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FIXED POINTS AND GENERALIZED VECTOR EQUILIBRA IN
GENERAL TOPOLOGICAL SPACES

XIE PING DING AND JONG YEOL PARK

Abstract. In this paper, we first generalize a fixed point theorem due to
Tarafdar from topological vector spaces to general topological spaces without
linear structure. By using our new fixed point theorem, some new existence

theorems of solutions for generalized vector equilibrium problems and general-

ized implicit vector variational inequality problems are proved under noncom-
pact settings of general topological spaces. Some special cases of our results

are also discussed.

1. Introduction

Let X, Y and Z be topological spaces. Let F : X ×X → 2Z , P : X → 2Z and
T : X → 2Y be set-valued mappings where 2Z denotes the family of all nonempty
subsets of Z and let φ : Y × X × X → Z be a single-valued mapping. Then, we
consider the generalized vector equilibrium problem (in short, GVEP) which is to
find x̂ ∈ X such that

(1) F (x̂, y) 6⊆ P (x̂), ∀y ∈ X.

Let f : X × X → Z is a single-valued mapping. If F (x, y) = {f(x, y)}, then
the GVEP (1) reduces to the following vector equilibrium problem (in short, VEP)
which is to find x̂ ∈ X such that

(2) f(x̂, y) /∈ P (x̂), ∀y ∈ X.

We also consider the following generalized implicit vector variational inequality
problem (in short, GIVVIP) which is to find x̂ ∈ X such that

(3) for each y ∈ X, there exists ŝ ∈ T x̂ satisfying φ(ŝ, x̂, y) /∈ P (x̂).

If T : X → Y is a single-valued mapping, then the GIVVIP (3) reduces to the
following implicit vector variational inequality problem ( in short, IVVIP ) which
is to find x̂ ∈ X such that

(4) φ(T (x̂), x̂, y) /∈ P (x̂), ∀y ∈ X.

Clearly, If we define a single-valued mapping f : X × X → Z and a set-valued
mapping F : X ×X → 2Z by

f(x, y) = φ(Tx, x, y), ∀(x, y) ∈ X ×X,
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and

F (x, y) = φ(Tx, x, y) =
⋃

s∈Tx

φ(s, x, y), ∀(x, y) ∈ X ×X,

then each solution of the VEP (2) is a solution of the IVVIP (4) and each solution
of the GVEP (1) is a solution of the GIVVIP (3).

If X is a nonempty convex subset of a topological vector space, Z is a topological
vector space and for each x ∈ X, P (x) = − intC(x) or P (x) = intC(x) where C(x)
is a closed convex cone in Z with intC(x) 6= ∅ and C(x) 6= Z, and intC(x) denotes
the interior of C(x), then the GVEP (1) and the VEP (2) was introduced and
studied by Ansari et. al. [2], Ansari[1], Oettli and Schlöger [18, 19], Ansari and
Yao [3], Song [21] and so on.

If X is a nonempty convex subset of a Hausdorff topological vector space E and
Z is another Hausdorff topological vector space, Y = L(E,Z) is the space of all
continuous linear mappings from E into Z, then the GIVVIP (3) was introduced
and studied by Lee and Kim [17].

The GVEP (1), VEP (2), GIVVIP (3) and IVVIP (4) include many classes of
vector and generalized vector equilibrium problems, vector and generalized vec-
tor variational inequality problems as special cases (see, for example, [2]–[14] and
references therein).

In the paper, we shall employ the fixed point technique to establish some new
existence theorems of solutions for the GVEP (1) and the GIVVIP (3) in general
noncompact topological spaces without linear structure. For this reason, we shall
first obtain a generalization of the Tarafdar’s fixed point theorem in [22] from
topological vector spaces to general topological spaces without linear structure. By
using our new fixed point theorem, some new existence theorems of solutions for
the GVEP (1) and GIVVIP (3) without any monotonicity assumptions are proved
in general noncompact topological spaces. Some special cases of our results are also
discussed.

2. Fixed point theorems

In 1987, Tarafdar [22] proved a Fan – Browder type fixed point theorem equiva-
lent Fan –Knaster –Kuratowski – Mazurkiewicz theorem in topological vector spaces.
Since then some applications of this fixed point theorem in many different fields
have given by many authors. In this section, we generalize this fixed point theo-
rem from topological vector space to general noncompact topological space without
linear structure.

A topological space X is said to be contractible if the identity mapping IX on X
is homotopic to a constant function. In particular, any convex set or star-shaped
set in a topological vector space is contractible.

Let X be a topological space. A subset A of X is said to be compactly open (
resp., compactly closed ) in X if for each compact subset K of X, A

⋂
K is open

( resp., closed ) in K. It is clear that each open subset of X must be compactly
open in X, but the inverse is not true in general. Define the compact interior of A,
denoted by cintA, as

cintA =
⋃
{B ⊆ X : B ⊆ A,B is compactly open in X}.

It is easy to see that A is compactly open if and only if A = cintA.
It is well known that a subset of a topological space X is called a k-test set

if its intersection with each nonempty compact subset K of X is closed in K.
A topological space X is called a k-space if each k-test set is closed in X (or
equivalently, a subset B of X is open in X if and only if B is compactly open
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in X). For example, see Wilansky [24, p. 142] or Dugunji [13, p. 248] or Husain
[15, p. 171–172]. However, there exist topological spaces which are not k-spaces.
Indeed, the topological vector space RR is not a k-space, see Kelley [16, p. 240]
or Wilansky [24, p. 143]. The product of two k-spaces need not be a k-space, see
Husain [15, p. 174]. Hence the notions of the compactly open sets and the compact
interior of a set both are true extension of the notions of the open sets and the
interior of a set in a general topological space.

For a nonempty set X, we shall denote by F(X) the family of all nonempty finite
subsets of X. The following result is a special case of Theorem 2.1 of Ding [11].

Theorem 2.1. Let X be a topological space, K be a nonempty compact subset of
X, and G : X → 2X be a set-valued mapping such that

(i) for each nonempty compact subset D of X, D =
⋃

y∈X(cintG−1(y)
⋂
D),

(ii) for each N ∈ F(X), there exists a nonempty compact contractible subset LN

of X containing N such that for each compactly open subset U of X, the set⋂
x∈U (G(x)

⋂
LN ) is empty or contractible, and

LN \K ⊆
⋃

y∈LN

cintG−1(y).

Then there exists a point x̂ ∈ X such that x̂ ∈ G(x̂).

The following result is an equivalent variant of Theorem 2.1.

Theorem 2.2. Let X be a topological space, K be a nonempty compact subset of
X, and H,G : X → 2X be two set-valued mappings such that

(i) for each x ∈ X, H(x) ⊆ G(x),
(ii) for each compact subset D of X, D =

⋃
y∈X(cintH−1(y)

⋂
D),

(iii) for each N ∈ F(X), there exists a nonempty compact contractible subset LN

of X containing N such that for each compactly open subset U of X, the set⋂
x∈U (G(x)

⋂
LN ) is empty or contractible, and

LN \K ⊆
⋃

y∈LN

cintH−1(y).

Then there exists a point x̂ ∈ X such that x̂ ∈ G(x̂).

Proof. By (i), we have H−1(y) ⊆ G−1(y) for each y ∈ X and hence cintH−1(y) ⊆
cintG−1(y) for each y ∈ X. The condition (ii) implies that for each nonempty
compact subset D of X, D =

⋃
y∈X(cintG−1(y)

⋂
D). The condition (iii) implies

LN \ K ⊆
⋃

y∈LN
cintG−1(y). All conditions of Theorem 2.1 is satisfied. By

Theorem 2.1, the conclusion of Theorem 2.2 holds.

Remark 2.1. Clearly, if H = G then Theorem 2.2 reduces to Theorem 2.1.

Corollary 2.1. Let X be a compact contractible space and H,G : X → 2X be two
set-valued mappings such that

(i) H(x) ⊆ G(x) for each x ∈ X,
(ii) X =

⋃
y∈X cintH−1(y),

(iii) for each open subset U of X, the set
⋂

x∈U G(x) is empty or contractible.

Then there exists a point x̂ ∈ X such that x̂ ∈ G(x̂).

Proof. Note that X is a compact contractible space, by letting LN = K = X for
each N ∈ F(X), it is easy to see that all conditions of Theorem 2.2 are satisfied.
The conclusion of Corollary 2.1 holds from Theorem 2.2.
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Remark 2.2. In Theorem 2.2 and Corollary 2.1, if the mappings H and G are
replaced by H−1 and G−1, respectively, then their conclusions still hold. Therefore
Theorem 2.2 and Corollary 2.1 improve and generalize Theorem 4 of Park and
Jeong [20] and Corollary 2.2 of Ding [8] to general noncompact topological space.
For the related results, the readers may consult Tarafdar and Yuan [23] and Ding
[5]–[10].

Now, by applying Theorem 2.2 and Corollary 2.1, we can obtain the following
new generalization of Tarafdar’s fixed point theorem in [22].

Theorem 2.3. Let X be a topological space, H,G : X → 2X be two set-valued
mappings such that

(i) H(x) ⊆ G(x) for each x ∈ X,
(ii) for each compact subset D of X, D =

⋃
y∈Y (cintH−1(y)

⋂
D),

(iii) there exists a nonempty set X0 ⊂ X such that for each N ∈ F(X), there
is a compact contractible subset LN of X containing X0

⋃
N such that for

each compactly open subset U of X, the set
⋂

x∈U (G(x)
⋂
LN ) is empty or

contractible, and the set K =
⋂

y∈X0
(cintH−1(y))c is empty or compact where

(cintH−1(y))c denotes the complement of the set cintH−1(y).

Then there exists a point x̂ ∈ X such that x̂ ∈ G(x̂).

Proof. Case (I). We first assume that K =
⋂

y∈X0
(cintH−1(y))c is empty. For a

given N0 ∈ F(X0), by the condition (iii), there exists a compact contractible subset
LN0 of X containing X0 such that for each compactly open subset U of X, the set⋂

x∈U (G(x)
⋂
LN0) is empty or contractible. Now we claim that for each x ∈ LN0 ,

H(x)
⋂
LN0 6= ∅. Indeed, if H(x0)

⋂
LN0 = ∅ for some x0 ∈ LN0 , then y /∈ H(x0)

for all y ∈ LN0 and hence x0 /∈ H−1(y) ⊇ cintH−1(y) for all y ∈ LN0 . It follows
from X0 ⊆ LN0 that x0 ∈

⋂
y∈LN0

(cintH−1(y))c ⊆
⋂

y∈X0
(cintH−1(y))c = K

which contradicts the fact K = ∅. Hence we can define two set-valued mappings
H∗, G∗ : LN0 → 2LN0 by

H∗(x) = H(x)
⋂
LN0 and G∗(x) = G(x)

⋂
LN0 , ∀x ∈ LN0 ,

such that H∗(x) 6= ∅ and H∗(x) ⊆ G∗(x) for each x ∈ LN0 . For each y ∈ LN0 , we
have

(H∗)−1(y) = {x ∈ LN0 : y ∈ H∗(x)} = {x ∈ LN0 : y ∈ H(x)
⋂
LN0}

= {x ∈ LN0 : y ∈ H(x)} = H−1(y)
⋂
LN0 .

From ∅ = K =
⋂

y∈X0
(cintH−1(y))c ⊃

⋂
y∈LN0

(cintH−1(y))c, we obtain

LN0 = LN0 \
⋂

y∈LN0

(cintH−1(y))c =
⋃

y∈LN0

(cintH−1(y)
⋂
LN0)

=
⋃

y∈LN0

cintLN0
(H−1(y)

⋂
LN0) =

⋃
y∈LN0

cint(H∗)−1(y).

Note LN0 is a compact subset of X, hence each open subset U∗ of LN0 is also a
compactly open subset of X. By the condition (iii), we have the set

⋂
x∈U∗ G∗(x) =⋂

x∈U∗(G(x)
⋂
LN0) is empty or compact. Since LN0 is also a compact contractible

space, H∗ and G∗ satisfy all conditions of Corollary 2.1. By Corollary 2.1, there
exists a point x̂ ∈ LN0 ⊂ X such that x̂ ∈ G∗(x̂) ⊆ G(x̂).

Case (II). Now assume K =
⋂

y∈X0
(cintH−1(y))c is nonempty and compact. By

the condition (iii), for each N ∈ F(X), there exists a compact contractible subset
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LN of X containing X0

⋃
N ⊇ N such that

LN \K = LN \
⋂

y∈X0

(cintH−1(y))c =
⋃

y∈X0

(cintH−1(y)
⋂
LN )

⊆
⋃

y∈LN

cintH−1(y).

Hence, by Theorem 2.2, there exists a point x̂ ∈ X such that x̂ ∈ G(x̂). This
completes the proof.

Corollary 2.2. Let X be a nonempty convex subset of a topological vector space.
Let H,G : X → 2X be such that

(i) for each x ∈ X, H(x) ⊆ G(x), and G(x) is convex,
(ii) for each y ∈ X, H−1(y) contains a relatively open subset Oy of X ( Oy

may be empty for some y ∈ X ) such that for each compact subset D of X,
D =

⋃
y∈X(Oy

⋂
D),

(iii) there exists a nonempty set X0 ⊂ X such that X0 is contained in a compact
convex subset X1 of X and the set K =

⋂
y∈X0

Oc
y is empty or compact.

Then there exists a point x̂ ∈ X such that x̂ ∈ G(x̂).

Proof. By (ii), for each y ∈ X, we have Oy ⊂ cintH−1(y) and for each compact
subset D of X, D =

⋃
y∈X(Oy

⋂
D) ⊆

⋃
y∈X(cintH−1(y)

⋂
D) and hence D =⋃

y∈X(cintH−1(y)
⋂
D). Since X1 is a compact convex subset of X containing X0,

for each N ∈ F(X), let LN = co(X1

⋃
N). Then LN is also a compact convex

subset of X containing X0

⋃
N . Note that each nonempty convex subset in a

topological vector space is contractible and G(x) is convex for each x ∈ X, we have
that for each compactly open subset U of X, the set

⋂
x∈U (G(x)

⋂
LN ) is empty

or convex, and hence it is empty or contractible. Since Oy ⊂ cintH−1(y) for each
y ∈ X, we have K ′ =

⋂
y∈X0

(cintH−1(y))c ⊆
⋂

y∈X0
Oc

y = K. So if K = ∅, then
K ′ = ∅; if K and K ′ are both nonempty, then K ′ is a closed subset of K and hence
by (iii), K ′ is a compact subset of X. Now, the conclusion of Corollary 2.2 follows
from Theorem 2.3.

Remark 2.3. Corollary 2.2 is a slightly improving version of Tarafdar’s fixed theorem
in [22] and hence Theorem 2.3 generalizes this theorem to general noncompact
topological spaces. Theorem 2.3 also includes Corollary 2.2 of Ding [8] as a special
case.

3. Existence of solutions for GVEP and GIVVIP

In this section, by using Theorem 2.3, we shall prove some new existence theo-
rems of solutions for the GVEP (1) and the GIVVIP (3) without any monotonicity
assumptions in general noncompact topological spaces.

Theorem 3.1. Let X and Z be two topological spaces, F : X × X → 2Z and
P : X → 2Z be two set-valued mappings such that

(i) the mapping W : X → 2Z defined by W (x) = Z \ P (x) is such that the graph
Gr(W ) of W is closed in X × Z,

(ii) for each y ∈ X, the mapping x 7→ F (x, y) is upper semicontinuous with com-
pact values on each compact subset of X,

(iii) there exists a set-valued mapping F ∗ : X ×X → 2Z such that
(a) for each x ∈ X, F ∗(x, x) 6⊆ P (x),
(b) for each x, y ∈ X, F (x, y) ⊆ P (x) implies F ∗(x, y) ⊆ P (x),
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(c) there exists a nonempty set X0 ⊂ X such that for each N ∈ F(X), there is
a compact contractible subset LN of X containing X0

⋃
N satisfying that

for each compactly open subset U of X, the set
⋂

x∈U{y ∈ LN : F ∗(x, y) ⊆
P (x)} is empty or contractible and the set K =

⋂
y∈X0

{x ∈ X : F (x, y) 6⊆
P (x)} is empty or compact.

Then the solutions set S =
⋂

y∈X{x ∈ X : F (x, y) 6⊆ P (x)} of the GVEP (1) is
nonempty and compact in X.

Proof. We first show that the solutions set S of the GVEP (1) is nonempty. If it
is false, then for each x ∈ X, there exists y ∈ X such that F (x, y) ⊆ P (x). Define
set-valued mappings H,G : X → 2X by

H(x) = {y ∈ X : F (x, y) ⊆ P (x)} and G(x) = {y ∈ X : F ∗(x, y) ⊆ P (x)}

for each x ∈ X. Then H(x) 6= ∅ for each x ∈ X. By (iii)(b), we have H(x) ⊆ G(x).
Now we claim that for each y ∈ X, the set Q(y) = {x ∈ X : F (x, y) 6⊆ P (x)} is
compactly closed in X. Indeed, for each fixed y ∈ X and for any compact subset
K of X, let {xλ}λ∈Λ be a net in Q(y)

⋂
K such that {xλ} converges to x. Then

we have x ∈ K and F (xλ, y) 6⊆ P (xλ) and hence there exists zλ ∈ F (xλ, y) such
that zλ /∈ P (xλ), or zλ ∈ W (xλ) for all λ ∈ Λ. Since K is compact it follows from
the condition (ii) and Proposition 3.1.11 of Aubin and Ekeland [4] that the set⋃

x∈K F (x, y) is compact. Since {zλ} ⊆
⋃

x∈K F (x, y), without loss of generality
, we may assume zλ → z. By the upper semicontinuity of F (·, y), we obtain
z ∈ F (x, y). By the condition (i), we have (x, z) ∈ Gr(W ), i.e., z /∈ P (x). Hence
x ∈ Q(y)

⋂
K and Q(y) is compactly closed in X for each y ∈ X. For each y ∈ X,

we have

H−1(y) = {x ∈ X : y ∈ H(x)} = {x ∈ X : F (x, y) ⊆ P (x)} = X \Q(y),

and hence for each y ∈ X, H−1(y) is compactly open in X. Note H(x) 6= ∅ for
each x ∈ X, we have X =

⋃
y∈X H−1(y) =

⋃
y∈X cintH−1(y). Hence for each

compact subset D of X, we have D =
⋃

y∈X(cintH−1(y)
⋂
D). The condition

(iii)(c) implies that for each compactly open subset U of X,
⋂

x∈U (G(x)
⋂
LN )

is empty or contractible and the set K =
⋂

y∈X0
{x ∈ X : F (x, y) 6⊆ P (x)} =⋂

y∈X0
(H−1(y))c =

⋂
y∈X0

(cintH−1(y))c is empty or compact. By Theorem 2.3,
there exists a point x̂ ∈ X such that x̂ ∈ G(x̂), i.e. , F ∗(x̂, x̂) ⊆ P (x̂) which
contradicts the condition (iii)(a). Hence the solutions set S of the GVEP (1) is
nonempty. Since S =

⋂
y∈X{x ∈ X : F (x, y) 6⊆ P (x)} is a nonempty closed subset

of the compact set K =
⋂

y∈X0
{x ∈ X : F (x, y) 6⊆ P (x)}, we must have S is

compact. This completes the proof.

By Theorem 3.1, it is easy to see that the following result holds.

Corollary 3.1. Let X and Z be two topological spaces, f : X×X → Z be a single-
valued mapping and P : X → 2Z be a set-valued mapping such that
(i) The mapping W : X → 2Z defined by W (x) = Z \ P (x) is such that the graph

Gr(W ) of W is closed in X × Z,
(ii) for each y ∈ X, the mapping x 7→ f(x, y) is continuous on each compact subset

of X,
(iii) there exists a single-valued mapping g : X ×X → Z such that

(a) for each x ∈ X, g(x, x) /∈ P (x),
(b) for each x, y ∈ X, f(x, y) ∈ P (x) implies g(x, y) ∈ P (x),
(c) there exists a nonempty set X0 ⊆ X such that for each N ∈ F(X), there is

a compact contractible subset LN of X containing X0

⋃
N satisfying that

for each compactly open subset U of X, the set
⋂

x∈U{y ∈ LN : g(x, y) ∈
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P (x)} is empty or contractible and the set K =
⋂

y∈X0
{x ∈ X : f(x, y) /∈

P (x)} is empty or compact.

Then the solutions set S =
⋂

y∈X{x ∈ X : f(x, y) /∈ P (x)} of the VEP (2) is
nonempty and compact.

Corollary 3.2. Let X be a nonempty convex subset of a topological vector space
E, Z be a topological vector space and C : X → 2Z be a set-valued mapping such
that for each x ∈ X, C(x) is a closed, pointed and convex cone with apex at the
origin and intC(x) 6= ∅. Let f : X ×X → Z be a single-valued mapping such that

(i) the mapping W : X → 2Z defined by W (x) = Z \ intC(x) for each x ∈ X is
upper semicontinuous on X,

(ii) for each y ∈ X, f(·, y) is continuous on each compact subset of X,
(iii) there exists a mapping g : X ×X → Z such that

(a) for each x ∈ X, g(x, x) /∈ intC(x),
(b) for all x, y ∈ X, g(x, y)− f(x, y) ∈ intC(x),
(c) for each x ∈ X, the set {y ∈ X : g(x, y) ∈ intC(x)} is convex,

(iv) there exists a nonempty subset X0 of X which is contained in a compact convex
subset X1 of X such that the set K =

⋂
x∈X0

{x ∈ X : f(x, y) 6∈ intC(x)} is
empty or compact.

Then the solutions set S =
⋂

y∈X{x ∈ X : f(x, y) /∈ intC(x)} of the VEP (2) with
P (x) = intC(x) for each x ∈ X is nonempty and compact.

Proof. By (i), W is upper semicontinuous with closed valued. It follows from Propo-
sition 3.1.7 of Aubin and Ekeland [4], the graph Gr(W ) of W is closed in X × Z.
From the condition (iii)(b) it follows that for all x, y ∈ X, f(x, y) ∈ intC(x) implies
g(x, y) ∈ intC(x). Indeed, if x, y ∈ X such that f(x, y) ∈ intC(x), then, by (iii)(b),
we have g(x, y) = g(x, y) − f(x, y) + f(x, y) ∈ intC(x) + intC(x) = intC(x). For
each N ∈ F(X), let LN = co(X1

⋃
N), then LN is a compact convex subset of X

containing (X0

⋃
N), and by (iii)(c), we have that for any compactly open subset

U of X, the set
⋂

x∈U{y ∈ LN : g(x, y) ∈ intC(x)} is empty or convex and hence it
is empty or contractible. Now it is easy to see that all conditions of Corollary 3.1
with P (x) = intC(x) for each x ∈ X are satisfied. The conclusion of Corollary 3.2
follows from Corollary 3.1.

Remark 3.1. Corollary 3.2 improves Theorem 1 of Ansari [1] and hence Corollary 3.1
and Theorem 3.1 further generalizes Theorem 1 of Ansari [1] to general topological
space without linear structure and strengthens its corresponding conclusion.

Theorem 3.2. Let X, Y and Z be three topological spaces, T : X → 2Y and
P : X → 2Z be two set-valued mappings and φ : Y ×X ×X → Z be a single-valued
mapping such that

(i) the mapping W : X → 2Z defined by W (x) = Z \ P (x) is such that the graph
Gr(W ) of W is closed in X × Z,

(ii) T is upper semicontinuous with nonempty compact values on each compact
subset of X,

(iii) for each y ∈ X, φ(·, ·, y) is continuous on each compact subset of Y ×X,
(iv) there exists a single-valued mapping ψ : Y ×X ×X → Z such that

(a) for each x ∈ X, there exists s ∈ T (x) such that ψ(s, x, x) /∈ P (x),
(b) for each x, y ∈ X and each s ∈ T (x), φ(s, x, y) ∈ P (x) implies ψ(s, x, y) ∈

P (x),
(c) there exists a nonempty set X0 ⊆ X such that for each N ∈ F(X), there

is a nonempty compact contractible subset LN of X containing (X0

⋃
N)
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satisfying that for each compactly open subset U of X, the set

K =
⋂

x∈U

{y ∈ LN : φ(T (x), x, y) ⊆ P (x)}

is empty or contractible where φ(T (x), x, y) =
⋃

s∈T (x) φ(s, x, y) and the
set ⋂

y∈X0

{x ∈ X : ψ(T (x), x, y) 6⊆ P (x)}

is empty or compact where ψ(T (x), x, y) =
⋃

s∈T (x) ψ(s, x, y).

Then the solutions set S =
⋂

y∈X{x ∈ X : φ(T (x), x, y) 6⊆ P (x)} of the GIVVIP
(3) is nonempty and compact.

Proof. Define a set-valued mapping F ∗, F : X ×X → 2Z by

F (x, y) = φ(T (x), x, y) =
⋃

s∈T (x)

φ(s, x, y),

and
F ∗(x, y) = ψ(T (x), x, y) =

⋃
s∈T (x)

ψ(s, x, y)

for all (x, y) ∈ X × X. Then, by the conditions (ii) and (iii), for each y ∈ X,
the mapping x 7→ F (x, y) is upper semicontinuous with nonempty compact values
on each compact subset of X. The condition (iv)(a) implies that for each x ∈ X,
F ∗(x, x) 6⊆ P (x). The conditions (iv)(b) and (iv)(c) imply that the conditions
(iii)(b) and (iii)(c) of Theorem 3.1 hold. By Theorem 3.1, the solutions set S =⋂

x∈X{y ∈ X : F (x, y) 6⊆ P (x)} =
⋂

x∈X{y ∈ X :
⋃

s∈T (x) φ(s, x, y) 6⊆ P (x)} of
the GVEP (1) is nonempty and compact. We note that x̂ ∈ S is a solution of the
GVEP (1) if and only if ⋃

s∈T (x̂)

φ(s, x̂, y) 6⊆ P (x̂), ∀y ∈ X.

The above relation holds if and only if for each y ∈ X, there exists ŝ ∈ T (x̂) such
that φ(ŝ, x̂, y) 6∈ P (x̂), i.e. x̂ is a solution of the GIVVIP (3). This completes the
proof.

In Theorem 3.2, if T is a single-valued mapping, then we have the following
result.

Corollary 3.3. Let X, Y and Z be three topological spaces and P : X → 2Z be
a set-valued mapping. Let T : X → Y and φ : Y × X × X → Z be single-valued
mappings such that
(i) the mapping W : X → 2Z defined by W (x) = Z \ P (x) is such that the graph

Gr(W ) of W is closed in X × Z,
(ii) T is continuous on each compact subset of X,
(iii) for each y ∈ X, the mapping φ(·, ·, y) is continuous on each compact subset of

Y ×X,
(iv) there exists a mapping ψ : Y ×X ×X → Z such that

(a) for each x ∈ X, ψ(Tx, x, x) /∈ P (x),
(b) for each x, y ∈ X, φ(Tx, x, y) ∈ P (x) implies ψ(Tx, x, y) ∈ P (x),
(c) there exists a nonempty set X0 ⊆ X such that for each N ∈ F(x) there

is a compact contractible subset LN of X containing (X0

⋃
N) satisfy-

ing that for each compactly open subset U of X, the set
⋂

x∈U{y ∈ LN :
φ(T (x), x, y) ∈ P (x)} is empty or contractible and the set K =

⋂
y∈X0

{x ∈
X : ψ(T (x), x, y) /∈ P (x)} is empty or compact.
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Then the solutions set S =
⋂

y∈X{x ∈ X : φ(Tx, x, y) /∈ P (x)} of the IVVIP (4) is
nonempty and compact.

Now let E and Z be two topological vector spaces, X be a nonempty convex
subset of E and L(E,Z) be the space of all continuous linear mappings from E
into Z. Let H : X ×X → 2Z , T : X → 2L(E,Z) and C : X → 2Z be three set-valued
mappings such that for each x ∈ X, C(x) is a convex cone in Z with intC(x) 6= ∅
and C(x) 6= Z. Let ψ : L(E,Z)×X ×X → Z be a single-valued mapping. H(x, y)
is said to be Cx-quasiconvex in y if for any x, y, z ∈ X and α ∈ [0, 1],

H(x, αy + (1− α)z) ⊆ αH(x, y) + (1− α)H(x, z)− C(x).

ψ(s, x, y) is said to be Cx-quasiconvex with respect to T in y, if for any x, y, z ∈ X,
s ∈ T (x) and α ∈ [0, 1], we have

ψ(s, x, αy + (1− α)z) ∈ αψ(s, x, y) + (1− α)ψ(s, x, z)− C(x).

Clearly, the above notions generalize the corresponding notions of Cx-quasiconvexity-
like and P -convexity introduced by Ansari and Yao [3] and Lee and Kim [17],
respectively.

Theorem 3.3. Let X be a nonempty convex subset of a Hausdorff topological vector
space E and Z be a topological vector space. Let F : X ×X → 2Z and C : X → 2Z

be two set-valued mappings such that for each x ∈ X, C(x) is a closed convex cone
in Z with intC(x) 6= ∅. Assume that
(i) the mapping W : X → 2Z defined by W (x) = Z \ {−intC(x)} such that the

graph Gr(W ) of W is closed in X × Z,
(ii) for each y ∈ X, x 7→ F (x, y) is upper semicotinuous with nonempty compact

values on each compact subset of X,
(iii) there exists a set-valued mapping H : X ×X → 2Z such that

(a) for each x ∈ X, H(x, x) 6⊆ − intC(x),
(b) for each x, y ∈ X, F (x, y) ⊆ − intC(x) implies H(x, y) ⊆ − intC(x),
(c) H(x, y) is Cx-quasiconvex in y,

(iv) there exists a nonempty subset X0 of X which is contained in a nonempty
compact convex subset X1 of X such that for each x ∈ X \X1, there is y ∈ X0

with F (x, y) ⊆ − intC(x).
Then the solutions set S =

⋂
y∈X{x ∈ X : F (x, y) 6⊆ −intC(x)} of the GVEP (1)

with P (x) = − intC(x) for each x ∈ X is a nonempty and compact subset of X1.

Proof. We first show that for each x ∈ X, the set

A = {y ∈ X : H(x, y) ⊆ − intC(x)}
is convex. Indeed, for any y, z ∈ A and α ∈ [0, 1], by the condition (iii)(c), we have

H(x, αy + (1− α)z) ⊆ αH(x, y) + (1− α)H(x, z)− C(x)
⊆ α(− intC(x)) + (1− α)(− intC(x))− C(x)
⊆ − intC(x)− C(x) ⊆ − intC(x),

and hence αy + (1− α)z ∈ A and the set A is convex. Now for any N ∈ F(X), let
LN = co(X1

⋃
N), then LN is a compact convex subset of X containing X0

⋃
N .

Hence, we obtain that for each compactly open subset U of X, the set⋂
x∈U

{y ∈ LN : H(x, y) ⊆ − intC(x)} = LN

⋂
{y ∈ X : F (x, y) ⊆ − intC(x)}

is empty or convex and so it is empty or contractible. By the condition (iv), for
each x ∈ X \ X1 there exists y ∈ X0 such that F (x, y) ⊆ − intC(x), that is x /∈
{z ∈ X : F (z, y) 6⊆ − intC(z)}. This implies that K =

⋂
y∈X0

{x ∈ X : F (x, y) 6⊆
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− intC(x)} ⊆ X1. By the proof of Theorem 3.1 with P (x) = − intC(x) for each
x ∈ X, we see that K is a closed subset of X1 and hence K is empty or compact.
It is easy to check that all conditions of theorem 3.1 with P (x) = − intC(x) for
each x ∈ X are satisfied. By Theorem 3.1, the solutions set S =

⋂
y∈X{x ∈ X :

F (x, y) 6⊆ − intC(x)} of the GVEP (1) with P (x) = − intC(x) for each x ∈ X is a
nonempty and compact subset of X1.

Remark 3.2. Theorem 3.3 improves Theorem 2.1 of Ansari and Yao [3], since the
conditions (ii) and (iii)(c) are weaker than the conditions (iii) and (iv)(c) of Theorem
2.1 in [3]. Hence Theorem 3.1 generalizes Theorem 2.1 of Ansari and Yao [3] from
topological vector space to general noncompact topological space without linear
structure.

Theorem 3.4. Let E be a Hausdorff topological vector space on which the topolog-
ical dual space E∗ of E separates points, and let X be a nonempty convex subset of
E. Let Z be another Hausdorff topological vector space on which the topological dual
space Z∗ of Z separates points. Let C : X → 2Z be a set-valued mapping such that
for each x ∈ X, C(x) is a convex cone in Z with − intC(x) 6= ∅ and C(x) 6= Z.
Let L(E,Z) be equipped with either the topology of pointwise convergence or the
topology of bounded convergence. Let T : X → 2L(E,Z) be a set-valued mappings
and let φ : L(E,Z)×X ×X → Z be single-valued mapping. Suppose that

(i) the mapping W : X → 2Z defined by W (x) = Z \ − intC(x) is such that the
graph Gr(W ) of W is weakly closed in X × Z,

(ii) T is upper semicontinuous with nonempty compact values on each compact
subset of X where X is equipped with the weak topology,

(iii) for each y ∈ X, φ(·, ·, y) is continuous on each compact subset of L(E,Z)×X
, where both X and Z are endowed with the weak topologies,

(iv) there exists a mapping ψ : L(E,Z)×X ×X → Z such that
(a) for each x ∈ X, there is a s ∈ T (x) such that ψ(s, x, x) /∈ − intC(x),
(b) for each x, y ∈ X and s ∈ T (x), φ(s, x, y) ∈ − intC(x) implies ψ(s, x, y) ∈

− intC(x),
(c) ψ(s, x, y) is Cx-quasiconvex with respect to T in y,

(v) there exists a nonempty set X0 ⊆ X which is contained in a weakly compact
convex subset X1 of X such that the set K =

⋂
y∈X0

{x ∈ X : φ(T (x), x, y) ⊆
− intC(x)} is empty or weakly compact.

Then the solutions set S =
⋂

y∈X{x ∈ X : φ(T (x), x, y) 6⊆ − intC(x)} of the
GIVVIP (3) with P (x) = − intC(x) for each x ∈ X is nonempty and weakly
compact.

Proof. We first prove that for each x ∈ X the set

A = {y ∈ X : ψ(T (x), x, y) ⊆ − intC(x)}

is convex. Indeed, for any y, z ∈ A, s ∈ T (x) and α ∈ [0, 1], by (iii)(c), we have

ψ(s, x, αy + (1− α)z) ∈ αψ(s, x, y) + (1− α)ψ(s, x, z)− C(x)
⊆ α(− intC(x)) + (1− α)(− intC(x))− C(x)
⊆ − intC(x).

It follows that ψ(T (x), x, αy + (1 − α)z) ⊆ − intC(x) and αy + (1 − α)z ∈ A.
Hence A is a convex subset of X. Let Y = L(E,Z) and P (x) = − intC(x) for each
x ∈ X. It is easy to check that the conditions (i)–(iv) imply that the conditions
(i)-(iii), (iv)(a) and (iv)(b) of Theorem 3.2 are satisfied. For each N ∈ F(X), let
LN = co(X1

⋃
N), then LN is a weakly compact convex subset of X containing
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(X0

⋃
N). Since for each x ∈ X, the set A = {y ∈ X : φ(Tx, x, y) ⊆ − intC(x)} is

convex, therefore for each weakly compactly open subset U of X, the set⋂
x∈U

{y ∈ LN : φ(T (x), x, y) ⊆ − intC(x)}

is empty or convex and so it is empty or contractible. Finally, the condition (v)
implies the condition (iv)(c) of Theorem 3.2 holds. The conclusion of Theorem 3.4
holds from Theorem 3.2.

Putting φ(s, x, y) = ψ(s, x, y) for all (s, x, y) ∈ L(E,Z)×X×X in Theorem 3.4,
we obtain the following result.

Corollary 3.4. Let E,X,E∗, Z,Z∗, L(E,Z), C : X → 2Z , T : X → 2L(E,Z) and
φ : L(E,Z) × X × X → Z be same as in Theorem 3.4 such that the conditions
(i)–(iii) and (v) of theorem 3.4 hold. Further assume that
(iv) for each x ∈ X, there is a point s ∈ T (x) such that φ(s, x, x) /∈ − intC(x),

and φ(s, x, y) is Cx-quasiconvex with respect to T in y.
Then the solutions set S =

⋂
y∈X{x ∈ X : φ(T (x), x, y) 6⊆ − intC(x)} of the

GIVVIP (3) is nonempty and weakly compact.

Remark 3.3. Theorem 3.4 and Corollary 3.4 both improve Theorem 3.2 and Corol-
lary 3.2 of Lee and Kum [17] and hence Theorem 3.2 generalizes these results to
general noncompact topological space without linear structure under much weaker
assumptions and strengthen the corresponding conclusion which shows that the
solutions set of the GIVVIP (3) is weakly compact.
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