A STUDY ON THE GENERALIZATION OF JANOWSKI FUNCTIONS IN THE UNIT DISC

Y. POLATOG̃LU, M. BOLCAL, A. ŞEN AND E. YAVUZ

Abstract

Let Ω be the class of functions $w(z), w(0)=0,|w(z)|<1$ regular in the unit disc $D=\{z:|z|<1\}$. For arbitrarily fixed numbers $A \in(-1,1]$, $B \in[-1, A), 0 \leq \alpha<1$ let $P(A, B, \alpha)$ be the class of regular functions $p(z)$ in D such that $p(0)=1$, and which is $p(z) \in P(A, B, \alpha)$ if and only if $p(z)=\frac{1+[(1-\alpha) A+\alpha B] w(z)}{1+B w(z)}$ for some function $w(z) \in \Omega$ and every $z \in D$.

In the present paper we apply the principle of subordination ([1], [3], [4], [5]) to give new proofs for some classical results concerning the class $S^{*}(A, B, \alpha)$ of functions $f(z)$ with $f(0)=0, f^{\prime}(0)=1$, which are regular in D satisfying the condition: $f(z) \in S^{*}(A, B, \alpha)$ if and only if $z \frac{f^{\prime}(z)}{f(z)}=p(z)$ for some $p(z) \in$ $P(A, B, \alpha)$ and for all z in D.

1. Introduction

Let Ω be the family of functions $w(z)$ regular in the unit disc D and satisfying the conditions $w(0)=0,|w(z)|<1$, for $z \in D$.

For arbitrary fixed numbers $A, B, \alpha,-1 \leq B<A \leq 1,0 \leq \alpha<1$, let $P(A, B, \alpha)$ denote the family of functions

$$
\begin{equation*}
p(z)=1+p_{1} z+p_{2} z^{2}+\cdots+p_{n} z^{n}+\cdots \tag{1}
\end{equation*}
$$

regular in D and such that $p(z)$ is in $P(A, B, \alpha)$ if and only if

$$
\begin{equation*}
p(z) \prec \frac{1+[(1-\alpha) A+\alpha B] z}{1+B z} \Leftrightarrow p(z)=\frac{1+[(1-\alpha) A+\alpha B] w(z)}{1+B w(z)} \tag{2}
\end{equation*}
$$

for some function $w(z) \in \Omega$ and every $z \in D$.
Furthermore, let $S^{*}(A, B, \alpha)$ denote the family of functions

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots \tag{3}
\end{equation*}
$$

regular in D and such that $f(z)$ is in $S^{*}(A, B, \alpha)$ if and only if

$$
\begin{equation*}
z \frac{f^{\prime}(z)}{f(z)}=p(z) \tag{4}
\end{equation*}
$$

for some $p(z)$ in $P(A, B, \alpha)$ and for all z in D.

2000 Mathematics Subject Classification. 30C45.
Key words and phrases. Starlike functions, distortion theorem, representation theorem, radius of starlikeness.

2. New Results On The Class $S^{*}(A, B, \alpha)$

In this section we shall give representation theorems, distortion theorems and establish the radius of starlikeness for the class $S^{*}(A, B, \alpha)$. Our proofs are based on I.S. Jack's Lemma [2].

Lemma 1. Let $w(z)$ be a non-constant and analytic function in the unit disc D with $w(0)=0$. If $|w(z)|$ attains its maximum value on the circle $|z|=r$ at the point z_{1}, then $z_{1} w^{\prime}\left(z_{1}\right)=k w\left(z_{1}\right)$ and $k \geq 1$.

From the definition of the class $P(1,-1,0)$ called the Caratheodory class and $P(A, B, \alpha)$ we easily obtain the following lemma.

Lemma 2. If $p(z) \in P(A, B, \alpha)$ if and only if

$$
\begin{equation*}
p(z)=\frac{[1+(1-\alpha) A+\alpha B] q(z)+[(1-\alpha)(A+B)]}{[1+B] q(z)+[1-B]} \tag{5}
\end{equation*}
$$

for some $q(z) \in P(1,-1,0)$.
Let ζ be an arbitrary fixed point of D. We consider the functional

$$
\begin{equation*}
F(p)=p(\zeta), p(z) \in P(A, B, \alpha) \tag{6}
\end{equation*}
$$

Lemma 3. The set of the values of the functional (6) is the closed disc with centered at $C(r)$ and having the radius $\rho(r)$, where

$$
\begin{cases}C(r)=\left(\frac{1-B[(1-\alpha) A+\alpha B] r^{2}}{1-B^{2} r^{2}}, 0\right), & \rho(r)=\frac{(1-\alpha)(A-B) r}{1-B^{2} r^{2}}, B \neq 0 \\ C(r)=(1,0), & \rho(r)=(1-\alpha)|A| r, B=0\end{cases}
$$

Proof. Every boundary function $p_{0}(z)$ of $P(A, B, \alpha)$ with respect to the functional (6) can be written in the form (5), where

$$
q(z)=\frac{1+\varepsilon z}{1-\varepsilon z},|\varepsilon|=1 .
$$

Hence

$$
\begin{equation*}
p_{0}(z)=\frac{1+[(1-\alpha) A+\alpha B] z}{1+B z} \tag{7}
\end{equation*}
$$

Since $z=r e^{i \theta}, 0 \leq \theta \leq 2 \pi$,

$$
\begin{gather*}
p_{0}(z)=C(r)+\rho \eta \\
\eta=\varepsilon e^{i \theta} \frac{1+B r \bar{\varepsilon} e^{-i \theta}}{1+B r \varepsilon e^{i \theta}} \tag{8}
\end{gather*}
$$

which completes the proof.
Lemma 4. The function

$$
w=w(z)= \begin{cases}\frac{(1-\alpha)(A-B) z}{1+B z}, & B \neq 0 \\ (1-\alpha) A z, & B=0\end{cases}
$$

maps $|z|=r$ onto the disc centered at $C(r)$, and having the radius $\rho(r)$

$$
\begin{cases}C(r)=\left(-\frac{B(1-\alpha)(A-B) r^{2}}{1-B^{2} r^{2}}, 0,\right), & \rho(r)=\frac{(1-\alpha)(A-B) r}{1-B^{2} r^{2}}, B \neq 0 \\ C(r)=(0,0), & \rho(r)=(1-\alpha)|A| r, B=0\end{cases}
$$

Proof. This is immediate from

$$
\begin{align*}
w= & \frac{(1-\alpha)(A-B) z}{1+B z} \Rightarrow \\
& \quad u^{2}+v^{2}+\frac{2 B(1-\alpha)(A-B) r^{2}}{1-B^{2} r^{2}} u-\frac{(1-\alpha)^{2}(A-B)^{2} r^{2}}{1-B^{2} r^{2}}=0, B \neq 0, \tag{9}\\
w= & (1-\alpha) A z \Rightarrow u^{2}+v^{2}-(1-\alpha)^{2} A^{2} r^{2}=0, B=0
\end{align*}
$$

Theorem 1. Let $f(z)=z+a_{2} z^{2}+\cdots$ be an analytic function in the unit disc D. If $f(z)$ satisfying

$$
\left(z \frac{f^{\prime}(z)}{f(z)}-1\right) \prec \begin{cases}\frac{(1-\alpha)(A-B) z}{1+B z}=F_{1}(z), & B \neq 0 \tag{10}\\ (1-\alpha) A z=F_{2}(z), & B=0\end{cases}
$$

then $f(z) \in S^{*}(A, B, \alpha)$ and this result is as sharp as the function

$$
\left(\frac{1+[(1-\alpha) A+B \alpha] z}{1+B z}\right) .
$$

Proof. We define the function $w(z)$ by

$$
\frac{f(z)}{z}= \begin{cases}(1+B w(z))^{\frac{(1-\alpha)(A-B)}{B}}, & B \neq 0, \tag{11}\\ e^{(1-\alpha) A w(z)}, & B=0\end{cases}
$$

where $(1+B w(z))^{\frac{(1-\alpha)(A-B)}{B}}$ and $e^{(1-\alpha) A w(z)}$ have the value 1 at the origin. Then $w(z)$ is analytic in D and $w(0)=0$. If we take the logarithmic derivate of equality (11), simple calculations yield

$$
\left(z \frac{f^{\prime}(z)}{f(z)}-1\right)= \begin{cases}\frac{(1-\alpha)(A-B) z w^{\prime}(z)}{1+B w(z)}, & B \neq 0 \tag{12}\\ (1-\alpha) A z w^{\prime}(z), & B=0\end{cases}
$$

Now it is easy to realize that the subordination (10) is equivalent to $|w(z)|<1$ for all $z \in D$ indeed assume the contrary. There exist $z_{1} \in D$ such that $\left|w\left(z_{1}\right)\right|=1$. Then by I.S. Jack's Lemma $z_{1} w^{\prime}\left(z_{1}\right)=k w\left(z_{1}\right)$ and $k \geq 1$, for such $z_{1} \in D$ and using Lemma 4 we have

$$
\left(z_{1} \frac{f^{\prime}\left(z_{1}\right)}{f\left(z_{1}\right)}-1\right)= \begin{cases}\frac{(1-\alpha)(A-B) k w\left(z_{1}\right)}{1+B w\left(z_{1}\right)}=F_{1}\left(w\left(z_{1}\right)\right) \notin F_{1}(D), & B \neq 0 \tag{13}\\ (1-\alpha) A k w\left(z_{1}\right)=F_{2}\left(w\left(z_{1}\right)\right) \notin F_{2}(D), & B=0\end{cases}
$$

because $\left|w\left(z_{1}\right)\right|=1$ and $k \geq 1$. But this contradicts condition (10) of this theorem and so $|w(z)|<1$ for all $z \in D$. By using condition (10) we get

$$
z \frac{f^{\prime}(z)}{f(z)}= \begin{cases}\frac{1+[(1-\alpha) A+\alpha B] w(z)}{1+B w(z)}, & B \neq 0, \\ 1+(1-\alpha) A w(z), & B=0,\end{cases}
$$

which ends the proof.
Corollary 1. Let $f(z) \in S^{*}(A, B, \alpha)$. Then $f(z)$ can be written in the form

$$
f(z)= \begin{cases}z(1+B w(z))^{\frac{(1-\alpha)(A-B)}{B}}, & B \neq 0, \\ z e^{(1-\alpha) A w(z)}, & B=0 .\end{cases}
$$

Theorem 2. If $f(z) \in S^{*}(A, B, \alpha)$, then

$$
\begin{cases}r(1-B r)^{\frac{(1-\alpha)(A-B)}{B}} \leq|f(z)| \leq r(1+B r)^{\frac{(1-\alpha)(A-B)}{B}}, & B \neq 0, \tag{14}\\ r e^{-(1-\alpha)|A| r} \leq|f(z)| \leq r e^{(1-\alpha)|A| r}, & B=0 .\end{cases}
$$

These bounds are sharp with the extremal function

$$
f_{*}(z)= \begin{cases}z(1+B z)^{\frac{(1-\alpha)(A-B)}{B}}, & B \neq 0, \tag{15}\\ z e^{(1-\alpha) A z}, & B=0\end{cases}
$$

Proof. The set of the values of $\left(z \frac{f^{\prime}(z)}{f(z)}\right)$ is the closed disc with centered at $C(r)=$ $\frac{1-B[A(1-\alpha)+B \alpha] r^{2}}{1-B^{2} r^{2}}$ and having the radius $\rho(r)=\frac{(1-\alpha)(A-B) r}{1-B^{2} r^{2}}$ by using Lemma 3, that is

$$
\begin{equation*}
\left|z \frac{f^{\prime}(z)}{f(z)}-\frac{1-B[(1-\alpha) A+\alpha B] r^{2}}{1-B^{2} r^{2}}\right| \leq \frac{(1-\alpha)(A-B) r}{1-B^{2} r^{2}} \tag{16}
\end{equation*}
$$

After simple calculations from (16) we get

$$
\begin{cases}\frac{1-(1-\alpha)(A-B) r-B[(1-\alpha) A+\alpha B] r^{2}}{1-B^{2} r^{2}} \leq \operatorname{Re}\left(z \frac{f^{\prime}(z)}{f(z)}\right) & B \neq 0 \tag{17}\\ \leq \frac{1+(1-\alpha)(A-B) r-B[(1-\alpha) A+\alpha B] r^{2}}{1-B^{2} r^{2}}, & B=0 \\ 1-(1-\alpha)|A| r \leq \operatorname{Re}\left(z \frac{f^{\prime}(z)}{f(z)}\right) \leq 1+(1-\alpha)|A| r, & B=0\end{cases}
$$

On the other hand we have

$$
\begin{equation*}
\operatorname{Re}\left(z \frac{f^{\prime}(z)}{f(z)}\right)=r \frac{\partial}{\partial r} \log |f(z)|,|z|=r . \tag{18}
\end{equation*}
$$

If we substitute (18) into the (17) we get

$$
\begin{cases}\frac{1}{r}-\frac{(1-\alpha)(A-B)}{1-B r} \leq \frac{\partial}{\partial r} \log |f(z)| \leq \frac{1}{r}+\frac{(1-\alpha)(A-B)}{1+B r}, & B \neq 0, \tag{19}\\ \frac{1}{r}-(1-\alpha)|A| \leq \frac{\partial}{\partial r} \log |f(z)| \leq \frac{1}{r}+(1-\alpha)|A|, & B=0 .\end{cases}
$$

Integrating both sides (19) we obtain (14).
Corollary 2. The radius of starlikeness of the class $S^{*}(A, B, \alpha)$ is

$$
\begin{equation*}
r_{s}=\frac{2}{(1-\alpha)(A-B)+\sqrt{(1-\alpha)^{2}(A-B)^{2}+4 B[(1-\alpha) A+\alpha B]}} \tag{20}
\end{equation*}
$$

This radius is sharp because the extremal function is given in (15).
Proof. From (17) we have

$$
\begin{equation*}
\operatorname{Re}\left(z \frac{f^{\prime}(z)}{f(z)}\right) \geq \frac{1-(1-\alpha)(A-B) r-B[(1-\alpha) A+\alpha B] r^{2}}{1-B^{2} r^{2}} \tag{21}
\end{equation*}
$$

Hence for $r<r_{s}$ the first hand side of the preceding inequality is positive this implies that

$$
r_{s}=\frac{2}{(1-\alpha)(A-B)+\sqrt{(1-\alpha)^{2}(A-B)^{2}+4 B[(1-\alpha) A+\alpha B]}}
$$

Also note that the inequality (20) becomes an equality for the function which is given in (15). It follows that

$$
r_{s}=\frac{2}{(1-\alpha)(A-B)+\sqrt{(1-\alpha)^{2}(A-B)^{2}+4 B[(1-\alpha) A+\alpha B]}} .
$$

and the proof is complete.
Acknowledgements. The authors thank the referee for their useful suggestions.

References

[1] A. W. Goodman. Univalent functions. Mariner Publishing Co. Inc., Tampa, FL, 1983.
[2] I. S. Jack. Functions starlike and convex of order α. J. London Math. Soc. (2), 3:469-474, 1971.
[3] W. Janowski. Some extremal problems for certain families of analytic functions. I. Ann. Polon. Math., 28:297-326, 1973.
[4] S. S. Miller and P. T. Mocanu. Second-order differential inequalities in the complex plane. J. Math. Anal. Appl., 65(2):289-305, 1978.
[5] C. Pommerenke. Univalent functions. Vandenhoeck \& Ruprecht, Göttingen, 1975.
Received February 8, 2005; revised November 14, 2005.

Department of Mathematics and Computer Sciences, Faculty of Science and Arts,
İstanbul Kültür University,
İstanbul, Turkey
E-mail address: y.polatoglu@iku.edu.tr
E-mail address: m.bolcal@iku.edu.tr
E-mail address: a.sen@iku.edu.tr
E-mail address: e.yavuz@iku.edu.tr

