```
Acta Mathematica Academiae Paedagogicae Nyíregyháziensis
19 (2003), 51-53
www.emis.de/journals
```


ON 2×2 MATRICES OVER C^{*}-ALGEBRAS

M.S. MOSLEHIAN

Abstract

We characterize C^{*}-algebras isomorphic to $M_{2}(\mathbf{C})$ and C^{*}-algebras containing $M_{2}(\mathbf{C})$ as a unital C^{*}-subalgebra. *-isomorphisms between the full 2×2 matrix algebras over C^{*}-algebras are also discussed.

1. Introduction

Applying an orthonormal basis, it could be shown that the algebra $M_{2}(\mathbf{C})$ of 2×2 matrices with entries in \mathbf{C} together with the conjugate transpose operation is *-isomorphic to the algebra $B\left(\mathbf{C}^{2}\right)$ of all linear operators on the two dimensional complex Hilbert space \mathbf{C}^{2} together with the Hilbert adjoint operation. Identifying these $*$-algebras, $M_{2}(\mathbf{C})$ equipped with the operator norm is a C^{*}-algebra. This C^{*}-algebra is the most elementary example of a non-commutative C^{*}-algebra and provide us significant counterexamples in many areas of Banach algebra theory [3].

For a C^{*}-algebra \mathcal{A}, let $M_{2}(\mathcal{A})$ denote the C^{*}-algebra of 2×2 matrices with entries in \mathcal{A}. Note that $M_{2}(\mathcal{A})$ is $*$-isomorphic to the spatial tensor product $\mathcal{A} \otimes$ $M_{2}(\mathbf{C})$. In fact if $\left\{e_{i j}\right\}$ is the standard basis for $M_{2}(\mathbf{C})$, then every element of the algebraic tensor product A and $M_{2}(\mathbf{C})$ is of the form $\sum_{1<i, j<2} a_{i j} \otimes e_{i j}$ in which the $a_{i j}$'s are unique and $\sum_{1 \leq i, j \leq n} a_{i j} \otimes e_{i j} \mapsto\left[a_{i j}\right]$ is a $*$-isomorphism from the algebraic tensor product of A and $M_{2}(\mathbf{C})$ onto $M_{2}(\mathcal{A})$. In addition this algebraic tensor product is already complete with respect to the spatial C^{*}-norm [3, page 190].

It is well-known that if C^{*}-algebras \mathcal{A} and \mathcal{B} are $*$-isomorphic, then $M_{2}(\mathcal{A})$ and $M_{2}(\mathcal{B})$ are also $*$-isomorphic. But there exist two non-isomorphic unital C^{*}-algebra \mathcal{A} and \mathcal{B} such that $\mathcal{A} \simeq M_{2}(\mathcal{A}) \simeq M_{2}(\mathcal{B})$.

For example, consider

$$
\mathcal{A}=\{T \oplus T ; T \in B(H)\}+K(H \oplus H)
$$

and

$$
\mathcal{B}=\left\{T \oplus T \oplus 0 ; T \in B(H), 0 \in B\left(H_{0}\right)\right\}+K\left(H \oplus H \oplus H_{0}\right)
$$

where H is a separable infinite dimensional Hilbert space, H_{0} is one dimensional, $B\left(H_{1}\right)$ and $K\left(H_{1}\right)$ denote the algebra of bounded and compact linear operators on the Hilbert space H_{1}, respectively [4].

If both \mathcal{A} and \mathcal{B} belong however to one of the following class of C^{*}-algebras, $M_{2}(\mathcal{A}) \simeq M_{2}(\mathcal{B})$ implies that $\mathcal{A} \simeq \mathcal{B}$:
(i) Commutative C^{*}-algebras, since the center of $M_{2}(\mathcal{A})$ is

$$
\left\{\left[\begin{array}{cc}
a & 0 \\
0 & a
\end{array}\right]: a \in \mathcal{A}\right\} ;
$$

2000 Mathematics Subject Classification. 46L05.
Key words and phrases. ${ }^{*}$-isomorphism of C^{*}-algebras, idempotent, projection.
(ii) UHF algebras [2, Theorem 1];
(iii) perturbed block diagonal algebras [5].

We should mention that there are two non-isomorphic C^{*}-algebras \mathcal{A}_{1} and \mathcal{A}_{2} such that $K(H) \subseteq \mathcal{A}_{i}$ and $\frac{\mathcal{A}_{i}}{K(H)} \simeq M_{2}(\mathbf{C}), i=1,2[1]$.

2. C^{*}-algebras containing $M_{2}(\mathbf{C})$

Theorem 2.1. Let \mathcal{A} be a C^{*}-algebra containing $M_{2}(\mathbf{C})$ as a unital C^{*}-subalgebra. Then $\mathcal{A} \simeq M_{2}(\mathcal{B})$ for some C^{*}-algebra \mathcal{B}.

Proof. Suppose that $\left\{e_{i j}\right\}_{1 \leq i, j \leq 2}$ is the standard system of matrix units of $M_{2}(\mathbf{C})$ and $\mathcal{B}=e_{11} \mathcal{A} e_{11}$. Then

$$
\phi: \mathcal{A} \longrightarrow M_{2}\left(e_{11} \mathcal{A} e_{11}\right)
$$

defined by

$$
\phi(a)=\left[\begin{array}{ll}
e_{11} a e_{11} & e_{11} a e_{21} \\
e_{12} a e_{11} & e_{12} a e_{21}
\end{array}\right]
$$

and

$$
\psi: M_{2}\left(e_{11} \mathcal{A} e_{11}\right) \longrightarrow \mathcal{A}
$$

defined by

$$
\psi\left(\left[\begin{array}{ll}
e_{11} a e_{11} & e_{11} b e_{11} \\
e_{11} c e_{11} & e_{11} d e_{11}
\end{array}\right]\right)=e_{11} a e_{11}+e_{11} b e_{12}+e_{21} c e_{11}+e_{21} d e_{12}
$$

are $*$-homomorphisms which are each other's inverse.

$$
\text { 3. } C^{*} \text {-ALGEbrAS ISOMORPHIC TO } M_{2}(\mathbf{C})
$$

Theorem 3.1. A unital C^{*} algebra \mathcal{A} is $*$-isomorphic to $M_{2}(\mathbf{C})$ iff there exists a projection $p \in \mathcal{A}$ such that
(*)

$$
p \mathcal{A} p=\mathbf{C} p,(1-p) \mathcal{A}(1-p)=\mathbf{C}(1-p),(1-p) \mathcal{A} p \neq 0, p \mathcal{A}(1-p) \neq 0
$$

Proof. If $\mathcal{A}=M_{2}(\mathbf{C})$, then

$$
p=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

is an appropriate projection.
Conversely, suppose that p is a projection satisfying (*). For $0 \neq u \in p \mathcal{A}(1-p)$ we clearly have $u=p u(1-p)$ and so $u u^{*} \in p \mathcal{A} p$ and $u^{*} u \in(1-p) \mathcal{A}(1-p)$. Hence there exists $r>0$ such that $u u^{*}=r p$ and $u^{*} u=r(1-p)$. Replacing u by $\frac{u}{\sqrt{r}}$ we may assume that $u u^{*}=p$ and $u^{*} u=1-p$. If $a \in p \mathcal{A}(1-p)$, then there is $\lambda \in \mathbf{C}$ such that $a=a(1-p)=a\left(u^{*} u\right)=\left(a u^{*}\right) u=(\lambda p) u=\lambda u$.

Similarly, if $b \in(1-p) \mathcal{A} p$, we have $b=\mu u^{*}$ for some $\mu \in \mathbf{C}$.
Since $\mathcal{A}=p \mathcal{A} p \oplus(1-p) \mathcal{A} p \oplus p \mathcal{A}(1-p) \oplus(1-p) \mathcal{A}(1-p)$, every $x \in \mathcal{A}$ is of the form $\lambda_{1} p+\lambda_{2} u+\lambda_{3} u^{*}+\lambda_{4}(1-p) ; \lambda_{i} \in \mathbf{C}, 1 \leq i \leq 4$.

It is straightforward to show that $\phi: \mathcal{A} \longrightarrow M_{2}(\mathbf{C})$ defined by

$$
\phi(x)=\left[\begin{array}{ll}
\lambda_{1} & \lambda_{2} \\
\lambda_{3} & \lambda_{4}
\end{array}\right]
$$

is a $*$-isomorphism.
Remark 3.2. $p \mathcal{A}(1-p)=0$ iff $(1-p) \mathcal{A} p=0$. If this happens and $p \mathcal{A} p=\mathbf{C} p$ and $(1-p) \mathcal{A}(1-p)=\mathbf{C}(1-p)$, we obviously have

$$
\mathcal{A}=\mathbf{C} p \oplus \mathbf{C}(1-p) \simeq \mathbf{C}^{2} \simeq\left\{\left[\begin{array}{ll}
\lambda & 0 \\
0 & \mu
\end{array}\right]: \lambda, \mu \in \mathbf{C}\right\}
$$

4. Isomorphisms between C^{*}-algebras \mathcal{A} and $M_{2}(\mathcal{A})$

It is known that every C^{*}-algebra \mathcal{A} with a projection p could be embedded in $M_{2}(\mathcal{A})$. Indeed $\phi: \mathcal{A} \longrightarrow M_{2}(\mathcal{A})$ defined by

$$
\phi(a)=\left[\begin{array}{cc}
p a p & p a(1-p) \\
(1-p) a p & (1-p) a(1-p)
\end{array}\right]
$$

is an injective $*$-homomorphism. We are however interested in C^{*}-algebras \mathcal{A} for which $\mathcal{A} \simeq M_{2}(\mathcal{A})$:

Definition 4.1. A projection p in a unital C^{*}-algebra \mathcal{A} is called halving if $p \sim 1$ and $1-p \sim 1$; i.e. there are partial isometries $u, v \in \mathcal{A}$ such that $p=u u^{*}, 1-p=$ $v v^{*}, u^{*} u=1=v^{*} v$.

Theorem 4.2. If \mathcal{A} is a unital C^{*}-algebra containing a halving projection p, then $\mathcal{A} \simeq M_{2}(\mathcal{A})$. (See also [6, Corollary 5.3.6])
Proof. In the notation above, it is straightforward to show that

$$
a \mapsto\left[\begin{array}{cc}
u^{*} p a p u & u^{*} p a(1-p) v \\
v^{*}(1-p) a p u & v^{*}(1-p) a(1-p) v
\end{array}\right]
$$

is an isomorphism between \mathcal{A} and $M_{2}(\mathcal{A})$.
Acknowledgement: The author would like to thank A.K. Mirmostafaee for his useful discussion.

References

[1] H. Behncke and H. Leptin. C^{*}-algebras with a two point dual. J. Func. Anal., 10(3):330-335, 1972.
[2] J. Glimm. On a certain class of operator algebras. Trans. Amer. Math. Soc., 95:318-340, 1960.
[3] G.J. Murphy. Operator Theory and C^{*}-algebras. Acad. Press, 1990.
[4] J. Plastiras. C^{*}-algebras isomorphic after tensoring. Proc. Amer. Math. Soc., 66(2):276-278, 1977.
[5] J. Plastiras. Compact perturbations of certain von Neumann algebras. Trans. Amer. Math. Soc., 234(2), 1977.
[6] N.E. Wegge-Olsen. K-Theory and C^{*}-Algebras. Oxford Univ. Press, 1993.
Received October 05, 2002.

Department of Mathematics,
Ferdowsi University,
P.O. Box 1159, Mashhad 91775 ,

Iran
E-mail address: msalm@math.um.ac.ir

