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TRANSITION FROM THE DYADIC TO

THE REAL NONPERIODIC HARDY SPACE

S. Fridli

Abstract. The dyadic Hardy space plays a special role in Walsh analysis. Namely,
it separates the Lp[0; 1) (1 < p � 1) and the L1[0; 1) spaces, and in many cases
the results received for the (1 < p � 1) case can be extended for the dyadic Hardy
space but not for L1[0; 1): The real nonperiodic Hardy space, which is wider than
the dyadic one, is often employed in the trigonometric Fourier analysis. It is natural
to ask whether the results proved for the dyadic Hardy space remain true for the
real nonperiodic Hardy space. The idea behind this question is to make it possible
to compare the corresponding results in the trigonometric and in the Walsh analysis.
In this paper we provide a simple method for solving this problem for �-sublinear
functionals. Also, we study two well known sequences of functionals to demonstrate
how our method works.

Main Result

Let Lp = Lp[0; 1) (1 � p � 1) denote the usual Banach spaces. Then a function
� 2 L1 is called a regular atom if either � � 1 or there exists an interval I � [0; 1)
such that

supp� � I ;

Z
� = 0 ; k�k1 � jIj�1;

where jIj denotes the length of the interval I:
Let the set of regular atoms be denoted by A: If the interval in the de�nition of

the atom is required to be a dyadic interval, i.e. an interval of the form [k2�n; (k+
1)2�n) (n 2 N ; k = 0; : : : ; 2n � 1); then the atom is called a dyadic atom. The set
of dyadic atoms will be denoted by A:

We will introduce the concept of the real nonperiodic and the dyadic Hardy
spaces by means of atomic decomposition. Namely, a function f integrable on [0; 1)
belongs to the real nonperiodic Hardy space H if and only if there exist �k 2 A
and ck 2 R (k 2 N) such that

1X
k=1

jckj <1 ; and f =
1X
k=1

ck�k
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(the latter equality is understood in the norm of L1), and

kfkH = inf
1X
k=1

jckj;

where the in�mum is taken over all such decompositions.
The dyadic Hardy space H and the corresponding norm are de�ned in a similar

way, with the only modi�cation that the regular atoms should be replaced by dyadic
atoms. Clearly,

H � H � L1;

and

kfk1 � kfkH (f 2 H); kfkH � kfkH (f 2 H):

The following set of step functions will play an important role in our results. Set


 = f!k;n : k; n 2 N ; 0 < k < 2ng;

where

!k;n(x) =

�
2n�1 if (k � 1)2�n � x < k2�n

�2n�1 if k2�n � x < (k + 1)2�n
:

Then !k;n 2 A for any possible n and k but !k;n 62 A if k is even since in this
case the adjacent dyadic intervals [(k � 1)2�n; k2�n); [k2�n; (k + 1)2�n) do not
form a dyadic interval. The following theorem shows that this is what makes the
di�erence between the real nonperiodic and the dyadic Hardy spaces concerning
the boundedness of �-sublinear functionals.

The functional F de�ned on H is called �-sublinear if

jF (cf)j = jcjjF (f)j (c 2 R; f 2 H);

and if f =
P1

k=1 fk (f; fk 2 H); the convergence is understood in the norm of H;
then

jF (f)j �
1X
k=1

jF (fk)j:

Theorem 1. Let F be a �-sublinear functional on H; and let F denote its restric-
tion to H: Then F is bounded if and only if it is bounded on 
 and F is bounded.
Moreover

maxfkFk; sup
!2


jF (!)jg � kFk � 4kFk+ 2 sup
!2


jF (!)j:

Applications

In this section we will use Theorem 1 to decide the uniform boundedness of two
sequences of �-sublinear functionals. In both of our examples positive results are
known for the dyadic Hardy space. We will show that in one of the examples the
result can be extended to the real nonperiodic Hardy space while in the other it
can not.
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In order to formulate our examples we need to introduce some concepts of Walsh-
Fourier analysis. For the basic properties of them we refer to [5]. The dyadic
expansion of an x 2 [0; 1) is de�ned as

x =
1X
k=0

xk2
�(k+1) (xk = 0 or 1):

For the so-called dyadic rationals there are two expressions of this form. In this
case we take the one which terminates in 0's.
The concept of dyadic addition (u) and dyadic shift (�) are de�ned as follows

xu y =
1X
k=0

jxk � ykj2
�(k+1) (x; y 2 [0; 1))

��f(x) = f(xu �) (� 2 [0; 1); x 2 [0; 1); f : [0; 1) 7! R):

Let rk denote the kth Rademacher function, i.e.

r0(x) =

�
+1 if 0 � x < 1=2,

�1 if 1=2 � x < 1

periodic by 1 , and

rk(x) = r0(2
kx) (0 � x < 1; k 2 N):

The Walsh functions can be decomposed into products of Rademacher functions.
Namely, if n =

P1
k=0 nk2

k (nk = 0 or 1; n 2 N) is the binary decomposition of n
then the nth Walsh function in the Paley enumeration is de�ned as

wn =
1Y
k=0

rnkk :

Then it follows from the de�nition that

(1) wj2n+k = wj2nwk (j; n; k 2 N ; 0 � k < 2n):

For any f 2 L1 let f̂(k) (k 2 N) denote its kth Walsh-Fourier coe�cient. If the

Walsh-Dirichlet kernels are denoted by Dk =
Pk�1

j=0 wj (k 2 N) then the Walsh-

Fourier partial sums Skf (k 2 N) can be calculated as

Skf(x) =

Z 1

0

f(t)Dk(xu t) dt:

It is well known (see e.g. [5]) that

(2) D2n(x) =

�
2n if 0 � x < 2�n;

0 otherwise:

The functionals in our examples are de�ned as follows

Unf =
1

logn

nX
k=1

kSkfk1
k

(f 2 L1; n 2 N ; n > 1);

Tnf =
1

2n
k
2n�1X
k=0

S2nf(k2
�n)Dk+1k1 (f 2 L1; n 2 N):

Then the aforementioned result is the following.
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Theorem 2.

i) There is an f 2 H for which limn!1 Unf =1:
ii) There exists C > 0 such that Tn(f) � CkfkH (f 2 H; n 2 N):

Remark 1. Concerning the �rst part of Theorem 2 we note that limn!1 Unf =
kfk1 for any f 2 H as it was shown by Simon in [6]. For its generalization
to Vilenkin systems see G�at [3]. On the other hand, Smith proved in [7] that

limn!1
eUnf = kfk1 (f 2 H); where eUn stands for the trigonometric version of Un

(n 2 N): Our result shows a signi�cant di�erence between the trigonometric and
the Walsh system in this context.

Remark 2. Part ii) of Theorem 2 was proved by Schipp in [4] with the dyadic
Hardy norm on the right side. Here we improve this result by taking the norm of
the real nonperiodic Hardy space. We also note that similar inequality holds for
the trigonometric Dirichlet kernels ([4]). Consequently, the trigonometric and the
Walsh systems behave similarly in this context.

Throughout this paper C will denote an absolute positive constant not necessar-
ily the same in di�erent occurrences.

Proofs

Proof of Theorem 1. Let F be bounded on H: Then its restriction F is obviously
bounded, and kFk � kFk: Since 
 is a subset of the unit ball of H we have that F
is bounded on 
; and sup!2
 � kFk:

Before proving the other direction we show that for a �-sublinear functional F
the boundedness is equivalent to the existence of an absolute positive constant C
such that F (�) < C holds for each regular atom �: The necessity is immediate
by k�kH � 1 (� 2 A): On the other hand, if F (�) � C for any � 2 A; and
f =

P1
k=1 ck�k with �k 2 A (k 2 N) and

P1
k=1 jckj < 1 then we have by the

�-sublinearity of F that

jF (f)j �
1X
k=1

jckjjF (fk)j � C
1X
k=1

jckj:

Consequently, jF (f)j � CkfkH:
Suppose now that F is bounded and sup!2
 jF (!)j is �nite. Let � be a regular

atom di�erent from the constant 1 function. By de�nition there exists an interval

I for which supp� � I; k�k1 � jIj�1; and
R 1
0 � = 0: If 2�N � jIj < 2�N+1 then

there is a K (K 2 N ; 0 < K < 2n) such that I � [(K � 1)2�N ; (K + 1)2�N ]: Set

a1(x) =

(
1
2

�
�(x)� 2N

RK2�N

(K�1)2�N
�
�

if (K � 1)2�N � x < K2�N ;

0 otherwise.

Recall that k�k1 � jIj�1 � 2N : Therefore
RK2�N

(K�1)2�N j�j � 1; and we have that a1
is a dyadic atom. Similarly,

a2(x) =

(
1
2

�
�(x)� 2N

R (K+1)2�N

K2�N
�
�

if K2�N � x < (K + 1)2�N ;

0 otherwise
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is a dyadic atom. Moreover, it follows from
R
I
� = 0 that

RK2�N

(K�1)2�N
� +R (K+1)2�N

K2�N
� = 0: Therefore, if

a0(x) =

8>><>>:
2N
RK2�N

(K�1)2�N
� if (K � 1)2�N � x < K2�N ;

2N
R (K+1)2�N

K2�N
� if K2�N � x < (K + 1)2�N ;

0 otherwise

then there exists j�j � 2 such that a0 = �!K;N : Thus � can be decomposed as

� = �!K;N + 2a1 + 2a2:

Hence F (�) � 2 sup!2
 jF (!)j+ 4kFk (� 2 A): �

Proof of Theorem 2. For the proof of part i) notice that !2j�1;j can be decomposed
as di�erence of dyadic shifts of D2j :

!2j�1;j =
1

2
(�1=2�1=2jD2j � �1=2D2j ) (j 2 N):

Then

U2j!2j�1;j =
1

j

2jX
k=1

1

k
kSk�1=2�1=2jD2j � Sk�1=2D2jk1 (j 2 N):

It is easy to see that the operators �� and Sk (� > 0; k 2 N) can be interchanged.
Indeed,

Sk��f(x) =

Z 1

0

f(tu �)Dk(xu t) dt =

Z 1

0

f(t)Dk(xu tu �) dt =
kX

`=1

f̂(`)w`(xu �)

=
kX

`=1

f̂(`)��w`(x)

= ��Skf(x) (f 2 L1; � > 0; k 2 N):

Hence

U2j!2j�1;j =
1

j

2jX
k=1

1

k

�Z 1=2

0

j�1=2�1=2jDk � �1=2Dkj

+

Z 1

1=2

j�1=2�1=2jDk � �1=2Dkj
�

(j; n 2 N):

Since

(1=2� 1=2j)u x =
x0
2

+

j�1X
`=1

jx` � 1j2�(`+1) +
1X
`=j

x`2
�(`+1)

we have that x! (1=2� 1=2j)u x is a one-to-one piecewise linear rearrangement
that maps [0; 1=2) and [1=2; 1) onto themselves respectively. Similarly, x! 1=2ux
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maps [0; 1=2) and [1=2; 1) piecewise linearly onto [1=2; 1) and [0; 1=2) respectively.
Consequently,

U2j!2j�1;j �
1

j

2jX
k=1

1

k

�Z 1=2

0

jDkj �

Z 1

1=2

jDkj
�

�
1

j

j�1X
k=0

1

2k+1

2kX
`=1

�Z 1

0

jD2k+`j � 2

Z 1

1=2

jD2k+`j
�

(j 2 N):

The pointwise estimation jDk(x)j � 2=x (0 < x < 1; k 2 N) ([1]) implies

1

j

j�1X
k=0

1

2k+1

2kX
`=1

Z 1

1=2

jD2k+`j � 1 :

For the other terms we will use the following inequality (see [1] or [2])

(3)
1

n

nX
k=1

kDkk1 � C logn (n 2 N ; n � 2):

By (1) we have D2k+` = D2k + w2kD`: Then (2) and (3) imply that

2kX
`=1

Z 1

0

jD2k+`j �
2kX
`=1

�Z 1

0

jD`j � 1
�
� C2kk:

Consequently,
U2j!2j�1;j � Cj (j 2 N):

We proved that the sequence of sublinear functionals Un (n 2 N) is not uniformly
bounded on H: Then the existence of a function f 2 H with limn!1 Unf = 1
follows from the Banach -Steinhaus theorem.

The proof of ii) will be started by showing that Tn (n 2 N) is �-sublinear on L1;
i.e. on H as well. To this end let f =

P1
j=1 fj (f; fj 2 L1): By (2) we have

���S2nf(x)� X̀
j=1

S2nfj(x)
��� � Z 1

0

���f(t)� X̀
j=1

fj(t)
���D2n(xu t) dt

� 2n
f � X̀

j=1

fj


1

(0 � x < 1; ` 2 N):

Consequently, S2nf(x) =
P1

j=1 S2nfj(x) (0 � x < 1): Then

Tnf =
1

2n

 2n�1X
k=0

1X
j=1

S2nfj(k2
�n)Dk+1


1

=
1

2n

 1X
j=1

� 2n�1X
k=0

S2nfj(k2
�n)Dk+1

�
1
�

1X
j=1

Tnfj (n 2 N);
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i.e. Tn is �-sublinear on L1:
It is known ([4]) that there exists C > 0 absolute constant such that Tnf �

CkfkH (f 2 H; n 2 N): Therefore, by Theorem 1 we only need to show that the
Tn's (n 2 N) are uniformly bounded on 
:

It is an immediate consequence of the de�nition of !j;` (j; ` 2 N; j = 1; : : : ; 2`�1)
and of (2) that

S2n!j;` =

8><>:
!k;n if n < `; and j2�` = k2�n with some k = 0; : : : ; 2n � 1;

0 if n < `; and j2�` 6= k2�n; k = 0; : : : ; 2n � 1;

!j;` if n � `:

Therefore, we may suppose that ` � n: Then

Tn!j;` =
1

2n

 2n�1X
k=0

!j;`(k2
�n)Dk+1


1
=

2`�1

2n

 j2n�`�1X
k=(j�1)2n�`

Dk+1�

(j+1)2n�`�1X
k=j2n�`

Dk+1


1
:

By (1) we have

j2n�`�1X
k=(j�1)2n�`

Dk+1 = 2n�`D(j�1)2n�` + w(j�1)2n�`

2n�`X
k=1

Dk:

Similarly,

(j+1)2n�`�1X
k=j2n�`

Dk+1 = 2n�`D(j�1)2n�` + 2n�`w(j�1)2n�`D2n�` + wj2n�`

2n�`X
k=1

Dk:

Then we have by (2) that

Tn!j;` =
2`�1

2n

(w(j�1)2n�` � wj2n�`)
2n�`X
k=1

Dk � 2n�`w(j�1)2n�`D2n�`


1

�
2`�1

2n

�
2n�` + 2

 2n�`X
k=1

Dk


1

�
=

1

2
+ 2kK2n�`k1; :

where Kn = 1=n
Pn

k=1Dk (n 2 N ; n � 1) denotes the nth Walsh-Fej�er kernel.
Since ([8]) kKnk1 � 2 for any n we have

Tn!j;` �
5

2
(n; j; ` 2 N ; j = 0; : : :2` � 1):

Consequently, the Tn's are uniformly bounded on 
: �
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