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ON THE CURVATURES OF (r + 1)-DIMENSIONAL
GENERALIZED TIME-LIKE RULED SURFACE

MEHMET BEKTAŞ

Abstract. In this paper, we obtain some relationships between the curvatures
of (r + 1)-dimensional generalized time-like ruled surfaces. We also calculate

the drall of a generalized time-like ruled surfaces when the base curve is taken

as an orthogonal trajectory of the generated spaces.

1. Introduction

Let Rn
1 be n-dimensional Minkowski space with the standard metric given by

〈, 〉 = −dx2
0 + dx2

1 + dx2
2 + · · ·+ dx2

n−1

where (x0, x1, . . . , xn−1) is a rectangular system of Rn
1 [2]. Nonzero vectors are

classified as time-like, space-like or null, respectively, according to whether

〈v, v〉 < 0, 〈v, v〉 > 0, 〈v, v〉 = 0.

Let α ∈ Rn
1 is a curve in Minkowski space. If α̇ is a velocity of α and 〈α̇, α̇〉 < 0

then the curve α is called a time-like curve.
Let Rn

1 be n-dimensional Minkowski space and M a submanifold of Rn
1 Let D

denote the standard Riemannian connection of Rn
1 and let D denote the Riemannian

connection of M . For any vector fields X, Y on M we have the Gauss equation [3].

(1.1) DXY = DXY + V (X, Y )

where DXY , V (X, Y ) are tangential and normal components of DXY , respectively.
V is called the second fundamental form of M . We also have the Weingarten
equation giving the tangential and normal components of DXξ, where ξ is a normal
vector field of M :

(1.2) DXξ = −Aξ(X) + D⊥
Xξ.

Let X, Y be vector fields on M , ξ be a normal vector field and 〈, 〉 be the
Minkowski metric on Rn

1 . From (1.1) we have

(1.3) 〈DXY, ξ〉 = 〈V (X, Y ), ξ〉

and then (1.2) implies

(1.4) 〈V (X, Y ), ξ〉 = 〈Aξ(X), Y 〉.

Let {ξ1, ξ2, . . . , ξn−m} be an orthonormal basis of χ⊥(M) and the space of normal
vector fields on M . Then there exist smooth functions V j(X, Y ), j = 1, . . . , n−m,
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from M into R such that

(1.5) V (X, Y ) =
n−m∑
j=1

V j(X, Y )ξj .

Furthermore we may define the mean curvature vector field H by

(1.6) H =
n−m∑
j=1

trace Aξj

m
ξj

and the mean curvature function as |H|. At a point p ∈ M, H(p) is called the mean
curvature vector and |H(p)| the mean curvature at p.

If H(p) = 0 for each p ∈ M , then M is said to be minimal.
Let I be an open interval and α : I → Rn

1 be a time-like curve in Minkowski space.
For each t ∈ I, let {e1(t), e2(t), . . . , er(t)}, (1 ≤ r ≤ n−2) be an orthonormal set of
vectors spanning the r-dimensional space-like subspace Wr(t) of Tα(t)R

n
1 . We have

(1.7) 〈ei, ej〉 = δij , (i, j = 1, . . . , r)

and denoting by ėi the derivative of the vector field ei along the time-like curve α;

(1.8) 〈ėi, ej〉+ 〈ei, ėj〉 = 0.

We may then define an (r + 1)-dimensional submanifold of Rn
1 as in [5].

Definition 1.1. Let α, {ei} be as above and define ϕ : I ×Rr
1 ⊆ Rn

1 by

(1.9) ϕ(t, u1, . . . , ur) = α(t) +
r∑

i=1

uiei(t)

for all (t, u1, . . . , ur) ∈ I × Rr
1. Let M = ϕ(G) where G = I × Rr

1 ⊆ Rr+1
1 . Note

that

rank(ϕt, ϕu1 , . . . , ϕur
) = rank

(
α̇(t) +

r∑
i=1

uiėi(t), e1(t), e2(t), . . . , er(t)

)
= r + 1

so M is an (r+1)-dimensional submanifold of Rn
1 . We call M an (r+1)-dimensional

generalized time-like ruled surface. The time-like curve α is called the base curve of
the generalized time-like ruled surface and the space-like subspace Wr(t) is called
the generating space (or briefly, generation) at the point α(t).

Definition 1.2. The subspace A(t) given by

(1.10) A(t) = Span{e1(t), e2(t), . . . , er(t), ė1(t), ė2(t), . . . , ėr(t)}

with dimension dim A(t) = r + m, 0 ≤ m ≤ r, is said to be the asymptotic bundle
of the generalized time-like ruled surface.

Wr(t) is a subspace of A(t) and using the Gramm – Schmidt orthogonalization
process, basis of the form;

(1.11) {e1(t), e2(t), . . . , er(t), ar+1(t), . . . , ar+m(t)}

may be found. Then there exist bij , cik such that

(1.12) ėi =
r∑

j=1

bijej +
m∑

k=1

cikar+k

with bij = −bji by (1.8). The basis {e1(t), e2(t), . . . , er(t)} is called the natural
carrier basis of Wr(t).



ON THE CURVATURES OF TIME-LIKE RULED SURFACES 85

Now let τm+1 = 〈α̇r(t), ar+m+1〉, and Kk = 〈ėk(t), ar+k〉 for k = 1, . . . ,m so
that

ėi =
r∑

j=1

bijej + Kiar+i, (1 ≤ i ≤ m, Ki > 0)

ėi =
r∑

j=1

bijej (m < i ≤ r) [1].

We now define the following:

(1.13) δk =
τm+1

Kk
, k = 1, . . . ,m

and note that each δk is invariant under a reparametrization t → t∗ with dt
dt∗ > 0.

δk is called the kth principle drall (principal distribution parameter) of M lying in
Wr(t). The drall (distribution parameter) of M is defined by

(1.14) δ = |δ1 . . . δm|
1
m

as in [1].

2. On the curvatures of generalized time-like surfaces

Let M be an (r + 1)-dimensional generalized time-like ruled surface and s the
arc length parameter of the time-like curve α. Let {e1(s), e2(s), . . . , er(s)} be an
orthonormal basis of the generating space-like space Wr(s). Let us choose the base
time-like curve α to be an orthogonal trajectory of the generating spaces Wr(s).
M is given by

(2.1) ϕ(s, u1, . . . , ur) = α(s) +
r∑

i=1

uiei(s), ui ∈ R.

Let {e0, e1, . . . , er} be a (local) orthonormal basis of the space of vector fields
χ(M) and let us choose e0 = ϕ∗( ∂

∂s ). By (2.1)

(2.2) ϕs = α̇(s) +
r∑

i=1

uiėi(s), ϕui
= ei(s)

then

(2.3) Dei
ej = 0, i, j = 1, . . . , r

and using (1.1),

(2.4) V (ei,ej) = 0, i, j = 1, . . . , r.

Since Deie0 ⊥ ej and Deie0 ⊥ e0 (for all i, j) then

(2.5) Dei
e0 = V (ei,e0), i, j = 1, . . . , r.

Let {ξ1, . . . , ξn−r−1} be an orthonormal basis of normal vector fields. Then
{e0, e1, . . . , er, ξ1, . . . , ξn−r−1} gives a basis of TpR

n
1 for each point p ∈ M . Let us

write

De0ξj = aj
00e0 +

r∑
t=1

aj
0tet +

n−r−1∑
q=1

bj
0qξq, j = 1, . . . , n− r − 1

Deiξj = aj
0ie0 +

r∑
t=1

aj
itet +

n−r−1∑
q=1

bj
iqξq, i = 1, . . . , r(2.6)
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where the aj
it are coefficients of the matrix of Aξj

:

(2.7) Aξj = −


aj
00 aj

01 · · · aj
0r

aj
01 aj

11 · · · aj
1r

...
...

. . .
...

aj
0r aj

r1 · · · aj
rr

 , (j = 1, . . . , n− r − 1).

We simplify this matrix using (2.6),

〈Dei
et, ξj〉 = −aj

it, (i, t = 1, . . . , r; j = 1, . . . , n− r − 1)

and by (2.3), aj
it = 0. (2.7) can be written as follows

(2.8) Aξj
= −


aj
00 aj

01 · · · aj
0r

aj
01 0 · · · 0
...

...
. . .

...
aj
0r 0 · · · 0

 .

Furthermore, (2.6) and (1.4) respectively lead to the relations:

〈Deie0, ξj〉 = −aj
0i, (i = 1, . . . , r; j = 1, . . . , n− r − 1)

and
〈V (ei, e0), ξj〉 = 〈Aξj

(ei), e0〉 = aj
0i, (1 ≤ i ≤ r, 1 ≤ j ≤ n− r − 1)

and therefore by (1.5) and (2.5)

(2.9) V (ei,e0) = Dei
e0 =

n−r−1∑
j=1

aj
0iξj , (j = 1, . . . , r).

Now, let X, Y be vector fields on the m-dimensional submanifold M whose cur-
vature tensor field is R. As in [4], we have

(2.10) 〈X, R(X, Y )Y 〉 = 〈V (X, X), V (Y, Y )〉 − 〈V (X, Y ), V (X, Y )〉

where V is 2nd fundamental form of M embedded in Rn
1 .

Definition 2.1. Let M be any m-dimensional Lorentzian manifold with curvature
tensor R and {e1, . . . , em} be an orthonormal basis of TpM for p ∈ M . Then the
Ricci curvature tensor field Ric is defined by

(2.11) Ric(X, Y ) =
m∑

i=1

εi〈R(ei, Y )X, ei〉

where

εi =

{
−1, i = 1
1, 2 ≤ i ≤ m.

The scalar curvature of M is defined by

(2.12) r =
m∑

i=1

εi Ric(ei, ei)

or by (2.11)

(2.13) r =
m∑

i=1

m∑
j=1

εiεj〈R(ej , ei)ei, ej〉.
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In order to calculate the Ricci curvature of M in the direction of the vector fields
et (t = 1, . . . , r), we use (2.4), (2.9), (2.10), (2.11) and we obtain

(2.14) Ric(et, et) =
n−r−1∑

j=1

(aj
0t)

2, (t = 1, . . . , r),

and

(2.15) Ric(e0, e0) =
r∑

t=1

n−r−1∑
j=1

(aj
0t)

2.

From (2.14) and (2.15) we can define

(2.16) Ric(e0, e0) =
r∑

t=1

Ric(et, et).

Now we have proved the following theorem.

Theorem 2.1. Let {e1, . . . , er} be an orthonormal basis of the generating space
of the (r+1)-dimensional generalized time-like ruled surface M and {e0, e1, . . . , er}
and orthonormal basis of χ(M). If the base time-like curve of M is chosen as an
orthonormal trajectory of generating space then the Ricci curvature in the direction
of e0 is equal to the sum Ricci curvatures in the directions of the vector fields
forming a basis of the generating space.

By (2.12), the scalar curvature of the (r + 1)-dimensional generalized time-like
ruled surface M may be expressed as

r = −Ric(e0, e0) +
r∑

t=1

Ric(et, et),

r = 0.

Using (1.3), (1.4), (1.5), (2.6) and (2.8) we have

(2.17) V (e0, e0) = −
n−r−1∑

i=1

(trace Aξj )ξj .

Now (1.6) gives

H = − 1
r + 1

V (e0, e0).

If M is minimal then H is zero and so

(2.18) V (e0, e0) = 0.

We say that Xp, Yp ∈ TpM are conjugate if V (Xp, Yp) = 0. We have the following
theorem.

Theorem 2.2. Let {e1, . . . , er} be an orthonormal basis for the generating space
of an (r+1)-dimensional generalized time-like ruled surface M and let e0 be an unit
time-like tangent vector field to the base time-like curve, the latter taken to be an
orthonormal trajectory of the generating space of M . Then the minimal time-like
ruled surface M is totally geodesic iff e0 is conjugate to each vector ei, i = 1, . . . , r.

Proof. {e0, e1, . . . , er} is an orthonormal basis of χ(M) and for each X, Y ∈ χ(M)
we may write

X = a0e0 +
r∑

i=1

aiei, Y = b0e0 +
r∑

i=1

biei
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and then

(2.19) V (X, Y ) = a0b0V (e0, e0) +
r∑

i=1

(aib0 + a0bi)V (ei, e0) +
r∑

i=1

aibiV (ei, ei).

(:=⇒) If M is totally geodesic then V is identically zero, so e0 is certainly
conjugate to ei, i = 1, . . . , r.

(⇐=:) V (e0, ei) = 0 for i = 1, . . . , r then by (2.4) and (2.18), (2.19) reduces to
V (X, Y ) = 0 and this completes the proof of the theorem. �

If trace Aξj = −aj
00 from (2.8) is substituted into (1.6) we obtain

(2.20) (r + 1)2 |H|2 =
n−r−1∑

j=1

(aj
00)

2.

Theorem 2.3. Let M be an (r+1)-dimensional generalized time-like ruled surface.
Let the base time-like curve α be an orthogonal trajectory of the generating space
be parametrized by arc length. Then kth principle distribution parameter is

δk =

(
1−

∑r
t=1 τ2

t

) 1
2∣∣∣∥∥De0ek

∥∥2 −
∑r

j=1〈De0ek, ej〉2
∣∣∣ 12

(k = 1, . . . ,m) and the distribution parameter (drall) is

δk =

(
1−

∑r
t=1 τ2

t

) 1
2∏m

k=1

∣∣∣∥∥De0ek

∥∥2 −
∑r

j=1〈De0ek, ej〉2
∣∣∣ 1
2m

.

Proof. Using (1.13) and (1.14) we obtain

(2.21) δk =

{∥∥∥α̇−∑r
j=1〈α̇, ej〉ej −

∑r
t=1〈α̇, ar+t〉ar+t

∥∥∥}{∥∥∥ėk −
∑r

j=1〈ėk, ej〉ej

∥∥∥} .

The base curve α is an orthogonal trajectory so 〈α̇, ej〉 = 0 for j = 1, . . . , r.
Substituting 〈α̇, ej〉 = 0, (j = 1, . . . , r) ėk = De0ek, and 〈α̇, ar+t〉 = τt, (t =
1, . . . ,m) into (2.21), the desired result is obtained. �
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[4] A. Özel and V. Asil. On submanifolds in Em. Series of Physical-Technical and Mathematical
Sciences, V. 19(1–2):146–151, 1999.

[5] C. Thas. Properties of ruled surfaces in the Euclidean space En. Academia Sinica, 6(1):133–

142, 1987.

Received August 20, 2002.

Department of Mathematics,
Firat University,
23119 Elazığ
Turkey


