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ON MONOTONIC BEHAVIOUR OF RELATIVE INCREMENTS OF UNIMODAL
DISTRIBUTIONS

ZOLTÁN SZABÓ

Abstract. Sufficient conditions for monotonic behaviour of relative increment and hazard rate func-
tions h of unimodal distributions of types U and J are being investigated, proved and then applied to
some distributions. In addition, a general algorithm for checking monotonic properties of h is given,

where we do not need the cumulative distribution function F (x) =
xR

−∞
f(t)dt. Instead, we use the

probability density function f and its first two derivatives only.

1. Introduction

We will need some concepts, definitions and results from [4]. By the relative increment function
(briefly, RIF) of a probability distribution function F we mean the fraction

h(x) =
F (x + c)− F (x)

1− F (x)
,

where c is a positive constant, and F (x) < 1 for all x. The hazard rate (failure rate) is defined to be

lim
c→0

h(x)
c

=
f(x)

1− F (x)
.

Lemma 1. Let F be a twice differentiable distribution function with

F (x) < 1, F ′(x) = f(x) > 0

for all x. We define the auxiliary function Ψ as follows:

Ψ(x) :=
(F (x)− 1) · f ′(x)

f2(x)
.

If Ψ < 1 (Ψ > 1), then the function h, the RIF of F strictly increases (strictly decreases). [4]

Remark 1. It is clear that Ψ ≶ 1 is equivalent to

Φ(x) := f2(x) + (1− F (x)) · f ′(x) ≷ 0.

In some examples, it is more convenient to check Φ instead of Ψ.

Theorem 1. Let f be a probability density function and F be the corresponding distribution function
with the following properties.

(1) I = (r, s) ⊆ R is the possible largest finite or infinite open interval in which f > 0 (i.e. I is the
open support of f ; r and s may belong to the extended real line R∗ = R ∪ {−∞,∞});

(2) there exists an m ∈ I at which f ′ is continuous and f ′(m) = 0;
(3) f ′ > 0 in (r,m), and f ′ < 0 in (m, s);
(4) f is twice differentiable in (m, s);
(5) (f/f ′)′ = d/dx[f(x)/f ′(x)] > 0 in (m, s).

Then the corresponding continuous RIF h is either strictly increasing in I, or strictly increasing in (r, y)
and strictly decreasing in (y, s) for some y ∈ I.

Moreover, if Ψ(s−) = lim
x→s−

Ψ(x) ∈ R∗ exists, then
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– h strictly increases in I, if Ψ(s−) ≤ 1;
– h strictly increases in (r, y) and strictly decreases in (y, s) for some y in I, if Ψ(s−) > 1. [4]

Theorem 2. Let f be a density function with (1), (3-4), m = r and
(6) (f/f ′)′ < 0 in (m, s).

Then r is finite, and
(7) if Ψ(r+) < 1 or (Ψ(r+) = 1 and Ψ < 1 in some right neighborhood of r), then Ψ < 1 in I, and

the corresponding RIF strictly increases in I;
(8) if Ψ(r+) > 1 then

(8.1) if Ψ(s−) ≥ 1, then Ψ > 1 and the RIF h strictly decreases in I;
(8.2) if Ψ(s−) < 1, then Ψ > 1 in (r, y) and Ψ < 1 in (y, s) for some y ∈ I, thus the RIF strictly

decreases first and, having reached its local minimum, it strictly increases. [4]

The proof of Theorem 2 in [4] remains valid, if one replaces the relation sign < in (12), page 109 of
[4] by ≤. Hence, the “main idea” in page 109, line 20 can be modified as follows: in (m, s), if Ψ ≤ 1,
then Ψ strictly decreases, provided (f/f ′)′ < 0.

There is an immediate connection to the theory of reliability. By the Mathematical Preliminaries of
[1] (Sec. 1., p. 549), a distribution function F has increasing failure rate if ln(1− F (x)) is concave down
i.e. if Ψ(x) ≤ 1. Similarly, F has decreasing failure rate if ln(1 − F (x)) is concave up, i.e. Ψ(x) ≥ 1.
This is the reason why we always simultaneously investigate here the hazard rates and relative increment
functions of (cumulative) distribution functions F (like we did in [4]).

Remark 2. Since (f/f ′)′ = −(ln f)′′/[(lnf)′]2, the condition (5) can be formulated as follows:
(5′) (ln f)′′ < 0 in (m, s).

Similarly, (6) can be written in the form
(6′) (ln f)′′ > 0 in (m, s). [4]

Remark 3. Theorem 1 is related to U-distributions, while Theorem 2 is related to J-distributions.

In this paper, we will try to extend our results in [4] to the case when (f/f ′)′ changes its sign in
(m, s).

In (m, s), the so-called “main ideas” of the proofs of Theorems 1 and 2 in [4] apply: once Ψ reaches a
value more (less) than 1, it will strictly increase (decrease) and will remain more (less) than 1, provided
(f/f ′)′ > 0 ((f/f ′)′ < 0).

2. Main results

U-distributions.

Theorem 3. Assume (1-4) are fulfilled.
(9) Suppose (f/f ′)′ > 0 in (m,Y ) and (f/f ′)′ < 0 in (Y, s) for some Y ∈ (m, s).

Then both the corresponding RIF h and the hazard rate will either strictly increase; or strictly increase
first and then strictly decrease; or first strictly increase, then strictly decrease and, finally, strictly increase
in I.

The maximum or minimum (if exists) will be reached in (m, Y ] or (Y, s), respectively.

Proof. It follows that Ψ is continuous in [m, s), and Ψ < 1 in (r,m + p) for some p > 0. (See the proof
of Theorem 1. in [4].) If Ψ(Y ) ≤ 1, then Ψ < 1 in (m,Y ).

If Ψ(Y ) < 1 or (Ψ(Y ) = 1 and Ψ < 1 in some right-neighborhood of Y ) then, according to the “main
ideas”, Ψ will strictly decrease and it will remain below 1 in (Y, s). Thus Ψ(s−) < 1 provided Ψ(s−)
exists. In this case, Ψ < 1 in I \ {Y } so, according to Lemma 1 in [4], the RIF h will strictly increase in
I.

If Ψ(Y ) > 1 or (Ψ(Y ) = 1 and Ψ > 1 in some right-neighborhood of Y ), then ∃ Y0 ∈ (m,Y ) such
that Ψ(Y0) = 1, Ψ < 1 in (m,Y0) and Ψ > 1 in (Y0, Y ) because, according to the “main ideas”, once
Ψ(x) ≥ 1, Ψ will strictly increase at x, since (f(x)/f ′(x))′ > 0. (Ψ is continuous, so Ψ will remain above
1 in (Y0, Y + δ) for some δ > 0.} We have two cases:

Case 1. Ψ remains above 1 in (Y,s). Then either Ψ(s−) > 1, or Ψ(s−) = 1 but Ψ > 1 in some
left-neighborhood of s (provided ∃ Ψ(s−)). In this case, due to Lemma 1, the RIF h will first strictly
increase, then strictly decrease, and its maximum will be reached in (m,Y ];
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Case 2. Ψ(Y1) = 1 for some Y1 ∈ (Y, s); then, according to the “main ideas”, Ψ will remain below
1 in (Y1, s). Then Ψ(s−) < 1 (provided ∃ Ψ(s−)). In this case, the RIF h will have three monotonic
phases: h will first strictly increase, then strictly decrease and, finally, strictly increase. The function h
will reach its maximum in (m,Y ] and minimum in (Y, s).

According to the “main ideas” of the proofs of Theorems 1 and 2 in [4], there are no cases like:
– Ψ(Y ) = 1 and Ψ ≥ 1 in some left-neighborhood of Y ,
– or Ψ(Y ) = 1 and Ψ ≡ 1 in some right-neighborhood of Y ,
– or Ψ(s−) = 1 and Ψ ≤ 1 in some left-neighborhood of s. ¤

Remark 4. If Ψ(s−) ≥ 1, then we do not have to check the value of Ψ(Y ) because, independently from
the value of Ψ(Y ), the RIF h will have two monotonic phases: it will strictly increase first, and then
strictly decrease.

Remark 5. (f/f ′)′ ≡ 0 is impossible, since it would lead to a contradiction of the form f(m) = f ′(m) = 0.

J-distributions.

Theorem 4. Let f be a density function with (1), (3-5) and m = r. Then r is finite, and
– if Ψ(m+) > 1 or (Ψ(m+) = 1 and Ψ > 1 in some right-neighborhood of m), then Ψ > 1 in I,

and the corresponding RIF h strictly decreases in I; in this case, Ψ(s−) > 1, provided ∃ Ψ(s−);
– if Ψ(m+) < 1 or (Ψ(m+) = 1 and Ψ < 1 in some right-neighborhood of m), then

• if Ψ(s−) ≤ 1, then Ψ < 1 and h will strictly increase in I;
• if Ψ(s−) > 1, then Ψ > 1 in (m, y) and Ψ < 1 in (y, s) for some y ∈ I;

thus, the RIF h will strictly increase first and, having reached its maximum, it will strictly decrease.

Proof. (2) and (4) imply that Ψ is continuous in I. If Ψ(m+) > 1 or (Ψ(m+) = 1 and Ψ > 1 in some
right-neighborhood of m) then, according to the “main idea” of the proof of Theorem 1 in [4], Ψ will
strictly increase in I, so Ψ(s−) > 1 provided it exists. Thus, Ψ > 1 in I and, according to Lemma 1, the
RIF h will strictly decrease in I.

If Ψ(m+) < 1 or (Ψ(m+) = 1 and Ψ < 1 in some right-neighborhood of m), then we have two cases.
Case 1. Ψ < 1 in I. Then h will strictly increase in I. Thus, Ψ(s−) ≤ 1 provided ∃ Ψ(s−).
Case 2. Ψ(x0) ≥ 1 for some x0 ∈ (m, s). Then, according to the “main idea”, Ψ will strictly

increase in [x0, s). So, Ψ > 1 in (x0, s), and Ψ(s−) > 1 (provided ∃ Ψ(s−)). Hence, ∃ y ∈ I such that
Ψ(y) = 1, Ψ < 1 in (m, y) and Ψ > 1 in (y, s). So, the RIF h will strictly increase in (m, y) and strictly
decrease in (y, s). ¤

Theorem 5. Assume m = r and (1), (3-4) are fulfilled.
(10) Suppose the following relations hold: (f/f ′)′ < 0 in (m,Y ) and (f/f ′)′ > 0 in (Y, s) for some

Y ∈ I = (m, s).
Then both the corresponding RIF h and the hazard rate will, in I,

– either strictly increase;
– or strictly decrease;
– or strictly increase first and then strictly decrease;
– or strictly decrease first and then strictly increase;
– or first strictly decrease, then strictly increase and, finally, strictly decrease.

The maximum or minimum will, if exists, be reached in (Y, s) or in (m,Y ], respectively.

Proof. It follows that Ψ is continuous in I. If Ψ(m+) < 1 or (Ψ(m+) = 1 and Ψ < 1 in some right-
neighborhood of m), then Ψ will strictly decrease, since (f(x)/f ′(x))′ < 0. Ψ is continuous, so Ψ will
remain below 1 in (m,Y + δ) for some δ > 0.

If Ψ(x0) ≥ 1 for some x0 ∈ [Y + δ, s) then, according to the “main ideas”, Ψ will strictly increase and
it will remain above 1 in (Y + δ, s). In this case, we have Ψ(s−) > 1 (provided ∃ Ψ(s−)). The RIF h will
have two monotonic phases: it will first strictly increase, and then strictly decrease. Its maximum will
be reached in (Y, s).

If there is no x0 with this property, then Ψ < 1 in (Y + δ, s), and Ψ(s−) ≤ 1 (provided ∃ Ψ(s−)). In
this case, the RIF h will strictly increase in I.

If Ψ(m+) > 1 or (Ψ(m+) = 1 and Ψ > 1 in some right-neighborhood of m) then, in (m,Y ), we can
follow the series of thoughts of the proof of Theorem 2. in [4]:

– if Ψ(Y ) ≥ 1 , then Ψ > 1 in (m,Y );
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– if Ψ(Y ) < 1 , then ∃ y ∈ (m,Y ) such that Ψ(y) = 1, Ψ > 1 in (m, y) and Ψ will strictly decrease
in [y, Y ), thus Ψ will remain below 1 in (y, Y + δ) for some δ > 0.

In (Y, s), we have the following situation. If Ψ(Y ) > 1 or (Ψ(Y ) = 1 and Ψ > 1 in some right-
neighborhood of Y ) then, in (Y, s), Ψ will strictly increase and it will remain above 1. Thus, Ψ > 1 in
I \ {Y } and Ψ(s−) > 1 (provided ∃ Ψ(s−)). In this case, the RIF h will strictly decrease in I.

If Ψ(Y ) < 1 or (Ψ(Y ) = 1 and Ψ < 1 in some right-neighborhood of Y ), then either Ψ < 1 in (Y, s)
(and then Ψ(s−) ≤ 1 provided ∃ Ψ(s−)); in this case, the RIF h will first strictly decrease, then strictly
increase; h will reach its minimum in (m,Y ]; or ∃ z ∈ (Y, s) such that Ψ(z) = 1; in this case, Ψ < 1
in (Y, z) and Ψ > 1 in (z, s) since, according to the “main ideas”, once Ψ reaches the value 1, it will
strictly increase and will remain more than 1. Thus, Ψ(s−) > 1 (provided ∃ Ψ(s−)); in this case, due
to Lemma 1, the RIF h will have three monotonic phases: it will first strictly decrease, then strictly
increase and, finally, strictly decrease. The function h will reach its minimum in (m,Y ] and maximum
in (Y, s).

According to the “main ideas” of the proofs of Theorems 1 and 2 in [4], there are no cases like:
– Ψ(Y ) = 1 and Ψ ≤ 1 in some left-neighborhood of Y ,
– or Ψ(Y ) = 1 and Ψ ≡ 1 in some right-neighborhood of Y ,
– or Ψ(s−) = 1 and Ψ ≥ 1 in some left-neighborhood of s. ¤

We can formulate a symmetrical statement as follows.

Theorem 6. Assume m = r and (1), (3-4), (9) are fulfilled. Then both the corresponding RIF h and
the hazard rate will, in I,

– either strictly increase;
– or strictly decrease;
– or strictly increase first and then strictly decrease;
– or strictly decrease first and then strictly increase;
– or first strictly increase, then strictly decrease and, finally, strictly increase.

The maximum or minimum will, if exists, be reached in (m,Y ] or in (Y, s), respectively.

Proof. It follows that Ψ is continuous in I. If Ψ(m+) > 1 or (Ψ(m+) = 1 and Ψ > 1 in some right-
neighborhood of m), then Ψ will strictly increase in (m,Y ), since (f(x)/f ′(x))′ > 0. Ψ is continuous, so
it will remain above 1 in (m,Y + δ) for some δ > 0.

If Ψ(x0) ≤ 1 for some x0 ∈ [Y + δ, s) then, according to the “main ideas”, Ψ will strictly decrease and
it will remain below 1 in (Y + δ, s). In this case, we have Ψ(s−) < 1 (provided ∃ Ψ(s−)). Thus, the RIF
h will have two monotonic phases: it will first strictly decrease, and then strictly increase. Its minimum
will be reached in (Y, s).

If there is no x0 with the above property, then Ψ > 1 in (Y +δ, s), and Ψ(s−) ≥ 1 (provided ∃ Ψ(s−)).
In this case, the RIF h will strictly decrease in I.

If Ψ(m+) < 1 or (Ψ(m+) = 1 and Ψ < 1 in some right-neighborhood of m) then, in (m,Y ), we have
the following possibilities.

– If Ψ(Y ) ≤ 1, then Ψ < 1 in (m,Y );
– if Ψ(Y ) > 1, then ∃ y ∈ (m,Y ) such that Ψ(y) = 1, Ψ < 1 in (m, y) and Ψ will strictly increase

in [ y, Y ); thus, because of its continuity, Ψ will remain above 1 in ( y, Y + δ) for some δ > 0.
In (Y, s), we have the following situation. If Ψ(Y ) < 1 or (Ψ(Y ) = 1 and Ψ < 1 in some right-

neighborhood of Y ) then, in (Y, s), Ψ will strictly decrease and it will remain below 1. Thus, Ψ < 1 in
I \ {Y } and Ψ(s−) < 1 (provided ∃ Ψ(s−)). In this case, according to Lemma 1, the RIF h will strictly
increase in I.

If Ψ(Y ) > 1 or (Ψ(Y ) = 1 and Ψ > 1 in some right-neighborhood of Y ), then
– either Ψ > 1 in (Y, s) (and then Ψ(s−) ≥ 1 provided ∃ Ψ(s−));

in this case, h will first strictly increase, then strictly decrease; it will reach its maximum in (m,Y ];
– or ∃ z ∈ (Y, s) such that Ψ(z) = 1;

in this case, Ψ > 1 in (Y, z) and Ψ < 1 in (z, s) because, according to the “main ideas”, once Ψ reaches
the value of 1 in (Y, s), it will strictly decrease and will remain less than 1. Thus, Ψ(s−) < 1 (provided
∃ Ψ(s−)); in this case, due to Lemma 1, the RIF h will have three monotonic phases: it will first strictly
increase, then strictly decrease and, finally, strictly increase. The function h will reach its maximum in
(m,Y ] and minimum in (Y, s).

According to the “main ideas”, there are no cases like:
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– Ψ(Y ) = 1 and Ψ ≥ 1 in some left-neighborhood of Y ,
– or Ψ(Y ) = 1 and Ψ ≡ 1 in some right-neighborhood of Y ,
– or Ψ(s−) = 1 and Ψ ≤ 1 in some left-neighborhood of s. ¤

Due to the Remark 2.1 in [4], there is no distribution for which all the requirements (1-4) and (10)
are fulfilled at the same time.

3. Algorithmic Investigation

If Ψ(s−) and Ψ(m+) exist, then the entire investigation of monotonic behaviour of both the RIF h
and the hazard rate can briefly be summarized and described in an algorithmic way, in a flow-chart,
in which the abbreviations Bs, Bm, BY (that can be considered to be Boolean variables) denote the
following logical conditions:

Bs :=
(
B · (Ψ(s−)− 1) > 0

)

BY :=
(
Ψ(Y ) > 1 or (Ψ(Y ) = 1 and Ψ > 1 in some right-neighborhood of Y )

)

Bm :=
(
Ψ(m+) < 1 or (Ψ(m+) = 1 and Ψ < 1 in some right-neighborhood of m)

)

where
Ψ(s−) = lim

x→s−0
Ψ(x)

and
Ψ(m+) = lim

x→m+0
Ψ(x)

Actually, B is equal to the sign of (f/f ′)′ in a sufficiently small left-neighborhood of s.
If (f/f ′)′ changes sign in (m, s) only once, say at Y , then the locations of maxima/minima (if exist)

obey the following rule:
the RIF h (and the corresponding hazard rate) reach the maximum (minimum) in (m, Y ] (or (Y, s)),
respectively, provided (f/f ′)′ < 0 in some left-neighborhood of s (see Theorems 3 and 6); the RIF (and
the hazard rate) reach the maximum (minimum) in (Y, s) (or (m,Y ]), respectively, provided (f/f ′)′ > 0
in some left-neighborhood of s (see Theorem 5).

The algorithm for investigation of both the RIF h and the hazard rate of a specific distribution can
be described by the flow-chart 1.

4. Applications

Our results apply to some distributions as follows.

Example 1. Inverse Gaussian distribution (p. 382 in [3]):

f(x) = (2πx3/λ)−
1
2 · exp

(−λ · (x− µ)2/(2µ2 · x)
)

where λ, µ > 0 and x ∈ (0,∞) =: I. We have f/f ′ = 2x2/L and (f/f ′)′ = 2x · (2λ − 3x)/L2, where
L := λ−3x−λx2/µ2. The value of (f/f ′)′ is positive if x < 2λ/3 =: Y . The value of m is strictly positive,
since f ′(x) = 0 if λx2 + 3µ2x− λµ2 = 0, the only positive root of which is m = µ · ((c2 + 1)

1
2 − c) ∈ I,

where c := 3µ/(2λ). On the other hand, m < Y , and f is of type U . So, (f/f ′)′ > 0 in (m, Y ) and
(f/f ′)′ < 0 in (Y,∞).

According to our flow-chart, B := −1, and the logical expression Bs is equivalent to Ψ(s−) < 1. By
using Remark 1.4 in [1], one can obtain Ψ(s−) = lim

x→∞
(1 + (f/f ′)′)−1 = 1, since

f∞ = lim
x→∞

f2/f ′ = −µ2 · 2λ

π
· lim

x→∞
exp(−λ · (x− µ)2)/(2µ2 · x)

λx · √x + 3µ2 · √x− λµ2/
√

x
= 0.

So, Ψ(s−) ≥ 1 and, according to the flow-chart, both the corresponding RIF h and the hazard rate will,
in I, first strictly increase and then strictly decrease.

Example 2. Lognormal distribution (p. 192, Table 5.7 in [3]):

f(x) = C · exp
(−(ln x)2/(2σ2)

)

x
,

where σ > 0, C = 1/(σ · √2π) and x ∈ (0,∞) =: I. The equation f ′ = 0 gives the modus: m =
exp(−σ2) ∈ I. We have (f/f ′)′ = −(x/(1+k ·ln x))′ = (1−σ2−ln x)/(σ+(ln x)/σ)2 > 0 if x < e·m =: Y .
On the other hand, m < Y , and f is of type U . So, (f/f ′)′ > 0 in (m,Y ) and (f/f ′)′ < 0 in (Y,∞). The
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Figure 1

density function f is of type U because of uniqueness of m in I. Thus, B = −1, and Bs is equivalent to
Ψ(s−) < 1. By using Remark 1.4 in [1], one can obtain Ψ(s−) as follows:

f2/f ′ = −C · σ2 · exp
(−(lnx)2/(2σ2)

)

σ2 + ln x

tends to 0 as x →∞, so

Ψ(s−) = Ψ(∞) = lim
x→∞

(
1− σ2 · σ2 + ln x− 1

(σ2 + ln x)2

)−1

= 1

and, according to our algorithm, both the corresponding RIF h and the hazard rate will, in I, first
strictly increase and then strictly decrease.
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Example 3. F (x) = (1 − x2)
1
2 , x ∈ (−1, 0) =: I. We have m = r = −1, s = 0 and f has no local

maximum in I. On the other hand, (f/f ′)′ = (x − x3)′ = 1 − 3x2 < 0 in (−1, Y ) and (f/f ′)′ > 0
in (Y, 0), where Y = −1/

√
3. So, B = 1. The density function f is of type J . Bs is equivalent to

Ψ(s−) < 1. We have
lim
x→0

f2/f ′ = lim
x→0

−x2 · (1− x2)
1
2 = 0 ,

Ψ(0−) = 1/2, so the actual value of Bs is FALSE. Since Ψ(−1+) = +∞, Bm is FALSE. Ψ(Y ) is close
to 0.67, so BY is FALSE and, according to our algorithm, both the corresponding RIF h and the hazard
rate will, in I, first strictly decrease first, and then strictly increase. Our algorithm is working but, we
have to admit, checking the relation Ψ(x) < 1 in this example is much easier.

Remark 6. The expression f/f ′ plays a central role in the entire investigation, throughout both [4]
and the present paper. Sometimes, the actual form of f/f ′ is very simple, like in the case of Pearson
distributions. This case is analyzed in [5] thoroughly.
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