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REPRESENTATION OF PRODUCT SYSTEMS ON THE
INTERVAL [0, 1]

RODOLFO TOLEDO

ABSTRACT. The aim of this paper is establish a natural relation between the
Haar integration on the complete direct product of finite discrete topological
groups and the Lebesgue integration on the interval [0, 1]. We use this relation
to plot known representative product systems which are given in abstract way.

Throughout this work denote by N, P, C the set of nonnegative, positive inte-
gers and complex numbers respectively. In order to simplicity we always use the
multiplication to denote the group operation and use the symbol e to denote the
identity of the groups. The notation which we used in this paper is similar to the
one appeared in [4].

1. REPRESENTATIVE PRODUCT SYSTEMS

Let m := (mg, k € N) be a sequence of positive integers such that my > 2 and
G}, a finite group with order my, (k € N). Suppose that each group has discrete
topology and normalized Haar measure ui. Let G be the compact group formed by
the complete direct product of G} with the product of the topologies, operations
and measures (). Thus each € G consist of sequences x := (g, 1, --.), where
zr € Gi, (k € N). We call this sequence the ezpansion of x. The compact totally
disconnected group G is called a bounded group if the sequence m is bounded.

Define G° the set of sequences of G terminating in e’s (i.e. the set of “finite”
sequences), Ip(z) := G,

I,(z) ={yeG:y,=x,for 0<k<n} (ze€GneN)

I, .= I,,(e). We say that every set I,(x) is an interval. The set of intervals I, is a
countable neighborhood base at the identity of the product topology on G.

If My := 1 and Myy1 := mpMy, k € N, then every n € N can be uniquely
expressed as n = E,;";O ngMy, 0 < ng < myg, ng € N. This allows us to say that
the sequence (ng,ni,...) is the expansion of n with respect to m. In this case let
n* = (ng,n1,...) € G. We often use the following notations: let |n| := max{k €
N: ng 75 0} and n(k) = Zf;é nkMk, ’I’L(k) = Z;}ik nkMk.

Now we denote by X} the dual object of Gi. Let {¢f : 0 < s < my} be the set
of all normalized coordinate functions of the group Gy, and suppose that 9 = 1.
Thus for every 0 < s < my, there exists a o0 € Xy, 4,5 € {1,...,d,} such that

03 (2) = Vid,ul7)(x)  (z € Gy).
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Let v be the product system of ¢f, namely
o
2) = [[ e @) (zeq),
k=0

where n is of the form n = Y7 ng M}, and @ = (2o, 21, . ..). Thus we say that ¢ is
the representative product system of ¢. The Weyl-Peter’s theorem (see [4]) secure
that the system 1) is orthonormal and complete on L2(G,,)

The functions 4, (n € N) are not necessary uniformly bounded, so define

U= max [[Ynll1l[¥nllec (k€ N).

Uy, is the multiplication of the greatest product of the square root of the dimension
and Ll-norm of the functions ¢ appeared in all group G, for 0 < j < k. It
seems that the boundedness of the sequence ¥ plays an 1mp0rtant role in the norm
convergence of Fourier series.

For an integrable complex function f defined in G we define the Fourier coeffi-
cients and partial sums by

=/ b dp (keN),
Gm
n—1
Suf 1= Fitx (n € P).
k=0

The Dirichlet kernels:
n—1 N
=S w@ly)  (meP).
k=0

It is clear that
/ (W) Dn(z,y)du(y).

The following result appears in [3] as the Paley lemma.

Lemma. Ifn € N, z,y € G, then

M, forz € I(y),
D (JU,:U) - {0 for.’L' ¢ In(y)

2. EXAMPLES

2.1. The Walsh system. Let m; = 2 for all ¥k € N and Z2 be the cyclic group of
order 2. Thus Gy = Z,. The characters of Z, are the Rademacher functions:

er(@) =(=1D*  (s€{0,1}, z €2)
The product system of ¢ is called the Walsh system. It is easy to see that in this
case ¥, = 1.

2.2. Vilenkin systems. Let the sequence m be an arbitrary sequence of integers
greater than 1 and Z,, be the cyclic group of order n, where n is an integer greater
than 1. Let Gy = Z,,, for all £ € N. The characters of Z,,, are the generalized
Rademacher functions:

o5 (z) = exp(2misz/my) (s €{0,...mp — 1}, £ € Ly, > = —1)

The product system of ¢ is called a Vilenkin system. We also obtain that ¥ = 1.
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2.3. The complete product of 83. Let my = 6 for all £ € N and 83 be the
symmetric group on 3 elements. Let G = 83 for all k € N. 83 has two characters
and a 2-dimensional representation (6 = 12 4+ 12 4 22). Using a calculation of the
matrices corresponding to the 2-dimensional representation we construct the ¢
functions that do not depend on k:

e (12) (13) (23) (123) (132) || [le*lls | [l¥*[leo
Wl 1 1 1 1 1 1 1 1
el] 1 -1 -1 -1 1 1 1 1
41 0 0 X6 6 V6 _ /6 V6 V6
¥ 2 2 2 2 3 2
50 0 0 Y6 6 V6 6 V6 V6
¥ 2 2 2 2 3 2
©?,... ° correspond to the 2-dimensional representation. Notice that the func-

tions ¢j, can take the value 0, and the product system of ¢ is not uniformly bounded.
This facts encumber the study of this systems. In other hand max{||¢?®||1]|¢*||co :

0<s<6} =2 thus Uy = (4)" 5 00 if k= o0
2.4. The complete product of Q,. Let my = 8 for all K € N and Qs be the the
quaternion group of order 8, i.e.

Qy :={[a,b] : a* = ¢, b* = @?, bab ' = a®}

Let G, = Q, for all k € N. Q, has four characters and a 2-dimensional representa-
tion (8 = 124+12+12+12+2?). Using a calculation of the matrices corresponding to
the 2-dimensional representation we construct the ¢j functions that do not depend
on k:

e a a? ad b ab a?b  a®b || lle®lln | lle®]leo
WOl 1 1 1 1 1 1 1 1 1 1
el | 1 1 1 1 -1 -1 -1 -1 1 1
2| 1 -1 1 -1 1 -1 1 -1 1 1
2| 1 -1 1 -1 -1 1 -1 1 1 1
ot | V2 2% V2 V2 0 0 0 0 vz V2
PlVE Va2 v 0 0 0 0 || 2| V2
W] 0 0 0 0 V2 V2 V2 V|| 2 V2
o7 0 0 0 0 V2 vV V2 V| L V2

@*,... " correspond to the 2-dimensional representation. Notice that values of
|| are only 0 or the square of the corresponding dimension. Hence the absolute
value of the coordinate functions are only 0 or 1 respectively. A representation
of this form is called a monomial representation. If all of the representations are
monomial, then ¥, = 1 for k¥ € N, but the group G is not necessarily Abelian.

3. RELATION WITH THE INTERVAL [0,1]

The theorems appeared in this section are proved by Morgenthaler [5] for the
Walsh group and also appear in the book [7].

The topology of G is metrizable. Moreover, the metric concerned is induced by
a norm as follows. Order the elements of all G, (k € N) groups in some way such
that the first is always their identity. In fact, the ordering is a bijection between Gy,
and {0,1,...,my — 1} which give to every x € G}, the integer 0 < T < my, (€ =0).

Define
Ty
x| = z € Q).
=3 gy @€O)
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It is easy to see that |.| is a norm and the proceeded metric d(z,y) = |zy~!|
induces the topology of G. In addition, 0 < |z| < 1 for all z € G. Using this fact
we represent the group G in the interval [0, 1].

Any z € [0,1] can be written

=3
k=0

Tr
k41

(OSﬁSmk_l)a

but there are numbers with two expressions of this form. They are all numbers in
the set
Q::{i:0§p<Mn, n,peN}
Mry,

called m-adic rational numbers (Note that 1 is not an m-adic rational number).
The other numbers have only one expression. The m-adic rational numbers have
an expression terminates in 0’s and other terminates in my — 1’s. We choose the
first one to make an unique relation for all numbers in the interval [0, 1] with their
expression, named de m-adic expansion of the number. In this manner we assign to
a number in the interval [0, 1] having an m-adic expansion (Zg, Z1,...) an element
of G with expansion (zg,z1,...) denoting this relation by p. p is called the Fine’s
map. Fine’s map is an injective map satisfying:

p(z+) = p(z—) = p(z) (z €(0,1)\ Q)
p(z+) = p(z), p(z—) = p*(z) (z€Q)
p(0+) = p(0) = (ese,. ..), p(1-) = p(1)

where p*(z) denotes the element of G terminates in my — 1’s with norm z. p(z+)
and p(z—) denote respectively the right and left limit of p at # under the usual
metric.

Using Fine’s map we introduce a new operation in the interval [0, 1[:

0y :=[p@)py)l (2,9 €[0,1[)

We remark that the interval [0, 1] is not a group under the new operation since it
is not associative, but commutative having the identity 0.
An m-adic interval always mean an interval of the form

I(n,p) = [L ptl

M, M,

We name the m-adic topology the one induced by the m-adic intervals on [0,1].
This topology is totally disconnect because the m-adic intervals are both open and
closed forming a countable basis. The m-adic topology is issued by the metric:

d(z,y) = |p(x)p() "' (z,y €[0,1[)

Fine’s map give a natural relation between the new structure of [0, 1] and the
structure of G. p is a continuous map under the m-adic topology since for any

[ (0<p< My, n,p€N).

n—-1 __

z € G and n € N we have p1(I,(z)) = I(n,p), where p := M, Z x—k, but this
= M1

property is not true for |.|. In addition

(1) lp(z)| = = (z €[0,1)),

(2) pz)) =z ae (z € G).

(2) is only not true for the elements of G with expansion terminates in my — 1’s.
From similar reason Fine’s map is not a homomorphism but the

(3) plxz ©y) = p(|p(2)py)]) = p(z)p(y)
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equality is true for all of elements z,y € [0,1] such that z ® y is not a m-adic
rational.

Let L°(G) denote the set of all measurable functions on G which are a.e. finite. In
some way denote by L the set of all Lebesgue measurable functions on [0, 1] which
are a.e. finite. According to the Paley lemma the set of all representative functions
on G coincide with the set of all finite linear combinations of characteristics function
of intervals, so a function in L°(Q) is a.e the limit of representative functions.

The following theorem show the relation between the Haar integration on G' and
the Lebesgue integration on the interval [0, 1].

Theorem 1. Let p denote the Fine’s map.
(a) If f € L°(G) then fop € L°. Conversely, if g € L° and

(4) f@):=9g(l=) (z€G)

then f € L°(QG).
(b) If f is integrable on G then f o p is Lebesgue integrable and

1
[ fan=[ Gon@ da.
G 0
Conversely, if g is Lebesgue integrable and f is defined by (4) then f is integrable

on G and
1
| s@as= [ sau
0 G

Proof. We can prove our statements for intervals using (1) and (2). Indeed, if

z € G, n € N and f is the characteristic function of the interval I,,(z) then g is
n—1 __

z
the characteristic function of the interval I(n,p), where p := M, Z k. The
=0 Mit

conversion of the above statement is valid a.e. Then we obtain our statements
for finite linear combinations of characteristic function of intervals and finally for
the corresponding set of functions using the Lebesgue convergence theorem. This
completes the proof of the theorem. |

The m-adic topology differs considerably from the usual topology on the interval
[0,1], but the Lebesgue measure (\) is also translation invariant under the new
operation. To show this statement we introduce the following notation. Let f be a
complex function defined in the interval [0, 1] and denote by 7 the left translation
operator under the new operation, so

(@) :=flyoz) (z,y€[0,1])
and denote the left translation of the set E by
7y(E):={yoz:2 € E} (E C[0,1], y € [0,1]).

Theorem 2. Let f be a complezx function defined in the interval [0, 1], then
(a) If the function f is Lebesgue integrable then 1, f is also Lebesgue integrable and

1 1
[ @n@is=[ f@d  @eb.
0 0
(b) In particular for all E C [0,1] Lebesgue measurable set we have
M1y (E)) =XE)  (y€[0,1]).
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Proof. From (1), (2) and (3), using the translation invariant property of the measure
i we have

/0 (ry /(&) dz = / fy®o)de = /G f(y o a]) dyu =
- /G F(lpw)z)) dp = /G F(lz]) dp = / f(z) da

This completes the proof of the theorem. a

Finally, we represent the system ¢ on the interval [0, 1] substituting it by the
Up i=1tpop (n € N)

system, according to Theorem 1.

The Walsh system can takes the values 1 and —1 only.

TheWalsh System n=0 The Walsh System n=1 TheWalsh System n=2
o8
05 05
o5
o 02 04 06 08 o 02 04 06 08
04
05 05
02
v 02 04 06 08 N N
The Walsh System n=3 TheWalsh System n=4 The Walsh System n=5
H— — 1 e —
0s 0s 0s
o 02 04 06 08 o 02 [o'a 06| 08 o 02 [o'a 06| 08
05 05 05
2 2 Ll P I — L
TheWalsh System =6 TheWalsh System n=7 The Walsh System n=8
: — H— — :
0s 0s 0s
o 02 [oa 06| 08 i o 02 [oa 06| 08 o 2 [oa 06| 0;
05 05 05
2 2 L 2

However, the Vilenkin system can takes the values of the complex unit roots.

TheVilenkin System (m=3)  n=0 The Vilenkin System (m=3)  n=1 TheVilenkin System (m=3)  n=2

TheVilenkin System (m=3)  n=3 TheVilenkin System (m=3)  n=4 TheVilenkin System (m=3)  n=5
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The Vilenkin System (m=3) ~ n=6 The Vilenkin System (m=3)  n=7 The Vilenkin System (m=3) ~ n=8

TheVilenkin System (m=3)  n=9

The system on the complete product of 83 takes only real values.

The complete product of S3 n=0 The complete product of S3 n=1 The complete product of S3  n=2

o 02 C3 E3 E3 o 02 C3 E3 E3
04
05
05

o 02 04 06 08 -+
The complete product of S3 =3 The complete product of S3 =4 The complete product of S3 =5
p p
p
0s 0s
0s
o 02 04 06 08 o 02 04 06 08 i
o 02 04 06 08 -05- -05-
05 i 3
The complete product of S3  n=6 The complete product of S3 =8 The complete product of S3 =10

0s.
) H H .

o 2 02 o B L g 02 o g o 02 02 o g
05, 05

05

The complete product of S3 =12 The complete product of S3 =14 The complete product of S3  n=23

i O A = = s O I A
0 O L

Finally, we can observe the system on the complete product of Qs can takes the
values of the complex 4-th unit roots and zero.

The complete product of Q2 =0 The complete product of Q2 n=1 The complete product of Q2 =2
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The complete product of Q2 n=3 The complete product of Q2 n=4 The complete product of Q2 n=5
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