```
Acta Mathematica Academiae Paedagogicae Nyíregyháziensis
19 (2003), 83-88
www.emis.de/journals
```


ON THE CURVATURES OF $(r+1)$-DIMENSIONAL GENERALIZED TIME-LIKE RULED SURFACE

MEHMET BEKTAŞ

Abstract

In this paper, we obtain some relationships between the curvatures of $(r+1)$-dimensional generalized time-like ruled surfaces. We also calculate the drall of a generalized time-like ruled surfaces when the base curve is taken as an orthogonal trajectory of the generated spaces.

1. Introduction

Let R_{1}^{n} be n-dimensional Minkowski space with the standard metric given by

$$
\langle,\rangle=-d x_{0}^{2}+d x_{1}^{2}+d x_{2}^{2}+\cdots+d x_{n-1}^{2}
$$

where $\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)$ is a rectangular system of $R_{1}^{n}[2]$. Nonzero vectors are classified as time-like, space-like or null, respectively, according to whether

$$
\langle v, v\rangle<0, \quad\langle v, v\rangle>0, \quad\langle v, v\rangle=0 .
$$

Let $\alpha \in R_{1}^{n}$ is a curve in Minkowski space. If $\dot{\alpha}$ is a velocity of α and $\langle\dot{\alpha}, \dot{\alpha}\rangle<0$ then the curve α is called a time-like curve.

Let R_{1}^{n} be n-dimensional Minkowski space and M a submanifold of R_{1}^{n} Let \bar{D} denote the standard Riemannian connection of R_{1}^{n} and let D denote the Riemannian connection of M. For any vector fields X, Y on M we have the Gauss equation [3].

$$
\begin{equation*}
\bar{D}_{X} Y=D_{X} Y+V(X, Y) \tag{1.1}
\end{equation*}
$$

where $D_{X} Y, V(X, Y)$ are tangential and normal components of $\bar{D}_{X} Y$, respectively. V is called the second fundamental form of M. We also have the Weingarten equation giving the tangential and normal components of $\bar{D}_{X} \xi$, where ξ is a normal vector field of M :

$$
\begin{equation*}
\bar{D}_{X} \xi=-A_{\xi}(X)+D_{X}^{\perp} \xi \tag{1.2}
\end{equation*}
$$

Let X, Y be vector fields on M, ξ be a normal vector field and \langle,$\rangle be the$ Minkowski metric on R_{1}^{n}. From (1.1) we have

$$
\begin{equation*}
\left\langle\bar{D}_{X} Y, \xi\right\rangle=\langle V(X, Y), \xi\rangle \tag{1.3}
\end{equation*}
$$

and then (1.2) implies

$$
\begin{equation*}
\langle V(X, Y), \xi\rangle=\left\langle A_{\xi}(X), Y\right\rangle \tag{1.4}
\end{equation*}
$$

Let $\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{n-m}\right\}$ be an orthonormal basis of $\chi^{\perp}(M)$ and the space of normal vector fields on M. Then there exist smooth functions $V^{j}(X, Y), j=1, \ldots, n-m$,
from M into \mathbb{R} such that

$$
\begin{equation*}
V(X, Y)=\sum_{j=1}^{n-m} V^{j}(X, Y) \xi_{j} \tag{1.5}
\end{equation*}
$$

Furthermore we may define the mean curvature vector field H by

$$
\begin{equation*}
H=\sum_{j=1}^{n-m} \frac{\operatorname{trace} A_{\xi_{j}}}{m} \xi_{j} \tag{1.6}
\end{equation*}
$$

and the mean curvature function as $|H|$. At a point $p \in M, H(p)$ is called the mean curvature vector and $|H(p)|$ the mean curvature at p .

If $H(p)=0$ for each $p \in M$, then M is said to be minimal.
Let I be an open interval and $\alpha: I \rightarrow R_{1}^{n}$ be a time-like curve in Minkowski space. For each $t \in I$, let $\left\{e_{1}(t), e_{2}(t), \ldots, e_{r}(t)\right\},(1 \leq r \leq n-2)$ be an orthonormal set of vectors spanning the r-dimensional space-like subspace $W_{r}(t)$ of $T_{\alpha(t)} R_{1}^{n}$. We have

$$
\begin{equation*}
\left\langle e_{i}, e_{j}\right\rangle=\delta_{i j}, \quad(i, j=1, \ldots, r) \tag{1.7}
\end{equation*}
$$

and denoting by \dot{e}_{i} the derivative of the vector field e_{i} along the time-like curve α;

$$
\begin{equation*}
\left\langle\dot{e}_{i}, e_{j}\right\rangle+\left\langle e_{i}, \dot{e}_{j}\right\rangle=0 \tag{1.8}
\end{equation*}
$$

We may then define an $(r+1)$-dimensional submanifold of R_{1}^{n} as in [5].
Definition 1.1. Let $\alpha,\left\{e_{i}\right\}$ be as above and define $\varphi: I \times R_{1}^{r} \subseteq R_{1}^{n}$ by

$$
\begin{equation*}
\varphi\left(t, u_{1}, \ldots, u_{r}\right)=\alpha(t)+\sum_{i=1}^{r} u_{i} e_{i}(t) \tag{1.9}
\end{equation*}
$$

for all $\left(t, u_{1}, \ldots, u_{r}\right) \in I \times R_{1}^{r}$. Let $M=\varphi(G)$ where $G=I \times R_{1}^{r} \subseteq R_{1}^{r+1}$. Note that

$$
\operatorname{rank}\left(\varphi_{t}, \varphi_{u_{1}}, \ldots, \varphi_{u_{r}}\right)=\operatorname{rank}\left(\dot{\alpha}(t)+\sum_{i=1}^{r} u_{i} \dot{e}_{i}(t), e_{1}(t), e_{2}(t), \ldots, e_{r}(t)\right)=r+1
$$

so M is an $(r+1)$-dimensional submanifold of R_{1}^{n}. We call M an $(r+1)$-dimensional generalized time-like ruled surface. The time-like curve α is called the base curve of the generalized time-like ruled surface and the space-like subspace $W_{r}(t)$ is called the generating space (or briefly, generation) at the point $\alpha(t)$.

Definition 1.2. The subspace $A(t)$ given by

$$
\begin{equation*}
A(t)=\operatorname{Span}\left\{e_{1}(t), e_{2}(t), \ldots, e_{r}(t), \dot{e}_{1}(t), \dot{e}_{2}(t), \ldots, \dot{e}_{r}(t)\right\} \tag{1.10}
\end{equation*}
$$

with dimension $\operatorname{dim} A(t)=r+m, 0 \leq m \leq r$, is said to be the asymptotic bundle of the generalized time-like ruled surface.
$W_{r}(t)$ is a subspace of $A(t)$ and using the Gramm-Schmidt orthogonalization process, basis of the form;

$$
\begin{equation*}
\left\{e_{1}(t), e_{2}(t), \ldots, e_{r}(t), a_{r+1}(t), \ldots, a_{r+m}(t)\right\} \tag{1.11}
\end{equation*}
$$

may be found. Then there exist $b_{i j}, c_{i k}$ such that

$$
\begin{equation*}
\dot{e}_{i}=\sum_{j=1}^{r} b_{i j} e_{j}+\sum_{k=1}^{m} c_{i k} a_{r+k} \tag{1.12}
\end{equation*}
$$

with $b_{i j}=-b_{j i}$ by (1.8). The basis $\left\{e_{1}(t), e_{2}(t), \ldots, e_{r}(t)\right\}$ is called the natural carrier basis of $W_{r}(t)$.

Now let $\tau_{m+1}=\left\langle\dot{\alpha}_{r}(t), a_{r+m+1}\right\rangle$, and $K_{k}=\left\langle\dot{e}_{k}(t), a_{r+k}\right\rangle$ for $k=1, \ldots, m$ so that

$$
\begin{gathered}
\dot{e}_{i}=\sum_{j=1}^{r} b_{i j} e_{j}+K_{i} a_{r+i}, \quad\left(1 \leq i \leq m, K_{i}>0\right) \\
\dot{e}_{i}=\sum_{j=1}^{r} b_{i j} e_{j} \quad(m<i \leq r)
\end{gathered}
$$

We now define the following:

$$
\begin{equation*}
\delta_{k}=\frac{\tau_{m+1}}{K_{k}}, \quad k=1, \ldots, m \tag{1.13}
\end{equation*}
$$

and note that each δ_{k} is invariant under a reparametrization $t \rightarrow t^{*}$ with $\frac{d t}{d t^{*}}>0$. δ_{k} is called the k th principle drall (principal distribution parameter) of M lying in $W_{r}(t)$. The drall (distribution parameter) of M is defined by

$$
\begin{equation*}
\delta=\left|\delta_{1} \ldots \delta_{m}\right|^{\frac{1}{m}} \tag{1.14}
\end{equation*}
$$

as in [1].

2. On the curvatures of generalized time-Like surfaces

Let M be an $(r+1)$-dimensional generalized time-like ruled surface and s the arc length parameter of the time-like curve α. Let $\left\{e_{1}(s), e_{2}(s), \ldots, e_{r}(s)\right\}$ be an orthonormal basis of the generating space-like space $W_{r}(s)$. Let us choose the base time-like curve α to be an orthogonal trajectory of the generating spaces $W_{r}(s)$. M is given by

$$
\begin{equation*}
\varphi\left(s, u_{1}, \ldots, u_{r}\right)=\alpha(s)+\sum_{i=1}^{r} u_{i} e_{i}(s), \quad u_{i} \in R \tag{2.1}
\end{equation*}
$$

Let $\left\{e_{0}, e_{1}, \ldots, e_{r}\right\}$ be a (local) orthonormal basis of the space of vector fields $\chi(M)$ and let us choose $e_{0}=\varphi_{*}\left(\frac{\partial}{\partial s}\right)$. By (2.1)

$$
\begin{equation*}
\varphi_{s}=\dot{\alpha}(s)+\sum_{i=1}^{r} u_{i} \dot{e}_{i}(s), \quad \varphi_{u_{i}}=e_{i}(s) \tag{2.2}
\end{equation*}
$$

then

$$
\begin{equation*}
\bar{D}_{e_{i}} e_{j}=0, \quad i, j=1, \ldots, r \tag{2.3}
\end{equation*}
$$

and using (1.1),

$$
\begin{equation*}
V\left(e_{i}, e_{j}\right)=0, \quad i, j=1, \ldots, r \tag{2.4}
\end{equation*}
$$

Since $\bar{D}_{e_{i}} e_{0} \perp e_{j}$ and $\bar{D}_{e_{i}} e_{0} \perp e_{0}($ for all $i, j)$ then

$$
\begin{equation*}
\bar{D}_{e_{i}} e_{0}=V\left(e_{i}, e_{0}\right), \quad i, j=1, \ldots, r \tag{2.5}
\end{equation*}
$$

Let $\left\{\xi_{1}, \ldots, \xi_{n-r-1}\right\}$ be an orthonormal basis of normal vector fields. Then $\left\{e_{0}, e_{1}, \ldots, e_{r}, \xi_{1}, \ldots, \xi_{n-r-1}\right\}$ gives a basis of $T_{p} R_{1}^{n}$ for each point $p \in M$. Let us write

$$
\begin{align*}
\bar{D}_{e_{0}} \xi_{j} & =a_{00}^{j} e_{0}+\sum_{t=1}^{r} a_{0 t}^{j} e_{t}+\sum_{q=1}^{n-r-1} b_{0 q}^{j} \xi_{q}, \quad j=1, \ldots, n-r-1 \\
\bar{D}_{e_{i}} \xi_{j} & =a_{0 i}^{j} e_{0}+\sum_{t=1}^{r} a_{i t}^{j} e_{t}+\sum_{q=1}^{n-r-1} b_{i q}^{j} \xi_{q}, \quad i=1, \ldots, r \tag{2.6}
\end{align*}
$$

where the $a_{i t}^{j}$ are coefficients of the matrix of $A_{\xi_{j}}$:

$$
A_{\xi_{j}}=-\left[\begin{array}{cccc}
a_{00}^{j} & a_{01}^{j} & \cdots & a_{0 r}^{j} \tag{2.7}\\
a_{01}^{j} & a_{11}^{j} & \cdots & a_{1 r}^{j} \\
\vdots & \vdots & \ddots & \vdots \\
a_{0 r}^{j} & a_{r 1}^{j} & \cdots & a_{r r}^{j}
\end{array}\right], \quad(j=1, \ldots, n-r-1)
$$

We simplify this matrix using (2.6),

$$
\left\langle\bar{D}_{e_{i}} e_{t}, \xi_{j}\right\rangle=-a_{i t}^{j}, \quad(i, t=1, \ldots, r ; \quad j=1, \ldots, n-r-1)
$$

and by (2.3), $a_{i t}^{j}=0$. (2.7) can be written as follows

$$
A_{\xi_{j}}=-\left[\begin{array}{cccc}
a_{00}^{j} & a_{01}^{j} & \cdots & a_{0 r}^{j} \tag{2.8}\\
a_{01}^{j} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
a_{0 r}^{j} & 0 & \cdots & 0
\end{array}\right]
$$

Furthermore, (2.6) and (1.4) respectively lead to the relations:

$$
\left\langle\bar{D}_{e_{i}} e_{0}, \xi_{j}\right\rangle=-a_{0 i}^{j}, \quad(i=1, \ldots, r ; j=1, \ldots, n-r-1)
$$

and

$$
\left\langle V\left(e_{i}, e_{0}\right), \xi_{j}\right\rangle=\left\langle A_{\xi_{j}}\left(e_{i}\right), e_{0}\right\rangle=a_{0 i}^{j},(1 \leq i \leq r, 1 \leq j \leq n-r-1)
$$

and therefore by (1.5) and (2.5)

$$
\begin{equation*}
V\left(e_{i}, e_{0}\right)=\bar{D}_{e_{i}} e_{0}=\sum_{j=1}^{n-r-1} a_{0 i}^{j} \xi_{j}, \quad(j=1, \ldots, r) \tag{2.9}
\end{equation*}
$$

Now, let X, Y be vector fields on the m-dimensional submanifold M whose curvature tensor field is R. As in [4], we have

$$
\begin{equation*}
\langle X, R(X, Y) Y\rangle=\langle V(X, X), V(Y, Y)\rangle-\langle V(X, Y), V(X, Y)\rangle \tag{2.10}
\end{equation*}
$$

where V is $2 n d$ fundamental form of M embedded in R_{1}^{n}.
Definition 2.1. Let M be any m-dimensional Lorentzian manifold with curvature tensor R and $\left\{e_{1}, \ldots, e_{m}\right\}$ be an orthonormal basis of $T_{p} M$ for $p \in M$. Then the Ricci curvature tensor field Ric is defined by

$$
\begin{equation*}
\operatorname{Ric}(X, Y)=\sum_{i=1}^{m} \varepsilon_{i}\left\langle R\left(e_{i}, Y\right) X, e_{i}\right\rangle \tag{2.11}
\end{equation*}
$$

where

$$
\varepsilon_{i}= \begin{cases}-1, & i=1 \\ 1, & 2 \leq i \leq m\end{cases}
$$

The scalar curvature of M is defined by

$$
\begin{equation*}
\mathbf{r}=\sum_{i=1}^{m} \varepsilon_{i} \operatorname{Ric}\left(e_{i}, e_{i}\right) \tag{2.12}
\end{equation*}
$$

or by (2.11)

$$
\begin{equation*}
\mathbf{r}=\sum_{i=1}^{m} \sum_{j=1}^{m} \varepsilon_{i} \varepsilon_{j}\left\langle R\left(e_{j}, e_{i}\right) e_{i}, e_{j}\right\rangle \tag{2.13}
\end{equation*}
$$

In order to calculate the Ricci curvature of M in the direction of the vector fields $e_{t}(t=1, \ldots, r)$, we use (2.4), (2.9), (2.10), (2.11) and we obtain

$$
\begin{equation*}
\operatorname{Ric}\left(e_{t}, e_{t}\right)=\sum_{j=1}^{n-r-1}\left(a_{0 t}^{j}\right)^{2},(t=1, \ldots, r) \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Ric}\left(e_{0}, e_{0}\right)=\sum_{t=1}^{r} \sum_{j=1}^{n-r-1}\left(a_{0 t}^{j}\right)^{2} \tag{2.15}
\end{equation*}
$$

From (2.14) and (2.15) we can define

$$
\begin{equation*}
\operatorname{Ric}\left(e_{0}, e_{0}\right)=\sum_{t=1}^{r} \operatorname{Ric}\left(e_{t}, e_{t}\right) \tag{2.16}
\end{equation*}
$$

Now we have proved the following theorem.
Theorem 2.1. Let $\left\{e_{1}, \ldots, e_{r}\right\}$ be an orthonormal basis of the generating space of the $(r+1)$-dimensional generalized time-like ruled surface M and $\left\{e_{0}, e_{1}, \ldots, e_{r}\right\}$ and orthonormal basis of $\chi(M)$. If the base time-like curve of M is chosen as an orthonormal trajectory of generating space then the Ricci curvature in the direction of e_{0} is equal to the sum Ricci curvatures in the directions of the vector fields forming a basis of the generating space.

By (2.12), the scalar curvature of the $(r+1)$-dimensional generalized time-like ruled surface M may be expressed as

$$
\begin{aligned}
\mathbf{r} & =-\operatorname{Ric}\left(e_{0}, e_{0}\right)+\sum_{t=1}^{r} \operatorname{Ric}\left(e_{t}, e_{t}\right) \\
\mathbf{r} & =0
\end{aligned}
$$

Using (1.3), (1.4), (1.5), (2.6) and (2.8) we have

$$
\begin{equation*}
V\left(e_{0}, e_{0}\right)=-\sum_{i=1}^{n-r-1}\left(\operatorname{trace} A_{\xi_{j}}\right) \xi_{j} \tag{2.17}
\end{equation*}
$$

Now (1.6) gives

$$
H=-\frac{1}{r+1} V\left(e_{0}, e_{0}\right)
$$

If M is minimal then H is zero and so

$$
\begin{equation*}
V\left(e_{0}, e_{0}\right)=0 \tag{2.18}
\end{equation*}
$$

We say that $X_{p}, Y_{p} \in T_{p} M$ are conjugate if $V\left(X_{p}, Y_{p}\right)=0$. We have the following theorem.

Theorem 2.2. Let $\left\{e_{1}, \ldots, e_{r}\right\}$ be an orthonormal basis for the generating space of an ($r+1$)-dimensional generalized time-like ruled surface M and let e_{0} be an unit time-like tangent vector field to the base time-like curve, the latter taken to be an orthonormal trajectory of the generating space of M. Then the minimal time-like ruled surface M is totally geodesic iff e_{0} is conjugate to each vector $e_{i}, i=1, \ldots, r$.

Proof. $\left\{e_{0}, e_{1}, \ldots, e_{r}\right\}$ is an orthonormal basis of $\chi(M)$ and for each $X, Y \in \chi(M)$ we may write

$$
X=a_{0} e_{0}+\sum_{i=1}^{r} a_{i} e_{i}, \quad Y=b_{0} e_{0}+\sum_{i=1}^{r} b_{i} e_{i}
$$

and then

$$
\begin{equation*}
V(X, Y)=a_{0} b_{0} V\left(e_{0}, e_{0}\right)+\sum_{i=1}^{r}\left(a_{i} b_{0}+a_{0} b_{i}\right) V\left(e_{i}, e_{0}\right)+\sum_{i=1}^{r} a_{i} b_{i} V\left(e_{i}, e_{i}\right) \tag{2.19}
\end{equation*}
$$

$(: \Longrightarrow)$ If M is totally geodesic then V is identically zero, so e_{0} is certainly conjugate to $e_{i}, i=1, \ldots, r$.
$(\Longleftarrow:) V\left(e_{0}, e_{i}\right)=0$ for $i=1, \ldots, r$ then by (2.4) and (2.18), (2.19) reduces to $V(X, Y)=0$ and this completes the proof of the theorem.

If trace $A_{\xi_{j}}=-a_{00}^{j}$ from (2.8) is substituted into (1.6) we obtain

$$
\begin{equation*}
(r+1)^{2}|H|^{2}=\sum_{j=1}^{n-r-1}\left(a_{00}^{j}\right)^{2} \tag{2.20}
\end{equation*}
$$

Theorem 2.3. Let M be an $(r+1)$-dimensional generalized time-like ruled surface. Let the base time-like curve α be an orthogonal trajectory of the generating space be parametrized by arc length. Then kth principle distribution parameter is

$$
\delta_{k}=\frac{\left(1-\sum_{t=1}^{r} \tau_{t}^{2}\right)^{\frac{1}{2}}}{\left|\left\|\bar{D}_{e_{0}} e_{k}\right\|^{2}-\sum_{j=1}^{r}\left\langle\bar{D}_{e_{0}} e_{k}, e_{j}\right\rangle^{2}\right|^{\frac{1}{2}}}
$$

$(k=1, \ldots, m)$ and the distribution parameter (drall) is

$$
\delta_{k}=\frac{\left(1-\sum_{t=1}^{r} \tau_{t}^{2}\right)^{\frac{1}{2}}}{\prod_{k=1}^{m}\left|\left\|\bar{D}_{e_{0}} e_{k}\right\|^{2}-\sum_{j=1}^{r}\left\langle\bar{D}_{e_{0}} e_{k}, e_{j}\right\rangle^{2}\right|^{\frac{1}{2 m}}}
$$

Proof. Using (1.13) and (1.14) we obtain

$$
\begin{equation*}
\delta_{k}=\frac{\left\{\left\|\dot{\alpha}-\sum_{j=1}^{r}\left\langle\dot{\alpha}, e_{j}\right\rangle e_{j}-\sum_{t=1}^{r}\left\langle\dot{\alpha}, a_{r+t}\right\rangle a_{r+t}\right\|\right\}}{\left\{\left\|\dot{e}_{k}-\sum_{j=1}^{r}\left\langle\dot{e}_{k}, e_{j}\right\rangle e_{j}\right\|\right\}} \tag{2.21}
\end{equation*}
$$

The base curve α is an orthogonal trajectory so $\left\langle\dot{\alpha}, e_{j}\right\rangle=0$ for $j=1, \ldots, r$. Substituting $\left\langle\dot{\alpha}, e_{j}\right\rangle=0,(j=1, \ldots, r) \dot{e}_{k}=\bar{D}_{e_{0}} e_{k}$, and $\left\langle\dot{\alpha}, a_{r+t}\right\rangle=\tau_{t},(t=$ $1, \ldots, m$) into (2.21), the desired result is obtained.

Acknowledgement: The author would like to thank Professor Mahmut Ergüt his careful reading of the manuscript.

References

[1] M. Ergüt. The drall and the scalar normal curvatures of $(r+1)$-dimensional generalized ruled surfaces. Commun. Fac. Sci. Univ. Ank., 38:115-125, 1989.
[2] S.D. Jung and J.S. Pak. Classification of cylindrical ruled surfaces satisfying $\Delta h=A h$ in 3-dimensional Minkowski space. Bull. Korean Math. Soc., 33(1):97-106, 1996.
[3] B. O'Neill. Semi-Riemannian Geometry. Academic Press, New York, London, 1983.
[4] A. Özel and V. Asil. On submanifolds in E^{m}. Series of Physical-Technical and Mathematical Sciences, V. 19(1-2):146-151, 1999.
[5] C. Thas. Properties of ruled surfaces in the Euclidean space E ${ }^{n}$. Academia Sinica, 6(1):133142, 1987.

Received August 20, 2002.

Department of Mathematics,
Firat University,
23119 Elaziğ
Turkey

