3i 0 0




and

Y 3 =



−3i

√
3 0 0

0 −3i
√

3 0

0 0 −3i
√

3


 ,

therefore Y 3 − αI3=03, with α=−3i
√

3 ∈ K and we get the same result.
If A is a division algebra, then is a cyclic algebra, and we find in A an

element x 6= 0 with the minimum polynomial X3− α, α ∈ K, α 6= 0. It results
that T (x) = S (x) = T (x2) = 0, x ∈ A0, then, by Lemma, (A0, ∗) is not a
division algebra, hence (A0,∇) is a split algebra. ¤
Corollary 2.7. If ω ∈ K, then in the algebra M3 (K), there are only split
octonion algebra.
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We know that, if the field K is algebraically closed, then the octonion algebra
is split. From the Corollary 2.6., if K = Q(ω) for example, in M3 (K) we have
only octonion split algebras.

Remark 2.8. If A is a finite dimensional separable of degree three alternative
algebra, A′ is a subalgebra of A and (A0, ∗) , (A′

0, ∗) are the algebras in Proposi-
tion 1.5., then A′

0 is a subalgebra of A′, and conversely. Indeed, let α : A′ → A
be an inclusion morphism, then

α′ : (A′
0, ∗) → (A0, ∗) , α′ (x) = α (x) ,

is an inclusion morphism. For the converse, we use the relation (1.5).
If A is a division central simple finite dimensional associative algebra of

degree three over the field K, with dim A = 9, and if A′ is a subalgebra of
A of dimension 5, then in (A′

0, ∗) we have an operation ∇ such that (A′
0, ∇)

becomes a quaternion algebra and, by Proposition 2.3., x ∗ y = x̄∇ȳ. Then
the unity of (A′

0, ∇), e, is a nonzero idempotent in (A′
0, ∗),

e ∗ e = e = (ω − ω2)e2 − 2ω + 1

3
T

(
e2

) · 1

therefore e generates in A a quadratic extension of the field K. This is not
possible, since A has degree three. Then we do not have a quaternion algebra
in A.

Corollary 2.9. If ω ∈ K, then in the algebra M3 (K) there are only split
quaternion algebras.

Proof. The algebra B = {A ∈ M3 (K) / A =




a 0 0
0 b c
0 d e


 , a + b + e = 0} is

a subalgebra of M3 (K). We define the algebra(A0, ∗), where

A0 = {A ∈M3 (K) / Tr (A) = 0}.
The algebra (B, ∗) is a subalgebra of (A0, ∗). As from algebra (B, ∗) we obtain
the quaternion algebra (B,∇) and a ∗ b = ā∇b̄, then this quaternion algebra
is a split algebra. Indeed, (B, ∗) is not a division algebra since, for example,

X =




0 0 0
0 ε γ
0 γ ε̄


 ∈ B and X2 = 0. ¤

In a future paper we search for similar conditions for octonion and quaternion
algebras, when the field K contains the cubic root of the unity, ω.
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[EP96] A. Elduque and J. M. Pérez. Composition algebras with associative bilinear form.
Comm. Algebra, 24(3):1091–1116, 1996.

[Fau88] J. R. Faulkner. Finding octonion algebras in associative algebras. Proc. Amer.
Math. Soc., 104(4):1027–1030, 1988.

[McC67] K. McCrimmon. Generically algebraic algebras. Trans. Amer. Math. Soc., 127:527–
551, 1967.

[McC69] K. McCrimmon. The Freudenthal-Springer-Tits constructions of exceptional Jor-
dan algebras. Trans. Amer. Math. Soc., 139:495–510, 1969.

[Oku95] S. Okubo. Introduction to octonion and other non-associative algebras in physics,
volume 2 of Montroll Memorial Lecture Series in Mathematical Physics. Cambridge
University Press, Cambridge, 1995.

[OM80] S. Okubo and H. C. Myung. Some new classes of division algebras. J. Algebra,
67(2):479–490, 1980.

[OO81a] S. Okubo and J. M. Osborn. Algebras with nondegenerate associative symmetric
bilinear forms permitting composition. Commun. Algebra, 9:1233–1261, 1981.

[OO81b] S. Okubo and J. M. Osborn. Algebras with nondegenerate associative symmetric
bilinear forms permitting composition. II. Commun. Algebra, 9:2015–2073, 1981.

[Pie82] R. S. Pierce. Associative algebras. Graduate Texts in Mathematics, 88. New York-
Heidelberg-Berlin: Springer- Verlag., 1982.

[Sch66] R. D. Schafer. An introduction to nonassociative algebras. Pure and Applied Math-
ematics, 22. A Series of Monographs and Textbooks. New York and London: Aca-
demic Press. X, 166 p. , 1966.

[SK95] I. R. Shafarevich and A. I. Kostrikin, editors. Algebra. VI, volume 57 of Ency-
clopaedia of Mathematical Sciences. Springer-Verlag, Berlin, 1995.

Received February 5, 2006.

Department of Mathematics and Informatics
Ovidius University,
Bd. Mamaia 124, 900527-Constantza,
Romania
E-mail address: cflaut@univ-ovidius.ro


