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Abstract. The most frequent method to represent a digital image is the pixel-
pixel type representation. Because of this, most image processing algorithms operate
on pixel-pixel type images. Accordingly few years, claim arised to develop image
processing algorithms, which operate on some special representation known from the
literature. In this paper, we describe the theoretical background, which is required
to apply a special image processing procedure { the skeletonization { to the quadtree
representation.
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INTRODUCTION

In digital image processing, skeletonization is a frequently used technique, when line draw-
ings are processed. Without the knowledge of the exact notion of skeletonization, these
procedures substitute the original object with its one pixel width "axis", whose connect-
edness corresponds to the connectedness of the original object. The theoretical results
characterizing the exact, mathematical notion and most signi�cant features of the skeleton
are in [6], while the general analysis of basic skeletonizing techniques can be found in [4].

In the literature a number of methods are known to represent a digital image. The
most frequent one is the pixel-pixel type representation, when the geometrical position
and the intensity of the pixels of the image are represented in a matrix. The coordinates
of the elements of the matrix denote the geometrical position and their values denote
the intensity of the pixels. Furthermore, run-length coding [5], quadtree [1] and contour-
representation [2] are used. In medical image processing only the perpendicular projections
of binary images are available. When certain conditions are satis�ed, we can consider these
projections as a representation of an image [3].

In digital image processing most procedures operate on pixel-pixel type images. The
reason is that almost all the available hardwares support this representation. This is also
true for the skeletonizing algorithms, since they are special image processing procedures.
However, we can �nd other algorithms in the literature which perform the skeletonizing
operation on run-length coded images [5] or on projections of images [3].
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In the last few years it became more and more interesting to develop image processing
algorithms, which operate on some special representations known from the literature. In
this paper we develop the theoretical background of skeletonization, which operates on
such a special image representation { the quadtree representation.

The quadtree representation represents the digital image as the union of single-colour-
ed squares of di�erent sizes. The geometrical positions of these squares are described in a
tree data structure. Since these squares contain more pixels of the same colour, applying
this representation the memory size storing the image can be considerably reduced.

In the next chapter we describe the basic notions related to quadtree representation.
We consider the possibility of the realization of two elementary operations applied in most
skeletonization algorithms { to test the intensity of a pixel and to alter the intensity of a
pixel { in quadtree representation.

1. BASIC NOTIONS AND DEFINITIONS

De�nition 1.1. Zn is called the n-dimensional digital plane and its elements are points. A
non-empty subset of the n-dimensional digital plane is called an n-dimensional digital set.
If X is an n-dimensional digital set, then the function f : X �! f0; 1; : : : ;m� 1g(m 2 N)
is an m-level digital image on X. The set X is the coordinate set of f , f0; 1; : : : ;m � 1g
is the range of f . The ordered pair (p; f(p)) (p 2 X) is called a pixel, where p is the
coordinate and f(p) is the intensity of the pixel.

De�nition 1.2. Let X be a 2-dimensional digital set. Then the digital image f : X �!
f0; 1g is called a binary image. If X = [k;N � 1+ k]� [h;N � 1+ h] (k; h 2 Z), then X is
a digital set of size N �N , and f is a binary image of size N �N .

In the rest of this paper we apply the notion of the binary image as a binary image
of size 2n � 2n. In fact this restriction for the size of the image can be done without loss
of generality, because any image can be enlarged by adding some background pixels, to
obtain such size.

De�nition 1.3. Let X be a digital set of size 2n�2n and g : X �! [0; 2n�1]� [0; 2n�1]
be a bijective function. For any p 2 X the ordered pair g(p) = (x; y) is called the image
coordinate of p, and g is the coordinate function.

Let X = [k;N � 1 + k] � [h;N � 1 + h] (k; h 2 Z) be a digital set. From now on,
unless the contrary is stated, we will assume that the coordinate function g is de�ned in
the following way: for p 2 X,p = (p1; p2), g(p) = (p1 � k;N � p2 + h� 1).

De�nition 1.4. LetX be a digital set of size 2n�2n. The binary number x1y1x2y2 : : : xnyn
is called the quadtree coordinate of p 2 X, where x1x2 : : : xn and y1y2 : : : yn are represen-
tations of x and y in binary form and (x; y) is the image coordinate of p.

De�nition 1.4 is a version of the de�nition of Gray-code (see [1]) modi�ed according
to our purposes.

We construct an n-level, fourth-degree ordered tree, whose each node (of course except
its leaves) has four successors denoted by the labels: 00; 10; 11; 01, in this order. Further-
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more, we assign an intensity to all leaves. In what follows, we assume that all edges have
a label, which is the same as the label of the node, to which that edge leads.

De�nition 1.5. Let X be a digital set of size 2n � 2n and f a binary image on X. The
complete quadtree representation of f is an n-level, complete, fourth-degree ordered tree.
The intensity assigned to a leaf is equal to f(p), where the quadtree coordinate of p 2 X

is x1y1x2y2 : : : xnyn and in the above tree the ith edge of the path from the root to that
leaf (i.e. the edge starting at the ith level) has label xi+1yi+1.

If in the complete quadtree the root represents the complete image, then its four
successors represent disjoint subimages of size 2n�1 � 2n�1 of the original image, as it is
shown by Figure 1.

00 10
01 11

Figure 1. Relation between the labels of edges of complete quadtree and subimages.

Observe that an element of a complete quadtree at the level i (0 � i � n) represents a
subimage of size 2n�i�2n�i of the original image. Especially, when i = n, these subimages
are the pixels.

As a result of the construction, the quadtree coordinate of a pixel can be speci�ed by
concatenating the labels in the path from the root to the required leaf. In the next step
we assign coordinates to all nodes of the complete quadtree, in the following way:

De�nition 1.6. Let T be an n-level, fourth-degree ordered tree, which is a complete
quadtree representation of a binary image on a digital set of size 2n � 2n. We assign
sequences of labels in the path from the root to all the nodes of the tree. These sequences
are called quadtree coordinates of that nodes.

As mentioned above, the complete quadtree is a representation of the binary image,
but our purpose is to consider the reduction of the complete quadtree.

De�nition 1.7. Let S be a set of complete quadtree representations of binary images
on a �xed digital set. Furthermore, let R be an operator, which assigns a fourth-degree
ordered tree to each elements of S in the following way: if each successor of a node has the
same intensity, then R assigns that intensity to the given node and deletes its successors.
The tree obtained in this way is the elementary reduced tree of the original tree, and R is
an elementary reduction.

Clearly, the reduction operator in De�nition 1.7 can be applied also on any reduced
fourth-degree tree, whose edges and nodes have labels as mentioned above.

De�nition 1.8. Let f be a digital image of size 2n � 2n and T its complete quadtree.
Put T1 = R(T ), T2 = R(T1), : : :, Ti = R(Ti�1), where R is the reduction operator given
in De�nition 1.7. The element Tj of this sequence with j = minifijTi = R(Ti)g, is the
quadtree representation of f .

We can see that in the quadtree those nodes will be leaves, which represent the single-
coloured subimages of maximal size of the given image. As a result of the derivation
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method, the quadtree coordinates in the quadtree are equivalent to the quadtree coordi-
nates in the complete quadtree. Nevertheless, in practice we do not need to construct the
complete quadtree and apply the reduction operator, but the quadtree representation can
be constructed directly from the image with a simple algorithm.

As an example, consider Figure 2, where the background pixels are denoted by � and
the foreground pixels by �. Lines denote places, where we need to divide the image. We
can see, that we need to divide the image until all the subimages become single-coloured.

����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 2. A binary image and its division to construct the quadtree representation.

In Figure 3. the quadtree of Figure 2. is shown. Here � denotes those nodes of the
tree, which are not leaves, � and � applied accordingly to Figure 2.

Figure 3. Quadtree representation of the binary image shown in Figure 2.

Consider the quadtree of the same image, showing { in the nodes { the labels that
were used to obtain the quadtree coordinates.

Figure 4. Quadtree representation of the binary image shown in Figure 2. with labels of edges.
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2. OPERATIONS FOR SKELETONIZATION

Skeletonizing algorithms usually use two kinds of operations to extract the skeleton. One
method is testing, the other is altering the intensity of a given pixel. However, there exist
algorithms, in which a third operation is also used to restore a given pixel. It is the reverse
operation of altering, so it can be carried out similarly.

2.1. Testing the intensity of a given pixel

In most skeletonizing algorithms we need to delete some pixels and leave other pixels
unaltered to extract the skeleton. In many cases the condition of deletion is determined
by the local neighbourhood of the pixel considered. Thus we need to know the intensity
of pixels in the local neighbourhood of the given pixel to decide whether the pixel satis�es
the condition, or not.

It is an easy task in case of pixel-pixel representation, since knowing the coordinate
of the pixel, the intensity can be queried. It is not so easy in case of quadtrees. We need
to reach the node, which represent the given pixel to test the intensity of that pixel.

In case of complete quadtrees, the coordinate of any pixel can be constructed in the
way provided by the next theorem.

Theorem 2.1. Let the coordinate of the upmost left pixel of an image of size 2n � 2n be
(0; 0). Let the quadtree coordinate of the subimage represented at level l in the complete
quadtree be x1y1 : : : xlyl. If the image coordinate of the upmost left pixel of the given
subimage is (x; y), then we have

(x; y) =
lX

i=1

2n

2i
(xi; yi): (1)

Proof. The statement can be proved by a simple calculation. �
Applying the above result, the intensity of any pixel can be calculeted using the inverse

formula of (1). Indeed, considering (1), it turns out that the quadtree coordinate of the
pixel (x; y) is x1y1x2y2 : : : xnyn, where x1x2 : : : xn and y1y2 : : : yn are representations of
x and y in binary form. Based on this fact, testing the intensity of the pixel can be
performed by testing the intensity of the leaf identi�ed by the path, which is determined
by the quadtree coordinate constructed in the above way. At level i (0 � i < n) of the
tree the ordered pair xi+1; yi+1 determines an edge, which we need to go along. At level
n we need to test the intensity of the node representing the pixel. Namely, the complete
quadtree can be used to search in.

As we mentioned above, the quadtree coordinates in the quadtree and the quadtree
coordinates in the complete quadtree provide similar information. Thus we also have that
the intensity of a subimage can be found in the quadtree based on the quadtree coordinate
in the same way as the intensity of a pixel can be found in the complete quadtree; namely
the quadtree can be used as a search tree, too. Image coordinates of the pixels obtained
in some subimage, can be determined { by Theorem 2.1 { from the quadtree coordinate
and size of that subimage. Vice versa, we need to �nd the smallest subimage, which
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contains the given pixel. The intensity of the subimage found in this way is equal to the
intensity of the given pixel. (Of course it can happen that we �nd the pixel itself.) In
this case, searching is started with constructing the quadtree coordinate of the pixel, too.
Accordingly, we need to search in the tree as deep as we can. The node found at last
represents the subimage, which we were searching for.
The next pseudo code is a formal description of the above procedure.

Procedure Testing Intensity of The Pixel x1y1x2y2 : : : xnyn
Let the current node be the root
While the code of the current node is not � and is not � Do

Begin

Consider the next two positions (in the �rst iteration the �rst two) of the quadtree
coordinate of the pixel
Go along the edge { from the current node { having the label obtained in the
previous step, and let the current node be the node obtained

End

The intensity of the given pixel is equivalent to the intensity of the current node

We can see that the above algorithm performs a search in a search tree.

2.2. Altering the intensity of a given pixel

In fact, deletion of a pixel alters the intensity of the pixel to the intensity of the
background, and the restoration of a pixel alters the intensity of the pixel to the intensity
of the foreground. In this chapter we describe just the deletion, because the restoration
can be performed in an analogous way.

Consider the complete quadtree. The deletion is very simple. Using the result of the
previous chapter we search the node representing the pixel, then alter its intensity to the
colour of the background.

However, deletion of a pixel is a bit more di�cult in the quadtree. Of course, it can be
performed by extending the quadtree to a complete quadtree, deleting the pixel and then
using the reduction operator we used to obtain the quadtree. However, it is too di�cult
and { as we shall see { needless.

In the quadtree we can directly delete by applying the inverse of the reduction operator
to some nodes (in fact, we extend the quadtree to a complete quadtree with it, too). Using
the result of the previous chapter we �nd the node representing the subimage containing
the pixel, which we want to delete. We extend this node { using the reduction operator {
then we choose from its successors the node containing the pixel. We repeat this procedure
until the given node represents the given pixel itself. Then as mentioned above we alter the
intensity of the leaf. It can happen that the given pixel is directly stored in the quadtree
(at level n), so altering it can cause that each successors of the ancestor of the given node
have the same intensity (it will be the colour of the background). Thus we need to use the
reduction operator (which is not a problem). It can happen that we need to repeat this
step at a higher level.
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The next theorem shows that the above two methods are equivalent:

Theorem 2.2. The quadtree obtained by the reduction operator, after deleting any pixel
from the complete quadtree representing a binary image, is equal to the quadtree obtained
in the following way: extend the node representing the subimage containing the pixel,
delete the required pixel, and reduce the quadtree.

Proof. We divide the proof into two cases.
� The pixel is directly stored in the quadtree (at level n). In this case searching for the
pixel consists of the same steps as searching in the complete quadtree. However, it
can happen that each successor of the ancestor of the node has the same intensity (it
can only be the background colour), thus using the reduction operator on this node,
and repeat this step to its ancestors (if it is necessary). The result is the same as
constructing the quadtree after the deletion of the pixel from the complete quadtree.
To prove this, it is su�cient to consider when we could use the reduction operator in
the quadtree. This case { since the deletion alters just one node { we needed to use
it on the same node in the complete quadtree, when we obtained the quadtree.

� The pixel is contained in a subimage represented by a node at level i (i < n) in the
quadtree. In this case while we �nd the subimage, the search contains the same steps
as in the complete quadtree. We need to use the inverse reduction operator in the
remaining steps. It is su�cient to apply to those nodes, which contain the given
pixel, because the deletion can alter only the path de�ned by them. In this case for
any level it is true that after using the inverse reduction operator on a given node it
is the only non-leaf node among the successors of its ancestor, the others are leaves
with foreground colour. The next step in the quadtree is the same as in the complete
quadtree. When we arrive to level n, we perform the deletion. In this case we cannot
use the reduction operator and it is true to this path of the complete quadtree, since
at level n there are three nodes of foreground colour and one of background colour.
Since we did not extend other nodes along the given path, so reducing the complete
quadtree we get this tree. �

Consider Figure 2 and delete pixel (9; 5) (the upmost left pixel is (0; 0)). The next �gure
shows the quadtree of the image obtained after deleting.

Figure 5. Quadtree of the binary image shown in Figure 2. after deletion of pixel (9;5).
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The next pseudo-code performs the above described procedure.

Procedure Deletion of Pixel x1y1x2y2 : : : xnyn
Find the node containing the given pixel (using the result of Chapter 2.1), let the
current node be this node
While the length of the quadtree coordinate of the current node is not equal to the
length of the quadtree coordinate of the given pixel do
Begin

Replace the code of the current node with �
Create the successors of the current node with code �
Let the new current node be the successor of the previous one containing the
given pixel

End

Replace the code of the current node with �
Reduce the tree using the reduction operator

In fact the third, fourth and �fth steps perform the work of the inverse reduction
operator, and the seventh step is the reduction itself.

3. CONCLUSIONS

Most image processing methods are not implemented to most image representations. It has
the disadvantage that performing these methods we need an additional operation, which
converts the current representation to a better usable one. The size of storing memory can
be increased with this step.

In this paper we investigated the direct applicability of the skeletonizing algorithm on
the quadtree representation. Our results can be used in case of image processing methods,
in which we need the next elementary operations: testing intensity and deletion of a given
pixel.

We made a program, which implements the above theoretical results into practice by
an algorithm from [7].

Our results described in this paper are applicable with some modi�cation for the
octtree representation of 3-dimensional images. These ideas can be generalized to multi-
level images, too.
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