CORRIGENDUM TO THE PAPER
 "LATTICE OF DISTANCES BASED ON 3D-NEIGHBOURHOOD SEQUENCES"

(Acta Mathematica Academiae Paedagogicae Nyiregyháziensis 15 (1999), 55-60)

Attila Fazekas
fattila@math.klte.hu
Lajos Kossuth University 4010, Debrecen PO Box 12, Hungary

In Theorems 3.4 and 3.5 of the paper we claimed that $(S(l), \sim)$ and $\left(S^{*}(l), \sim^{*}\right)$, respectively, is a distributive lattice. These statements are false. We give now the correct forms of the Theorems.

Theorem 3.4. For all $l \geq 2(S(l), \sim)$ is not a lattice.
Let $l \geq 2$ be arbitrary, but fixed integer. We use the following sequences: $A_{1}=\{3,1\}$, $A_{2}=\{2\}, B_{1}=\{2,1,3,1,3,1,3,1,3, \ldots\}$ and $B_{2}=\{1,3,1,1,1,1, \ldots\}$. Define $A_{j}^{\prime}=$ $\left\{a_{j}^{\prime}(1), \ldots, a_{j}^{\prime}(l)\right\}$, and $B_{j}^{\prime}=\left\{b_{j}^{\prime}(1), \ldots, b_{j}^{\prime}(l)\right\}$ for $j=1,2$ in $S(l)$ in the following way: $a_{j}^{\prime}(i)=a^{(j)}(i), b_{j}^{\prime}(i)=b^{(j)}(i), i=1, \ldots, l$. It is easy to show that if $A_{1}^{\prime} \wedge A_{2}^{\prime}$ exists in $S(l)$, then it must be B_{1}^{\prime}. However, clearly $B_{2}^{\prime} \sim A_{1}^{\prime}, A_{2}^{\prime}$, but $B_{2}^{\prime} \nsim B_{1}^{\prime}$, which completes the proof.
Theorem 3.5. $\left(S^{*}(l), \sim^{*}\right)$ is not a lattice for any $l \geq 2$.
First let $l \geq 5, A_{1}=\{1,2,2\}$ and $A_{2}=\{1,2,2,2,1\}$. One can readily verify that A_{1} and A_{2} have no least upper bound in $S^{*}(l)$ with respect to \sim^{*}.

Let now $2 \leq l \leq 4$, and let $A_{1}=\left\{a^{(1)}(1), \ldots, a^{(1)}(l)\right\}$ and $A_{2}=\{2\}$, where A_{1} is defined in the following way: $a^{(1)}(1), \ldots, a^{(1)}(l)$ is the first l elements of $\{3,1,3,1\}$. It is easy to check that these sequences have no least upper bound in $S^{*}(l)$ with respect to \sim^{*}, which completes the proof.

