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ON D SO THAT x2 −Dy2 = ±m

JOHN P. ROBERTSON

Abstract. We prove that for any integer m 6= 0,±2, there are infinitely
many positive integers D for which the form x2−Dy2 primitively represents
m, −m, and −1. We do this by constructing an infinite sequence of such
D’s associated with each m.

Also, when m is odd, we relate the existence of additional such D’s to
well-known conjectures.

1. Introduction

Below we will prove that for any integer m 6= 0,±2, there are infinitely many
positive integers D for which there are primitive solutions to each of the three
equations

(1) x2 −Dy2 = m,

(2) x2 −Dy2 = −m, and

(3) t2 −Du2 = −1.

A classical result has that the only integer D so that x2 − Dy2 represents
both 2 and −2 is D = 2 [2, Satz 20, pp. 106-107].

In general, for a given m 6= 0,±2, there seem to be many D in addition to
those established by our main theorem below for which the three equations
above have solutions. For example, for m = 6, the theorem will show that for
D = 2 × 52k+1 the three equations have solutions. That is, for D < 1000 the
theorem finds D = 10 and D = 250. But, for m = 6 all three equations also
have solutions for D = 58, 106, 202, 298, 394, 538, 586, 634, 778, 922, and 970.

The following Lemma is well known [5, p. 14].

Lemma 1. If (1) has a primitive solution, r2−Ds2 = δ = ±1, v = rx+syD,
and w = ry + sx, then v2 −Dw2 = δm and gcd(v, w) = 1.
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Proof. First,

v2 −Dw2 = (rx + syD)2 −D(ry + sx)2 = (r2 −Ds2)(x2 −Dy2) = δm.

We have that gcd(v, w) = 1 because

rv − sDw = r(rx + syD)− sD(ry + sx) = δx

and
rw − sv = r(ry + sx)− s(rx + syD) = δy,

so any common divisor of v and w would also divide both x and y. ¤
In particular, if (1) and (3) have solutions then (2) has a solution. But it

is possible for (1) and (2) to have solutions while (3) does not have solutions.
For example, 132 − 34 · 22 = 33 and 12 − 34 · 12 = −33, while t2 − 34u2 = −1
has no solutions.

2. Two preliminary lemmas

Our main result will be a consequence of the following two lemmas.

Lemma 2. Suppose that a,M, t, u ∈ N, t2−aMu2 = −1, and gcd(M, 6u) = 1.
Then for every integer k ≥ 0 there are integers Tk and Uk so that

(4) T 2
k − aM2k+1U2

k = −1

and gcd(M, Uk) = 1.

Proof. The lemma is trivial for M = 1 so assume M ≥ 5. The lemma is true
for k = 0 by hypothesis (T0 = t, U0 = u). Assume it’s true for k; we’ll show it
for k + 1.

Set

(5) R + SB = (Tk + UkB)M

where B =
√

aM2k+1 and R and S are integers. We now show that M |S and

gcd(S/M, M) = 1.

Expanding (5), we have that

R + SB = TM
k + MTM−1

k UkB +

(
M

2

)
TM−2

k U2
kB2

+

(
M

3

)
TM−3

k U3
kB3 + · · ·+ UM

k BM ,

so

(6) S = MTM−1
k Uk +

(
M

3

)
TM−3

k U3
kB2 +

(
M

5

)
TM−5

k U5
kB4 + · · ·+UM

k BM−1.

Because B2 = aM2k+1, each term on the right of (6) is divisible by M ,
so S/M is an integer. Additionally, we now show that each term on the
right of (6) after the first is divisible by M2. This should be clear for the
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third and subsequent terms, and for the second term when k > 0. When
k = 0, the second term is

(
M
3

)
tM−3u3aM . Because gcd(M, 6) = 1, it follows

that M |(M
3

)
, so M2 divides this second term. Now gcd(Tk,M) = 1 by (4)

and gcd(Uk,M) = 1 by hypothesis, so TM−1
k Uk is relatively prime to M and

S/M = TM−1
k Uk + M × (additional terms) is relatively prime to M . Because

M is odd, it follows that

R2 − aM2k+1S2 =
(
T 2

k − aM2k+1U2
k

)M
= (−1)M = −1.

So, we can take Tk+1 = R, and Uk+1 = S/M , and we have

T 2
k+1 − aM2k+3U2

k+1 = −1

with gcd(M, Uk+1) = 1. ¤
We need one more lemma.

Lemma 3. Assume that D1, t, u ∈ N and t2 − D1u
2 = −1. Given relatively

prime integers x1, y1, define integers xi, yi for i > 1 by

(7) xi + yi

√
D1 = (x1 + y1

√
D1)(t + u

√
D1)

i−1.

Then for any integer n ≥ 0,

x4n+1 ≡ x1 (mod D1),

y4n+1 ≡ y1 − 4ntux1 (mod D1), and

gcd(x4n+1, y4n+1) = 1.

Proof. Because t2 ≡ −1 (mod D1), we have t3 ≡ −t (mod D1) and t4 ≡ 1
(mod D1). Now

x4n+1 + y4n+1

√
D1 = (x1 + y1

√
D1)(t + u

√
D1)

4n

≡ (x1 + y1

√
D1)(t

4n + 4nt4n−1u
√

D1)

≡ x1t
4n + (y1t

4n + x14nt4n−1u)
√

D1 (mod D1).

Since t4n ≡ 1 (mod D1) and t4n−1 ≡ −t (mod D1), the first two conclusions
of the Lemma follow. By repeated application of Lemma 1 we have that
(t + u

√
D1)

4n expanded can be written as v + w
√

D1 where v2 − D1w
2 =

(−1)4n = 1. From this and another application of Lemma 1 to (7) we get that
gcd(x4n+1, y4n+1) = 1. ¤

3. Main proof

Our result will be an application of the following theorem.

Theorem 1. If

a,m, M, x, y, t, u ∈ N,
x2 − aMy2 = m is a primitive solution with gcd(M, x) = 1, and
t2 − aMu2 = −1 with gcd(M, 6u) = 1,
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then for every integer k ≥ 0 there is a primitive solution to x2−aM2k+1y2 = m
with gcd(M,x) = 1 and there is a primitive solution to x2− aM2k+1y2 = −m.

Proof. By Lemma 2, for every k ≥ 0 there are solutions to

t2 − aM2k+1u2 = −1

with gcd(M, u) = 1.
We proceed by induction on k. The case k = 0 holds by hypothesis. Now,

using the notation of Lemma 3, assume we have x2
1 − aM2k+1y2

1 = m with
gcd(M,x1) = gcd(x1, y1) = 1. In Lemma 3, take D1 = aM2k+1, so y4n+1 ≡ y1−
4ntux1 (mod M). Because M is odd, gcd(4,M) = 1. That gcd(t,M) = 1 is a
consequence of t2−aM2k+1u2 = −1. That gcd(u,M) = 1 is given by Lemma 2.
So gcd(4tux1,M) = 1. We conclude that there is an n so that y1 ≡ 4ntux1

(mod M), and so M |y4n+1. Taking r = x4n+1 and s = y4n+1/M , we have
r2 − aM2k+3s2 = m. Because gcd(x1,M) = 1, by inductive hypotheses, and
r = x4n+1 ≡ x1 (mod M), it follows that gcd(r,M) = 1. Finally, gcd(r, s) = 1
because gcd(x4n+1, y4n+1) = 1.

Because there is a primitive solution to

x2 − aM2k+1y2 = m

and a solution to
x2 − aM2k+1y2 = −1

it follows from Lemma 1 that there is a primitive solution to

x2 − aM2k+1y2 = −m.

¤
Our main result is

Theorem 2. For any integer m 6= 0,±2, there are infinitely many positive
integers D so that there are primitive solutions to (1), (2) and (3).

Proof. Given m, Table 1 gives a and M and shows that for these a and M
there are solutions to x2 − aMy2 = m and t2 − aMu2 = −1 that satisfy
the hypotheses of Lemma 2 and Theorem 1. Because M > 1 for m 6= 0, ±2,
Lemma 2 and Theorem 1 show that for any of the infinitely many different
D = aM2k+1, x2 −Dy2 primitively represents m, −m, and −1. ¤

4. Conjectures

We show that for odd m that there are infinitely many primes p so that
x2 − py2 represents +m, −m, and −1 would follow from some well-known
conjectures. To start, we show:

Lemma 4. For D > 0 an odd integer and (Pi+
√

D)/Qi the complete quotients

for the continued fraction expansion of
√

D (so P0 = 0 and Q0 = 1), it is not
possible for both Qi and Qi+1 to be even.
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Representations of m and −1
m a M x y t u

m ≡ 0 (mod 4) 1
(

m
2

)2
+ 1 m

2
+ 1 1 m

2
1

m ≡ 2 (mod 4) 2
(m

2 )
2
+1

2
m
2

+ 1 1 m
2

1

m ≡ 1 (mod 2) 1 m2 + 4 m2−m+2
2

m−1
2

m3+3m
2

m2+1
2

Table 1. x2 − aMy2 = m and t2 − aMu2 = −1

Proof. First, D = P 2
i + QiQi−1 [1, p. 251, eq. 5.3.13] and D is odd, so if Qi is

even, then Pi must be odd.
Now, suppose Qi and Qi+1 are both even. We will show that Qi+2 must

be even, and so all Qk with k ≥ i must be even. Since we know there are
arbitrarily large j so that Qj = 1 [1, p. 250] [4, p. 48], this contradiction will
prove the Lemma.

If Qi and Qi+1 are both even, then Pi and Pi+1 are both odd. Also, Pi+2 is
odd because Pi+2 = Qi+1ai+1 − Pi+1 [1, p. 251, eq. 5.3.12]. From

Qi+2 = Qi − ai+1(Pi+2 − Pi+1)

we have that Qi+2 is even because Qi and Pi+2 − Pi+1 are even. ¤

Next we show

Lemma 5. If p = n2 +m2 where p is prime, m and n are integers, and m > 2
is odd, then the form x2 − py2 represents both +m and −m.

Proof. Clearly p ≡ 1 (mod 4), so the length ` of the period of the continued
fraction expansion of

√
p is odd and

p = P 2
(`+1)/2 + Q2

(`+1)/2

where (Pi +
√

D)/Qi are the complete quotients for the continued fraction
expansion of

√
p [4, pp. 70-71]. Since Q(`+1)/2 = Q(`−1)/2 (by the palindromic

properties of the continued fraction expansion of
√

p [1, Cor. 5.3.1, p. 242]),
Q(`+1)/2 must be odd. Because p can be written as a sum of squares in an
essentially unique way, Q(`+1)/2 = Q(`−1)/2 = m. It follows that the form
x2 − py2 represents both +m and −m [1, Thm. 5.3.4, p. 246]. ¤

It is conjectured that for m odd there are infinitely many n so that p =
n2 + m2 is prime [3, Conjectures B (Bouniakowsky), B1, B2, and Schinzel’s
Conjecture H, pp. 307-312]. That there are infinitely many primes p so that
x2 − py2 represents both +m and −m would follow from the truth of any of
these conjectures.
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