Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 19 (2003), 83-88 www.emis.de/journals

ON THE CURVATURES OF (r + 1)-DIMENSIONAL GENERALIZED TIME-LIKE RULED SURFACE

MEHMET BEKTAŞ

ABSTRACT. In this paper, we obtain some relationships between the curvatures of (r + 1)-dimensional generalized time-like ruled surfaces. We also calculate the drall of a generalized time-like ruled surfaces when the base curve is taken as an orthogonal trajectory of the generated spaces.

1. INTRODUCTION

Let R_1^n be *n*-dimensional Minkowski space with the standard metric given by

$$\langle , \rangle = -dx_0^2 + dx_1^2 + dx_2^2 + \dots + dx_{n-1}^2$$

where $(x_0, x_1, \ldots, x_{n-1})$ is a rectangular system of R_1^n [2]. Nonzero vectors are classified as time-like, space-like or null, respectively, according to whether

$$\langle v, v \rangle < 0, \quad \langle v, v \rangle > 0, \quad \langle v, v \rangle = 0.$$

Let $\alpha \in R_1^n$ is a curve in Minkowski space. If $\dot{\alpha}$ is a velocity of α and $\langle \dot{\alpha}, \dot{\alpha} \rangle < 0$ then the curve α is called a time-like curve.

Let R_1^n be *n*-dimensional Minkowski space and M a submanifold of R_1^n Let \overline{D} denote the standard Riemannian connection of R_1^n and let D denote the Riemannian connection of M. For any vector fields X, Y on M we have the Gauss equation [3].

(1.1)
$$\overline{D}_X Y = D_X Y + V(X, Y)$$

where $D_X Y$, V(X, Y) are tangential and normal components of $\overline{D}_X Y$, respectively. V is called the second fundamental form of M. We also have the Weingarten equation giving the tangential and normal components of $\overline{D}_X \xi$, where ξ is a normal vector field of M:

(1.2)
$$\overline{D}_X \xi = -A_\xi(X) + D_X^{\perp} \xi.$$

Let X, Y be vector fields on M, ξ be a normal vector field and \langle, \rangle be the Minkowski metric on \mathbb{R}^n_1 . From (1.1) we have

(1.3)
$$\langle \overline{D}_X Y, \xi \rangle = \langle V(X, Y), \xi \rangle$$

and then (1.2) implies

(1.4)
$$\langle V(X,Y),\xi\rangle = \langle A_{\xi}(X),Y\rangle$$

Let $\{\xi_1, \xi_2, \ldots, \xi_{n-m}\}$ be an orthonormal basis of $\chi^{\perp}(M)$ and the space of normal vector fields on M. Then there exist smooth functions $V^j(X,Y), j = 1, \ldots, n-m$,

²⁰⁰⁰ Mathematics Subject Classification. 53B30.

Key words and phrases. Time-Like Ruled Surface, Minkowski Space.

from M into $\mathbb R$ such that

(1.5)
$$V(X,Y) = \sum_{j=1}^{n-m} V^j(X,Y)\xi_j$$

Furthermore we may define the mean curvature vector field H by

(1.6)
$$H = \sum_{j=1}^{n-m} \frac{\operatorname{trace} A_{\xi_j}}{m} \xi_j$$

and the mean curvature function as |H|. At a point $p \in M$, H(p) is called the mean curvature vector and |H(p)| the mean curvature at p.

If H(p) = 0 for each $p \in M$, then M is said to be minimal.

Let I be an open interval and $\alpha: I \to R_1^n$ be a time-like curve in Minkowski space. For each $t \in I$, let $\{e_1(t), e_2(t), \ldots, e_r(t)\}, (1 \leq r \leq n-2)$ be an orthonormal set of vectors spanning the *r*-dimensional space-like subspace $W_r(t)$ of $T_{\alpha(t)}R_1^n$. We have

(1.7)
$$\langle e_i, e_j \rangle = \delta_{ij}, \quad (i, j = 1, \dots, r)$$

and denoting by \dot{e}_i the derivative of the vector field e_i along the time-like curve α ;

(1.8)
$$\langle \dot{e}_i, e_j \rangle + \langle e_i, \dot{e}_j \rangle = 0.$$

We may then define an (r+1)-dimensional submanifold of R_1^n as in [5].

Definition 1.1. Let α , $\{e_i\}$ be as above and define $\varphi \colon I \times R_1^r \subseteq R_1^n$ by

(1.9)
$$\varphi(t, u_1, \dots, u_r) = \alpha(t) + \sum_{i=1}^r u_i e_i(t)$$

for all $(t, u_1, \ldots, u_r) \in I \times R_1^r$. Let $M = \varphi(G)$ where $G = I \times R_1^r \subseteq R_1^{r+1}$. Note that

$$\operatorname{rank}(\varphi_t, \varphi_{u_1}, \dots, \varphi_{u_r}) = \operatorname{rank}\left(\dot{\alpha}(t) + \sum_{i=1}^r u_i \dot{e}_i(t), e_1(t), e_2(t), \dots, e_r(t)\right) = r + 1$$

so M is an (r+1)-dimensional submanifold of R_1^n . We call M an (r+1)-dimensional generalized time-like ruled surface. The time-like curve α is called the base curve of the generalized time-like ruled surface and the space-like subspace $W_r(t)$ is called the generating space (or briefly, generation) at the point $\alpha(t)$.

Definition 1.2. The subspace A(t) given by

(1.10)
$$A(t) = \operatorname{Span}\{e_1(t), e_2(t), \dots, e_r(t), \dot{e}_1(t), \dot{e}_2(t), \dots, \dot{e}_r(t)\}$$

with dimension dim A(t) = r + m, $0 \le m \le r$, is said to be the asymptotic bundle of the generalized time-like ruled surface.

 $W_r(t)$ is a subspace of A(t) and using the Gramm-Schmidt orthogonalization process, basis of the form;

(1.11)
$$\{e_1(t), e_2(t), \dots, e_r(t), a_{r+1}(t), \dots, a_{r+m}(t)\}$$

may be found. Then there exist b_{ij} , c_{ik} such that

(1.12)
$$\dot{e}_i = \sum_{j=1}^r b_{ij} e_j + \sum_{k=1}^m c_{ik} a_{r+k}$$

with $b_{ij} = -b_{ji}$ by (1.8). The basis $\{e_1(t), e_2(t), \ldots, e_r(t)\}$ is called the *natural carrier basis* of $W_r(t)$.

Now let $\tau_{m+1} = \langle \dot{a}_r(t), a_{r+m+1} \rangle$, and $K_k = \langle \dot{e}_k(t), a_{r+k} \rangle$ for $k = 1, \ldots, m$ so that

$$\dot{e}_i = \sum_{j=1}^r b_{ij} e_j + K_i a_{r+i}, \quad (1 \le i \le m, \ K_i > 0)$$
$$\dot{e}_i = \sum_{j=1}^r b_{ij} e_j \ (m < i \le r) \quad [1].$$

We now define the following:

(1.13)
$$\delta_k = \frac{\tau_{m+1}}{K_k}, \quad k = 1, \dots, m$$

and note that each δ_k is invariant under a reparametrization $t \to t^*$ with $\frac{dt}{dt^*} > 0$. δ_k is called the *k*th principle drall (principal distribution parameter) of *M* lying in $W_r(t)$. The drall (distribution parameter) of *M* is defined by

(1.14)
$$\delta = |\delta_1 \dots \delta_m|^{\frac{1}{m}}$$

as in [1].

2. On the curvatures of generalized time-like surfaces

Let M be an (r + 1)-dimensional generalized time-like ruled surface and s the arc length parameter of the time-like curve α . Let $\{e_1(s), e_2(s), \ldots, e_r(s)\}$ be an orthonormal basis of the generating space-like space $W_r(s)$. Let us choose the base time-like curve α to be an orthogonal trajectory of the generating spaces $W_r(s)$. M is given by

(2.1)
$$\varphi(s, u_1, \dots, u_r) = \alpha(s) + \sum_{i=1}^r u_i e_i(s), \quad u_i \in R.$$

Let $\{e_0, e_1, \ldots, e_r\}$ be a (local) orthonormal basis of the space of vector fields $\chi(M)$ and let us choose $e_0 = \varphi_*(\frac{\partial}{\partial s})$. By (2.1)

(2.2)
$$\varphi_s = \dot{\alpha}(s) + \sum_{i=1}^r u_i \dot{e}_i(s), \quad \varphi_{u_i} = e_i(s)$$

then

(2.3)
$$\overline{D}_{e_i}e_j = 0, \quad i, j = 1, \dots, r$$

and using (1.1),

(2.4)
$$V(e_i, e_j) = 0, \quad i, j = 1, \dots, r.$$

Since $\overline{D}_{e_i}e_0 \perp e_j$ and $\overline{D}_{e_i}e_0 \perp e_0$ (for all i, j) then

(2.5)
$$\overline{D}_{e_i}e_0 = V(e_i, e_0), \quad i, j = 1, \dots, r.$$

Let $\{\xi_1, \ldots, \xi_{n-r-1}\}$ be an orthonormal basis of normal vector fields. Then $\{e_0, e_1, \ldots, e_r, \xi_1, \ldots, \xi_{n-r-1}\}$ gives a basis of $T_p R_1^n$ for each point $p \in M$. Let us write

$$\overline{D}_{e_0}\xi_j = a_{00}^j e_0 + \sum_{t=1}^r a_{0t}^j e_t + \sum_{q=1}^{n-r-1} b_{0q}^j \xi_q, \quad j = 1, \dots, n-r-1$$

$$(2.6) \quad \overline{D}_{e_i}\xi_j = a_{0i}^j e_0 + \sum_{t=1}^r a_{it}^j e_t + \sum_{q=1}^{n-r-1} b_{iq}^j \xi_q, \quad i = 1, \dots, r$$

where the a_{it}^j are coefficients of the matrix of A_{ξ_j} :

(2.7)
$$A_{\xi_j} = - \begin{bmatrix} a_{00}^j & a_{01}^j & \cdots & a_{0r}^j \\ a_{01}^j & a_{11}^j & \cdots & a_{1r}^j \\ \vdots & \vdots & \ddots & \vdots \\ a_{0r}^j & a_{r1}^j & \cdots & a_{rr}^j \end{bmatrix}, \quad (j = 1, \dots, n - r - 1).$$

We simplify this matrix using (2.6),

$$\langle \overline{D}_{e_i}e_t, \xi_j \rangle = -a_{it}^j, \quad (i, t = 1, \dots, r; \quad j = 1, \dots, n-r-1)$$

and by (2.3), $a_{it}^j = 0$. (2.7) can be written as follows

(2.8)
$$A_{\xi_j} = - \begin{bmatrix} a_{00}^j & a_{01}^j & \cdots & a_{0r}^j \\ a_{01}^j & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{0r}^j & 0 & \cdots & 0 \end{bmatrix}.$$

Furthermore, (2.6) and (1.4) respectively lead to the relations:

$$\langle \overline{D}_{e_i} e_0, \xi_j \rangle = -a_{0i}^j, \quad (i = 1, \dots, r; j = 1, \dots, n - r - 1)$$

and

$$\langle V(e_i, e_0), \xi_j \rangle = \langle A_{\xi_j}(e_i), e_0 \rangle = a_{0i}^j, (1 \le i \le r, \ 1 \le j \le n - r - 1)$$

and therefore by (1.5) and (2.5)

(2.9)
$$V(e_{i},e_{0}) = \overline{D}_{e_{i}}e_{0} = \sum_{j=1}^{n-r-1} a_{0i}^{j}\xi_{j}, \quad (j=1,\ldots,r).$$

Now, let X, Y be vector fields on the *m*-dimensional submanifold M whose curvature tensor field is R. As in [4], we have

(2.10)
$$\langle X, R(X,Y)Y \rangle = \langle V(X,X), V(Y,Y) \rangle - \langle V(X,Y), V(X,Y) \rangle$$

where V is 2nd fundamental form of M embedded in \mathbb{R}_1^n .

Definition 2.1. Let M be any m-dimensional Lorentzian manifold with curvature tensor R and $\{e_1, \ldots, e_m\}$ be an orthonormal basis of T_pM for $p \in M$. Then the *Ricci curvature tensor field* Ric is defined by

(2.11)
$$\operatorname{Ric}(X,Y) = \sum_{i=1}^{m} \varepsilon_i \langle R(e_i,Y)X, e_i \rangle$$

where

$$\varepsilon_i = \begin{cases} -1, & i = 1\\ 1, & 2 \le i \le m. \end{cases}$$

The scalar curvature of M is defined by

(2.12)
$$\mathbf{r} = \sum_{i=1}^{m} \varepsilon_i \operatorname{Ric}(e_i, e_i)$$

or by (2.11)

(2.13)
$$\mathbf{r} = \sum_{i=1}^{m} \sum_{j=1}^{m} \varepsilon_i \varepsilon_j \langle R(e_j, e_i) e_i, e_j \rangle.$$

In order to calculate the Ricci curvature of M in the direction of the vector fields e_t (t = 1, ..., r), we use (2.4), (2.9), (2.10), (2.11) and we obtain

(2.14)
$$\operatorname{Ric}(e_t, e_t) = \sum_{j=1}^{n-r-1} (a_{0t}^j)^2, \ (t = 1, \dots, r),$$

and

(2.15)
$$\operatorname{Ric}(e_0, e_0) = \sum_{t=1}^r \sum_{j=1}^{n-r-1} (a_{0t}^j)^2.$$

From (2.14) and (2.15) we can define

(2.16)
$$\operatorname{Ric}(e_0, e_0) = \sum_{t=1}^{r} \operatorname{Ric}(e_t, e_t).$$

Now we have proved the following theorem.

Theorem 2.1. Let $\{e_1, \ldots, e_r\}$ be an orthonormal basis of the generating space of the (r+1)-dimensional generalized time-like ruled surface M and $\{e_0, e_1, \ldots, e_r\}$ and orthonormal basis of $\chi(M)$. If the base time-like curve of M is chosen as an orthonormal trajectory of generating space then the Ricci curvature in the direction of e_0 is equal to the sum Ricci curvatures in the directions of the vector fields forming a basis of the generating space.

By (2.12), the scalar curvature of the (r + 1)-dimensional generalized time-like ruled surface M may be expressed as

$$\mathbf{r} = -\operatorname{Ric}(e_0, e_0) + \sum_{t=1}^{r} \operatorname{Ric}(e_t, e_t),$$

$$\mathbf{r} = 0.$$

Using (1.3), (1.4), (1.5), (2.6) and (2.8) we have

(2.17)
$$V(e_0, e_0) = -\sum_{i=1}^{n-r-1} (\operatorname{trace} A_{\xi_j}) \xi_j.$$

Now (1.6) gives

$$H = -\frac{1}{r+1}V(e_0, e_0).$$

If M is minimal then H is zero and so

(2.18)
$$V(e_0, e_0) = 0.$$

We say that $X_p, Y_p \in T_pM$ are conjugate if $V(X_p, Y_p) = 0$. We have the following theorem.

Theorem 2.2. Let $\{e_1, \ldots, e_r\}$ be an orthonormal basis for the generating space of an (r+1)-dimensional generalized time-like ruled surface M and let e_0 be an unit time-like tangent vector field to the base time-like curve, the latter taken to be an orthonormal trajectory of the generating space of M. Then the minimal time-like ruled surface M is totally geodesic iff e_0 is conjugate to each vector e_i , $i = 1, \ldots, r$.

Proof. $\{e_0, e_1, \ldots, e_r\}$ is an orthonormal basis of $\chi(M)$ and for each $X, Y \in \chi(M)$ we may write

$$X = a_0 e_0 + \sum_{i=1}^{r} a_i e_i, \quad Y = b_0 e_0 + \sum_{i=1}^{r} b_i e_i$$

MEHMET BEKTAŞ

and then

(2.19)
$$V(X,Y) = a_0 b_0 V(e_0, e_0) + \sum_{i=1}^r (a_i b_0 + a_0 b_i) V(e_i, e_0) + \sum_{i=1}^r a_i b_i V(e_i, e_i).$$

 $(:\Longrightarrow)$ If M is totally geodesic then V is identically zero, so e_0 is certainly conjugate to $e_i, i = 1, \ldots, r$.

 $(\Leftarrow:) V(e_0, e_i) = 0$ for i = 1, ..., r then by (2.4) and (2.18), (2.19) reduces to V(X, Y) = 0 and this completes the proof of the theorem.

If trace $A_{\xi_j} = -a_{00}^j$ from (2.8) is substituted into (1.6) we obtain

(2.20)
$$(r+1)^2 |H|^2 = \sum_{j=1}^{n-r-1} (a_{00}^j)^2$$

Theorem 2.3. Let M be an (r+1)-dimensional generalized time-like ruled surface. Let the base time-like curve α be an orthogonal trajectory of the generating space be parametrized by arc length. Then kth principle distribution parameter is

$$\delta_{k} = \frac{\left(1 - \sum_{t=1}^{r} \tau_{t}^{2}\right)^{\frac{1}{2}}}{\left|\left\|\overline{D}_{e_{0}}e_{k}\right\|^{2} - \sum_{j=1}^{r} \langle \overline{D}_{e_{0}}e_{k}, e_{j} \rangle^{2}\right|^{\frac{1}{2}}}$$

(k = 1, ..., m) and the distribution parameter (drall) is

$$\delta_k = \frac{\left(1 - \sum_{t=1}^r \tau_t^2\right)^{\frac{1}{2}}}{\prod_{k=1}^m \left| \left\| \overline{D}_{e_0} e_k \right\|^2 - \sum_{j=1}^r \langle \overline{D}_{e_0} e_k, e_j \rangle^2 \right|^{\frac{1}{2m}}}$$

Proof. Using (1.13) and (1.14) we obtain

(2.21)
$$\delta_k = \frac{\left\{ \left\| \dot{\alpha} - \sum_{j=1}^r \langle \dot{\alpha}, e_j \rangle e_j - \sum_{t=1}^r \langle \dot{\alpha}, a_{r+t} \rangle a_{r+t} \right\| \right\}}{\left\{ \left\| \dot{e}_k - \sum_{j=1}^r \langle \dot{e}_k, e_j \rangle e_j \right\| \right\}}$$

The base curve α is an orthogonal trajectory so $\langle \dot{\alpha}, e_j \rangle = 0$ for $j = 1, \ldots, r$. Substituting $\langle \dot{\alpha}, e_j \rangle = 0$, $(j = 1, \ldots, r)$ $\dot{e}_k = \overline{D}_{e_0} e_k$, and $\langle \dot{\alpha}, a_{r+t} \rangle = \tau_t$, $(t = 1, \ldots, m)$ into (2.21), the desired result is obtained.

Acknowledgement: The author would like to thank Professor Mahmut Ergüt his careful reading of the manuscript.

References

- M. Ergüt. The drall and the scalar normal curvatures of (r + 1)-dimensional generalized ruled surfaces. Commun. Fac. Sci. Univ. Ank., 38:115–125, 1989.
- [2] S.D. Jung and J.S. Pak. Classification of cylindrical ruled surfaces satisfying $\Delta h = Ah$ in 3-dimensional Minkowski space. *Bull. Korean Math. Soc.*, 33(1):97–106, 1996.
- [3] B. O'Neill. Semi-Riemannian Geometry. Academic Press, New York, London, 1983.
- [4] A. Özel and V. Asil. On submanifolds in E^m. Series of Physical-Technical and Mathematical Sciences, V. 19(1–2):146–151, 1999.
- [5] C. Thas. Properties of ruled surfaces in the Euclidean space Eⁿ. Academia Sinica, 6(1):133–142, 1987.

Received August 20, 2002.

Department of Mathematics, Firat University, 23119 Elazığ Turkey

88