INTEGRAL REPRESENTATION OF BOUNDED AND ABSOLUTELY INTEGRABLE FUNCTIONS

KAMEL AL-KHALED

Abstract

In this paper, we obtain an integral representation formula for an even function, as a consequence, we show that if the function satisfying some conditions over $(0,1)$ then it is completely characterized by its value in the neighborhood of 1 .

1. Introduction

Let $f(x)$ be an even function over $-1 \leq x \leq 1$ and $G(u)$ is any even bounded function and integrable over the interval $-1 \leq u \leq 1$. In the first theorem we will show that the function $f(x)$ can be written as an integral representation of the function $G(u)$. Then we proved that if $f(x)$ is bounded and absolutely integrable over the interval $(0,1-\epsilon)$, and satisfy the integral representation of $f(x)$ is bounded and absolutely integrable over the interval $(0,1)$.

Integrable functions have frequently appeared in the literature of the last few years, for example, see [1], [3] and [4]. Before proving the main result we state and proof the following theorem.

Theorem 1.1. Suppose $f(x)$ is even function over $-1 \leq x \leq 1$, and $G(u)$ be an even bounded integrable function over the interval $-1 \leq u \leq 1$. And that $G(u)$ together with its derivatives of all orders is continuous over the interval $(-1,1)$ and that it vanishes with all its derivatives for $u=\mp 1$. Then, for $\int_{-1}^{1} G(u) d u \neq 0$, we have

$$
f(x)=\lim _{n \rightarrow \infty} \frac{1}{n!\int_{-1}^{1} G(u) d u} \int_{-1}^{1} \frac{d^{n+1}}{d u^{n+1}}\left[(u-x)^{n} \int_{-1}^{u} G(\bar{u}) d \bar{u}\right] f(u) d u
$$

Proof. Taylor series for $f(x)$ is given by

$$
f(x)=f(u)+(x-u) f^{\prime}(u)+\cdots+\frac{(x-u)^{n}}{n!} f^{(n)}(u)+\cdots
$$

which we shall suppose uniformly convergent in the real argument u for $-1 \leq u \leq 1$ and for every x such that $-1 \leq x \leq 1$. Since $G(u)$ is bounded and integrable over the interval
$-1 \leq u \leq 1$. Then

$$
\begin{align*}
f(x) \int_{-1}^{1} G(u) d u= & \int_{-1}^{1} f(u) G(u) d u+\int_{-1}^{1}(x-u) f^{\prime}(u) G(u) d u+\cdots \tag{1.1}\\
& +\frac{1}{n!} \int_{-1}^{1}(x-u)^{n} f^{(n)}(u) G(u) d u
\end{align*}
$$

with the assumption that $G(u)$ together with its derivatives of all orders is continuous over the interval $(-1,1)$, and that it vanishes with all its derivatives for $u=\mp 1$. Then, integrating by parts yields

$$
\begin{align*}
& \int_{-1}^{1}(x-u)^{n} f^{(n)}(u) G(u) d u=\int_{-1}^{1}(x-u)^{n} G(u) d\left\{f^{(n-1)}(u)\right\} \\
& =\left[(x-u)^{n} G(u) f^{(n-1)}(u)\right]_{-1}^{1}-\int_{-1}^{1} f^{(n-1)}(u) d\left\{(x-u)^{n} G(u)\right\} \\
& =-\int_{-1}^{1} \frac{d}{d u}\left\{(x-u)^{n} G(u)\right\} f^{(n-1)}(u) d u=-\int_{-1}^{1} \frac{d}{d u}\left\{(x-u)^{n} G(u)\right\} d\left\{f^{(n-2)}(u)\right\} \tag{1.2}\\
& =-\left\{\frac{d}{d u}\left[(x-u)^{n} G(u)\right] f^{(n-2)}(u)\right\}_{-1}^{1}+\int_{-1}^{1} f^{(n-2)}(u)\left\{\frac{d^{2}}{d u^{2}}\left[(x-u)^{n} G(u)\right]\right\} d u \\
& \vdots \\
& =\int_{-1}^{1} \frac{d^{n}}{d u^{n}}\left[(u-x)^{n} G(u)\right] f(u) d u
\end{align*}
$$

We shall now use the fact that $\int_{-1}^{1} G(u) d u \neq 0$. We consequently obtain from (1.1) and (1.2) the formula

$$
\begin{align*}
f(x)= & \frac{1}{\int_{-1}^{1} G(u) d u}\left\{\int_{-1}^{1} G(u) f(u) d u+\int_{-1}^{1} \frac{d}{d u}[(u-x) G(u)] f(u) d u+\cdots\right. \\
& \left.+\frac{1}{n!} \int_{-1}^{1} \frac{d^{n}}{d u^{n}}\left[(u-x)^{n} G(u)\right] f(u) d u+\cdots\right\} \tag{1.3}
\end{align*}
$$

Set $\int_{-1}^{u} G(\tilde{u}) d \tilde{u}=F(u)$. Then $F(u)$ will then characterized by the same properties as those have determined for $G(u)$, as to the existence and continuity of its derivatives, and as to the vanishing of the function and its derivatives at the end of the interval, except that $F(1) \neq 0$. Let us consider the expression

$$
\frac{1}{n!} \frac{d^{n+1}}{d u^{n+1}}\left[(u-x)^{n} F(u)\right]
$$

Clearly,

$$
\begin{array}{r}
\frac{1}{n!} \frac{d^{n+1}}{d u^{n+1}}\left[(u-x)^{n} F(u)\right]=\frac{1}{n!} \frac{d^{n}}{d u^{n}} \frac{d}{d u}\left[(u-x)^{n} F(u)\right] \\
\quad=\frac{1}{n!} \frac{d^{n}}{d u^{n}}\left[n(u-x)^{n-1} F(u)+(u-x)^{n} G(u)\right]
\end{array}
$$

$$
\begin{aligned}
= & \frac{1}{(n-1)!} \frac{d^{n}}{d u^{n}}\left[(u-x)^{n-1} F(u)\right]+\frac{1}{n!} \frac{d^{n}}{d u^{n}}\left[(x-u)^{n} G(u)\right] \\
= & \frac{1}{(n-2)!} \frac{d^{n-1}}{d u^{n-1}}\left[(u-x)^{n-2} F(u)\right] \\
& +\frac{1}{(n-1)!} \frac{d^{n-1}}{d u^{n-1}}\left[(x-u)^{n-1} F(u)\right]+\frac{1}{n!} \frac{d^{n}}{d u^{n}}\left[(u-x)^{n} G(u)\right] \\
= & G(u)+\frac{d}{d u}[(u-x) G(u)]+\cdots+\frac{1}{n!} \frac{d^{n}}{d u^{n}}\left[(u-x)^{n} G(u)\right]
\end{aligned}
$$

Hence (1.3) becomes

$$
\begin{equation*}
f(x)=\lim _{n \rightarrow \infty} \frac{1}{n!F(1)} \int_{-1}^{1} \frac{d^{n+1}}{d u^{n+1}}\left[(u-x)^{n} F(u)\right] f(u) d u \tag{1.4}
\end{equation*}
$$

But $G(x)$ and $f(x)$ are even functions, so (1.4) becomes

$$
\begin{equation*}
f(x)=\lim _{n \rightarrow \infty} \frac{1}{n!F(1)} \int_{0}^{1} \frac{d^{n+1}}{d u^{n+1}}\left\{\left[(u-x)^{n}+(u+x)^{n}\right] F(u)\right\} f(u) d u \tag{1.5}
\end{equation*}
$$

which ends the proof of the theorem.

2. The Main Result

We will show that if we take our $G(u)$ the function $\exp \left(1 /\left(u^{2}-1\right)\right)$, the difference between (1.5) and an expression of the Fourier type is really essential. In particular, we will show that if $f(x)$ is bounded and absolutely integrable over $(0,1-\epsilon)$, is zero over $(1-\epsilon, 1)$, and satisfies (1.5) at every point of $(0,1)$, then it is identically zero over $(0,1)$. From this it will follow at once that a function satisfying (1.5) over $(0,1)$, bounded, and absolutely integrable, is completely characterized by its value in the neighborhood of 1 . It is not even necessary, however, that the function satisfy (1.5) over the whole of $(0,1)$; it is a sufficient condition that the following limit exist

$$
\lim _{n \rightarrow \infty} \frac{2}{n!F(1)} \int_{0}^{1} \frac{d^{n+1}}{d u^{n+1}}\left[u^{n} F(u)\right] f(u) d u
$$

Define the auxiliary function of a complex variable by

$$
\phi(\xi)=\frac{2 \xi}{\int_{-1}^{1} \exp \left(1 /\left(x^{2}-1\right)\right) d x} \int_{0}^{1-\epsilon} \exp \left(1 /\left(\xi^{2} u^{2}-1\right)\right) f(u) d u
$$

To find the singularities of the function $\phi(\xi)$ note that $\left|\exp \left(1 /\left(\xi^{2} u^{2}-1\right)\right)\right| \leq\left|1 /\left(\xi^{2} u^{2}-1\right)\right|$. If $|\xi u+1|>\eta,|\xi u-1|>\eta$, we have $\left|\exp \left(1 /\left(\xi^{2} u^{2}-1\right)\right)\right|<\exp \left(1 / \eta^{2}\right)$. Now define the region Γ in the complex plane in which ξ lies when $|\xi u+1|>\eta,|\xi u-1|>\eta$ for every u in the interval $(0,1-\epsilon)$. In the region Γ, the function $\exp \left(1 /\left(\xi^{2} u^{2}-1\right)\right) f(u)$ is uniformly bounded and integrable in u, so that $\phi(\xi)$ is defined. The related function

$$
\begin{aligned}
\phi^{\prime}(\xi)= & \frac{2}{\int_{-1}^{1} \exp \left(\frac{1}{x^{2}-1}\right) d x} \int_{0}^{1-\epsilon} \exp \left(\frac{1}{\xi^{2} u^{2}-1}\right) f(u) d u- \\
& -\frac{4 \xi^{2}}{\int_{-1}^{1} \exp \left(\frac{1}{x^{2}-1}\right) d x} \int_{0}^{1-\epsilon} \frac{u^{2}}{\left(\xi^{2} u^{2}-1\right)^{2}} \exp \left(\frac{1}{\xi^{2} u^{2}-1}\right) f(u) d u
\end{aligned}
$$

may be proved to exist by a similar argument over the same region Γ. There is no difficulty in showing directly that

$$
\lim _{|\lambda| \rightarrow 0} \frac{\phi(\xi+\lambda)-\phi(\xi)}{\lambda}=\phi^{\prime}(\xi)
$$

whenever ξ and $\xi+\lambda$ lie in the region Γ. Hence ϕ is analytic over Γ. Now let us consider $\phi(x /(1-y))$ as a function of y, given that $|x|<1 /(1-\epsilon)$. It is clearly that ϕ is analytic in a neighborhood containing the origin, as is also $1 /(1-y) \phi(x /(1-y))$. Let us put $\int_{0}^{z} \phi(\bar{z}) d \bar{z}=$ $\Phi(z)$, where the path of integration lies entirely within the circle of convergence of the Taylor series about the origin for $\phi(x)$. We shall then have

$$
\begin{align*}
\frac{1}{1-y} \phi\left(\frac{x}{1-y}\right)= & \frac{\partial}{\partial x} \Phi\left(\frac{x}{1-y}\right) \\
= & {\left[\frac{\partial}{\partial x} \Phi\left(\frac{x}{1-y}\right)\right]_{y=0}+y\left[\frac{\partial^{2}}{\partial x \partial y} \Phi\left(\frac{x}{1-y}\right)\right]_{y=0}+\cdots } \tag{2.1}\\
& +\frac{y^{n}}{n!}\left[\frac{\partial^{n+1}}{\partial x \partial y^{n}} \Phi\left(\frac{x}{1-y}\right)\right]_{y=0}+\cdots
\end{align*}
$$

Now let $x /(1-y)=z$, or $z=x+y z$. Then

$$
\frac{\partial z}{\partial y}=\frac{x}{(1-y)^{2}}=z \frac{\partial z}{\partial x}
$$

Hence,

$$
\frac{\partial \Phi(z)}{\partial y}=\Phi^{\prime}(z) \frac{\partial z}{\partial y}=z \Phi^{\prime}(z) \frac{\partial z}{\partial x}=z \frac{\partial \Phi(z)}{\partial x}
$$

Again,

$$
\begin{aligned}
\frac{\partial^{2} \Phi(z)}{\partial y^{2}} & =\frac{\partial}{\partial y}\left(z \frac{\partial \Phi(z)}{\partial x}\right)=\frac{\partial z}{\partial y} \frac{\partial \Phi(z)}{\partial x}+z \frac{\partial^{2} \Phi(z)}{\partial x \partial y} \\
& =\Phi^{\prime}(z) \frac{\partial z}{\partial y} \frac{\partial z}{\partial x}+z \frac{\partial^{2} \Phi(z)}{\partial x \partial y}=\frac{\partial \Phi(z)}{\partial y} \frac{\partial z}{\partial x}+z \frac{\partial^{2} \Phi(z)}{\partial x \partial y}=\frac{\partial}{\partial x}\left(z^{2} \frac{\partial \Phi(z)}{\partial x}\right)
\end{aligned}
$$

In general,

$$
\frac{\partial^{n} \Phi(z)}{\partial y^{n}}=\frac{\partial^{n-1}}{\partial x^{n-1}}\left(z^{n} \frac{\partial \Phi(z)}{\partial x}\right)
$$

Hence,

$$
\left[\frac{\partial^{n+1} \Phi(z)}{\partial x \partial y^{n}}\right]_{y=0}=\left[\frac{\partial^{n}}{\partial x^{n}}\left(z^{n} \frac{\partial \Phi(z)}{\partial x}\right)\right]_{y=0}=\frac{\partial^{n}}{\partial x^{n}}\left[x^{n} \phi(x)\right]
$$

Formula (2.1) thus becomes

$$
\begin{equation*}
\frac{1}{1-y} \phi\left(\frac{x}{1-y}\right)=\phi(x)+y \frac{d}{d x}(x \phi(x))+\cdots+\frac{y^{n}}{n!} \frac{d^{n}}{d x^{n}}\left(x^{n} \phi(x)\right)+\cdots \tag{2.2}
\end{equation*}
$$

It has been given here for the purpose of showing that there is actually a region for which the two sides of (2.2) are identical, provided that as in the present case the radius of convergence of the MacLaurin series for $\phi(x)$ is greater than 1 .
We now say that if $\lim _{n \rightarrow \infty} \frac{1}{n!}\left[\frac{d^{n}}{d x^{n}}\left(x^{n} \phi(x)\right)\right]_{x=1}$ exists, $\phi(x)$ is identically zero. To establish this, a consideration of the singularities of ϕ is sufficient. To begin with, ϕ is an odd function, and its singularities always occur in pairs. Again, we have already seen that all
the singularities of ϕ lie on the real axis, with a modulus greater than $1 /(1-\epsilon)$. Now, since we may write (2.2) in the form

$$
\begin{align*}
\phi\left(\frac{1}{1-y}\right)= & \phi(1)+y\left\{\left[\frac{d}{d x}(x \phi(x))\right]_{x=1}-\phi(1)\right\}+\cdots \tag{2.3}\\
& +y^{n}\left\{\frac{1}{n!}\left[\frac{d^{n}}{d x^{n}}\left(x^{n} \phi(x)\right)\right]_{x=1}-\frac{1}{(n-1)!}\left[\frac{d^{n-1}}{d x^{n-1}}\left(x^{n-1} \phi(x)\right)\right]_{x=1}\right\}+\cdots
\end{align*}
$$

and since this power series converges for $y=1$, it follows that ϕ has no singularities on the finite positive real axis, and hence no singularities on the real axis at all, except possibly at infinity. The singularities at infinity, for a function with only one singularity must be single-valued (see, [3]).

Let $y \rightarrow 1$ along any path for which $\arg (1 /(1-y))$ lies between $-\sin ^{-1} \eta$ and $\sin ^{-1} \eta$. Since the power series (2.3) converges to $\lim _{n \rightarrow \infty} \frac{1}{n!}\left[\frac{d^{n}}{d x^{n}}\left(x^{n} \phi(x)\right)\right]_{x=1}$, if this quantity exists, it follows that

$$
\lim _{y \rightarrow 1} \phi\left(\frac{1}{1-y}\right)=\lim _{n \rightarrow \infty} \frac{1}{n!}\left[\frac{d^{n}}{d x^{n}}\left(x^{n} \phi(x)\right)\right]_{x=1}
$$

The $\lim _{x \rightarrow 1} \phi(1 /(1-y))$ will also exist if $y \rightarrow 1$ for any path for which $\arg (1 /(1-y))$ lies between $\pi-\sin ^{-1} \eta$ and $\pi+\sin ^{-1} \eta$, since ϕ is odd.

Now consider the function $\phi(\xi) / \xi$, this has no singularities at the origin, and is uniformly bounded whenever $\arg (\xi)$ lies outside of the angles $\left(-\sin ^{-1} \eta, \sin ^{-1} \eta\right)$ and $(\pi-$ $\sin ^{-1} \eta, \pi+\sin ^{-1} \eta$). All this follows from the uniformly bounded and integrable character of $\exp \left(1 /\left(\xi^{2} u^{2}-1\right)\right) f(u)$. On the other hand, it follows from what we have just seen that if $\xi \rightarrow \infty$ along any path within the angles $\left(-\sin ^{-1} \eta, \sin ^{-1} \eta\right)$ and $\left(\pi-\sin ^{-1} \eta, \pi+\sin ^{-1} \eta\right)$, then $\operatorname{Lim}_{\xi \rightarrow \infty} \phi(\xi) / \xi=0$. It follows that $\phi(\xi) / \xi$ can neither have a pole nor an essential singularity anywhere, and so reduce to a constant, which can only be zero. Hence $\phi(\xi) \equiv 0$.

Now let $f(u)=\sum_{m=0}^{\infty} a_{m} u^{m}$. Then $G(u)=\sum_{m=0}^{\infty} m a_{m} u^{m-1}$ and

$$
\begin{aligned}
\phi(\xi) & =\frac{2 \xi}{F(1)} \int_{0}^{1-\epsilon}\left\{\sum_{m=0}^{\infty} m a_{m}(\xi u)^{m-1}\right\} f(u) d u \\
& =\sum_{m=0}^{\infty} \frac{2 \xi^{m}}{F(1)} \int_{0}^{1-\epsilon} m a_{m} u^{m-1} f(u) d u,|\xi|<\frac{1}{1-\epsilon}
\end{aligned}
$$

and so,

$$
\begin{aligned}
\frac{1}{n!}\left[\frac{d^{n}}{d x^{n}}\right. & \left(x^{n} \phi(x)\right]_{x=1}= \\
& =\left\{\sum_{m=0}^{\infty} \frac{2(m+n)(m+n-1) \cdots(m+1) m}{n!F(1)} x^{m} \int_{0}^{1-\epsilon} a_{m} u^{m-1} f(u) d u\right\}_{x=1} \\
& =\frac{2}{n!F(1)} \int_{0}^{1-\epsilon} \frac{d^{n+1}}{d u^{n+1}}\left[u^{n} F(u)\right] f(u) d u
\end{aligned}
$$

That is the validity of (1.5) for $x=0$ involves the identical vanishing of $\phi(\xi)$. In other words, if (1.5) holds,

$$
\begin{equation*}
\int_{0}^{1-\epsilon} \exp \left(\frac{1}{\xi^{2} u^{2}-1}\right) f(u) d u=0, \forall \xi . \tag{2.4}
\end{equation*}
$$

Let us now consider the sequence of derivatives of $\exp \left(1 /\left(\xi^{2} u^{2}-1\right)\right) f(u)$. and note that the derivative is of the form

$$
\left[\frac{2 A_{1}}{x-1}+\frac{2 A_{2}}{(x-1)^{3}}+\cdots+\frac{2 A_{2 n-1}}{(x-1)^{2 n-1}}\right] \exp \left(\frac{1}{x-1}\right)
$$

where the $A^{\prime} s$ are positive or negative integers. If we differentiate this expression we get

$$
\begin{aligned}
& {\left[\frac{-2 A_{1}}{(x-1)^{2}}-\frac{4 A_{2}}{(x-1)^{3}}-\cdots\right.} \\
& \left.\quad \mp \frac{2 n}{(x-1)^{2 n+1}}-\frac{2 A_{1}}{(x-1)^{3}}-\cdots-\frac{2 A_{2 n-1}}{(x-1)^{2 n-1}} \mp \frac{1}{(x-1)^{2 n+2}}\right] \exp \left(\frac{1}{x-1}\right)
\end{aligned}
$$

which is of the same form. Hence by mathematical induction, every derivative of $\exp (1 /(1-$ $x)$) is of this form. It follows that there is an integer k such that

$$
\left[\frac{d^{n}}{d x^{n}} \exp \left(\frac{1}{x-1}\right)\right]_{x=0}=\frac{2 k+1}{e} \neq 0
$$

so that

$$
\begin{equation*}
\left[\frac{d^{2 n}}{d x^{2 n}} \exp \left(\frac{1}{x^{2}-1}\right)\right]_{x=0} \neq 0 \tag{2.5}
\end{equation*}
$$

as is obvious from a comparison of the Taylor series for $\exp (1 /(1-x))$ and $\exp \left(1 /\left(x^{2}-1\right)\right)$. It follows from (2.4) on differentiation that

$$
0=\int_{0}^{1-\epsilon}\left[\frac{\partial^{2 n}}{\partial \xi^{2 n}} \exp \left(\frac{1}{\xi^{2} u^{2}-1}\right)\right]_{\xi=0} f(u) d u=\int_{0}^{1-\epsilon} u^{2 n}\left[\frac{d^{2 n}}{d x^{2 n}} \exp \left(\frac{1}{x^{2}-1}\right)\right]_{x=0} f(u) d u
$$

Hence by (2.5)

$$
\int_{0}^{1-\epsilon} u^{2 n} f(u) d u=0, \quad \forall n
$$

it is a direct consequence from this and the fact that the even powers of u forms a complete set over the interval $(0,1-\epsilon$) (as follows from Weierstrass's Theorem on polynomials representation) that except for a set of points of zero measure, $f(u)=0$ over $(0,1-\epsilon)$. From this and (1.5) it follows again that $f(u)=0$ everywhere over $(0,1)$. This complete the proof of our Theorem.

References

[1] A. Chakrabarti and A. J. George. Diagonalizable generalized Abel integral operators. SIAM J. Appl. Math. 57, 2:568-575, 1997.
[2] Duffy, Dean G. Transform methods for solving partial differential equations. CRC, 1994.
[3] A. R. Forsyth. Theory of functions of a complex variable. New York, Dover, 1965.
[4] J. Choi and C. Nash. Integral representation of the Kinkelin's constant A. Math. Japanica, 45, 2:223-230, 1997.
[5] M. Medved. A new approach to an analytic of Henry type integral inequalities and their bihari type versions. J. Math. Analy. Appl. 214, 349-366, 1997.
[6] D. C. Mitrinovic and J. K. Keckic. The Cauchy method of residues. Boston, 1994.
[7] E. C. Titchmarsh. Introduction to the theory of Fourier integrals. Oxford, 1948.
Received September 14, 1999.
Department of Applied Mathematical Sciences Jordan University of Science and Technology Irbid 22110, Jordan
E-mail address: applied@just.edu.jo

