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ALMOST Q-RINGS

C. JAYARAM

Abstract. In this paper we establish some new characterizations for Q-rings
and Noetherian Q-rings.

1. Introduction

Throughout this paper R is assumed to be a commutative ring with identity.
L(R) denotes the lattice of all ideals of R. R is said to be a Q-ring [4], if every ideal
is a finite product of primary ideals. It is well known that if R is a Q-ring, then
RM is a Q-ring for every maximal ideal M of R [4, Lemma 4]. But in general the
converse need not be true. For example, if R is an almost Dedekind domain which
is not a Dedekind domain, then RM is a Q-ring, for every maximal ideal M of R,
but R is not a Q-ring. We call a ring R an almost Q-ring if RM is a Q-ring, for
every maximal ideal M of R. The goal of this paper is to characterize those almost
Q-rings which are also Q-rings. We prove that R is an almost Q-ring if and only
if every non-maximal prime ideal is locally principal (see Theorem 1). Using this
result, we characterize Q-rings in terms of almost Q-rings (see Theorem 2). Finally,
we establish some equivalent conditions for Noetherian Q-rings (see Theorem 3).

For any A, B ∈ L(R), we denote A \ B = {x ∈ A | x /∈ B}. We use ⊂ for proper
set containment. For any x ∈ R, the principal ideal generated by x is denoted by
(x). For any ideal I ∈ L(R), we denote θ(I) =

∑{(I1 : I) | I1 ⊆ I and I1 is a
finitely generated ideal}. Recall that an ideal I of R is called a multiplication ideal
if for every ideal J ⊆ I , there exists an ideal K with J = KI . If I is a multiplication
ideal, then I is locally principal [1, Theorem 1 and Page 761]. An ideal M of R
is called a quasi-principal ideal [9, Exercise 10, Page 147] (or a principal element
of L(R) [11]) if it satisfies the following identities (i) (A ∩ (B : M))M = AM ∩ B
and (ii) (A + BM) : M = (A : M) + B, for all A, B ∈ L(R). Obviously, every
quasi-principal ideal is a multiplication ideal. It should be mentioned that every
quasi-principal ideal is finitely generated and also a finite product of quasi-principal
ideals of R is again a quasi-principal ideal [9, Exercise 10, Page 147]. In fact, an
ideal I of R is quasi-principal if and only if it is finitely generated and locally
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principal (see [6, Theorem 4]) or [11, Theorem 2]). A Bw-prime of I is a prime
ideal P such that P is minimal over (I : x) for some x ∈ R. R is said to be a
Laskerian ring [8], if every ideal is a finite intersection of primary ideals. It is
well known that R is a Q-ring if and only if R is a Laskerian ring in which every
non-maximal prime ideal is quasi-principal [4, Theorem 13]. R is a π-ring if every
principal ideal is a finite product of prime ideals. We say that R has Noetherian
spectrum, if R satisfies the ascending chain condition for radical ideals [12]. It is
well known that R has Noetherian spectrum if and only if every prime ideal is the
radical of a finitely generated ideal [12, Corollary 2.4]. Also it is well known that
if R has Noetherian spectrum, then every ideal has only finitely many minimal
primes.

For general background and terminology, the reader is referred to [9].

We shall begin with the following definition.

Definition 1. A quasi-local ring R with maximal ideal M is said to satisfy the
condition (∗) if for each non-maximal prime ideal P with P = PM, there exists
t ∈ M such that P + (t) is finitely generated.

Note that valuation rings (i.e., any two ideals are comparable), quasi-local rings
in which the maximal ideals are principal and one dimensional quasi-local domains
are examples of quasi-local rings satisfying the condition (∗).
Lemma 1. Let R be a quasi-local Q-ring with maximal ideal M . Then R satisfies
the condition (∗).
Proof. The proof of the lemma follows from [4, Lemma 5].

Lemma 2. Let R be a quasi-local ring with maximal ideal M satisfying the con-
dition (∗). Suppose every principal ideal is a finite product of primary ideals. If
P is a non-maximal prime ideal with P = PM, then P = (0).

Proof. Suppose P is a non-maximal prime ideal with P = PM . By hypothesis,
there exists a ∈ M such that P + (a) is finitely generated. If a ∈ P , then P =
P + (a) is finitely generated, so by Nakayama’s lemma, P = 0. Suppose a 6∈ P .
Since P +(a) is finitely generated, it follows that P +(a) = P1+(a) for some finitely
generated ideal P1 ⊆ P . Since P = PM , we have (P + (a))M = PM + (a)M =
P1M +(a)M , so P +(a)M = P1M +(a)M and hence P +(a) = P1M +(a). Again
since P1 ⊆ P + (a) = (a) + P1M and P1 is finitely generated, by Nakayama’s
lemma, it follows that P1 ⊂ (a). Therefore P ⊂ (a). Let x ∈ P . By hypothesis
(x) = QA for some primary ideal Q ⊆ P and A ∈ L(R). Since Q ⊂ (a), it follows
that Q = (a)Q. Therefore (x) = QA = Q(a)A = (x)(a) and hence by Nakayama’s
lemma, (x) = (0). This shows that P = (0).

Lemma 3. Let R be a quasi-local ring with maximal ideal M . Suppose every
ideal generated by two elements is a finite product of primary ideals. If P is a
non-maximal prime ideal with P 6= PM, then P is principal.

Proof. Let P be a non-maximal prime ideal with P 6= PM . Choose any element
a ∈ P such that a /∈ PM . Let t ∈ M be any element such that t /∈ P . Suppose



ALMOST Q-RINGS 251

x ∈ P . Then by hypothesis, (a) + (xt) is a finite product of primary ideals. Since
a /∈ PM , it follows that (a) + (xt) is primary. Again since (xt) ⊆ (a) + (xt) and

t /∈
√

(a) + (xt) ⊆ P , it follows that x ∈ (a) + (xt), so by Nakayama’s lemma
(x) ⊆ (a). Therefore P = (a).

Lemma 4. Let R be a quasi-local ring with maximal ideal M satisfying the condi-
tion (∗). Suppose every ideal generated by two elements is a finite product of pri-
mary ideals. Then the non-maximal prime ideals are principal. Hence dim R ≤ 2.

Proof. By Lemma 2 and Lemma 3, every non-maximal prime ideal is principal.
Again as shown in the last paragraph of the proof of Lemma 5 of [4], dim R ≤ 2.
This completes the proof of the lemma.

Lemma 5. Suppose I is an ideal of R such that every prime minimal over I is
finitely generated. Then I contains a finite product of prime ideals minimal over
I. Further I has only finitely many minimal primes.

Proof. Suppose I does not contain a finite product of prime ideals minimal over I .
Let = = {J ∈ L(R) | I ⊆ J and J does not contain a finite product of prime ideals
minimal over I}. By Zorn’s lemma, = has a maximal element, say P . It can be
easily shown that P is a prime ideal. Again note that P contains a prime ideal
P0 which is minimal over I , a contradiction. Therefore I contains a finite product
of prime ideals minimal over I . Consequently, I has only finitely many minimal
primes.

Lemma 6. Suppose R is a quasi-local ring. Then the following statements are
equivalent:

(i) R is a Q-ring.
(ii) R satisfies the condition (∗) and every ideal generated by two elements is a

finite product of primary ideals.
(iii) Every non-maximal prime ideal is principal.

Proof. (i)⇒(ii) follows from Lemma 1.
(ii)⇒(iii) follows from Lemma 4.
(iii)⇒(i). Suppose (iii) holds. Then every ideal I is either M -primary (M is

a maximal ideal of R) or by Lemma 5, I has only finitely many minimal primes.
Again by the last paragraph of the proof of [4, Lemma 5], R is Laskerian. Now
the result follows from [4, Theorem 10].

Lemma 7. Let R be an almost Q-ring. Suppose every principal ideal is a finite
product of primary ideals. Then every non-maximal prime ideal of R is a multi-
plication ideal.

Proof. Using Lemma 6 and by imitating the proof of [4, Lemma 7], we can get
the result.

Lemma 8. Let dim R ≤ 2 and let every ideal generated by two elements has only
finitely many minimal primes. Then R has Noetherian spectrum.



252 C. JAYARAM

Proof. First we show that every minimal prime ideal is the radical of a finitely
generated ideal. By hypothesis, R has only finitely many minimal primes. Let
P1, P2, . . . , Pn be the distinct minimal prime ideals. If n = 1, then P1 is the

radical of the zero ideal. Suppose n > 1. Then P1 6⊆ n∪
i=2

Pi. Choose any x ∈ P1

such that x 6∈ n∪
i=2

Pi. Let Q1, Q2, . . . , Qm be the distinct primes minimal over (x).

Then P1 = Qj for some j, say P1 = Q1. If m = 1, then P1 is the radical of (x).

Suppose m > 1. Then P1 6⊆ m∪
i=2

Qi. Choose any y ∈ P1 such that y 6∈ m∪
i=2

Qi. By

hypothesis, (x) + (y) has only finitely many minimal primes. Let Q′

1, Q
′

2, . . . , Q
′

k

be the distinct primes minimal over (x) + (y). Note that P1 = Q′

j for some j, say

P1 = Q′

1. If k = 1, then P1 is the radical of (x) + (y). Suppose k > 1. Observe
that any Q′

j different from P1 contains Qi properly, for some i 6= 1, and each Qi

different from P1, is non-minimal. So each Q′

j is maximal, for j = 2, 3, . . . , k.

Choose any element z ∈ P1 such that z 6∈ k∪
i=2

Q′

i. Now it can be easily shown that

P1 is the radical of (x)+ (y)+ (z). Thus we have shown that every minimal prime
ideal is the radical of a finitely generated ideal.

Next we show that every non-minimal prime ideal is the radical of a finitely

generated ideal. Let P be a non-minimal prime ideal. Then P 6⊆ n∪
i=1

Pi. Choose

any x ∈ P such that x 6∈ n∪
i=1

Pi. Let Q1, Q2, . . . , Qm be the distinct primes minimal

over (x). Then P ⊇ Qj for some j, say P ⊇ Q1. If m = 1 and P = Q1, then P
is the radical of (x) and so we are through. Suppose m ≥ 1 and Q1 ⊂ P . Then

P 6⊆ m∪
i=1

Qi. Choose any y ∈ P such that y 6∈ m∪
i=1

Qi. Then (x) + (y) has only

finitely many minimal primes and every prime minimal over (x)+(y) is a maximal
ideal. Therefore there exists a finitely generated ideal I such that P is the radical

of I . Finally assume that m > 1 and P = Q1. Then P 6⊆ m∪
i=2

Qi. Choose any

y ∈ P such that y 6∈ m∪
i=2

Qi. Let Q′

1, Q
′

2, . . . , Q
′

k be the distinct primes minimal

over (x) + (y). Note that P1 ⊇ Q′

j for some j, say P1 ⊇ Q′

1. Since x ∈ Q′

1 and

Q1 = P ⊇ Q′

1, it follows that P = Q1 = Q′

1. If k = 1, then P1 is the radical

of (x) + (y). Suppose k > 1. Then P 6⊆ k∪
i=2

Q′

i and each Q′

i different from P , is

maximal. Choose any element z ∈ P such that z 6∈ k∪
i=2

Q′

i. Then P is the radical

of (x)+(y)+(z). Thus every prime ideal is the radical of a finitely generated ideal
and hence R has Noetherian spectrum.

For any I ∈ L(R) and for any prime ideal P minimal over I , we denote PI =
∩{Q ∈ L(R) | Q is a P -primary ideal containing I}. It can be easily seen that PI

is the smallest P -primary ideal containing I . For any x ∈ R, and for any prime
ideal P minimal over (x), we denote Px = ∩{Q ∈ L(R) | Q is a P -primary ideal
containing (x)}.

For any x ∈ R, we denote (x)∗ = ∩{Px | P is a prime ideal minimal over (x)}.



ALMOST Q-RINGS 253

Lemma 9. Let P be a prime minimal over an ideal I of R and let P1 be a prime
properly containing P . Then the following statements hold:

(i) If P is a multiplication ideal, then P ⊂ ((I + PPI) : PI).
(ii) If P1 is a Bw-prime of I, then (PI )M 6= IM (in RM ) for all maximal ideals

M containing P1.

Proof. (i) Consider the ideal ((I + PPI) : PI ). Note that P ⊆ ((I + PPI ) : PI).
Suppose P = ((I + PPI) : PI). We claim that I + PPI is P -primary. Let
yz ∈ I + PPI and z 6∈ P . Then yz ∈ PI , so y ∈ PI . Since P is a multiplication
ideal, by [3, Lemma 1] and [2, Corollary], PI is a multiplication ideal. As PI is a
multiplication ideal, it follows that (y) = PIC for some ideal C of R. If C ⊆ P ,
then we are through. Suppose C 6⊆ P . Then (yz) = (z)PIC ⊆ I + PPI , so
zC ⊆ ((I + PPI ) : PI) = P , a contradiction. Therefore I + PPI is P -primary and
hence PI = I + PPI . Consequently, 1 ∈ ((I + PPI ) : PI) = P , a contradiction.
Therefore P ⊂ ((I + PPI) : PI ).

(ii) Suppose P1 is a Bw-prime of I . Then P1 is minimal over (I : r) for some
r ∈ R. Since(I : r)r ⊆ I ⊆ PI , (I : r) 6⊆ P and PI is P -primary, it follows that
r ∈ PI . If (PI)M = IM for some maximal ideal M containing P1, then rs ∈ I for
some s 6∈ M . So s ∈ (I : r) ⊆ M , a contradiction. Therefore the result is true.

Lemma 10. Let every non-maximal prime ideal of R be a multiplication ideal.
Suppose P is a non-maximal minimal prime and minimal over an ideal I of R.
Then the following statements hold:

(i) Any Bw-prime of I which contains P properly, is a rank one maximal ideal
and minimal over ((I + PPI) : PI).

(ii) If the maximal ideals of R are finitely generated, then the ideal ((I + PPI) :
PI ) has only finitely many minimal primes.

Proof. (i) Let P1 be any Bw-prime of I which contains P properly. If M is a
maximal ideal containing P1, then by Lemma 9(ii), RM is not a domain. Note
that by Lemma 6, R is an almost Q-ring. As R is an almost Q-ring, by [4,
Corollary 6], it follows that rank M = 1, so P1 is a rank one maximal ideal. If
((I + PPI ) : PI ) 6⊆ P1, then (PI )P1

⊆ IP1
+ (PPI )P1

. As P is a multiplication
ideal, it follows that PI is a multiplication ideal, so PI is locally principal, and
hence by Nakayama,s lemma, it follows that (PI )P1

= IP1
. But this contradicts

the statement of Lemma 9(ii). Therefore ((I + PPI) : PI) ⊆ P1 and hence by
Lemma 9(i), P1 is minimal over ((I + PPI) : PI).

(ii) Note that by hypothesis, R is an almost Q-ring and so dim R ≤ 2. By
Lemma 9(i), every prime minimal over ((I + PPI) : PI) is either a non-minimal
maximal ideal or a rank one non-maximal prime. As every non-maximal prime
is a multiplication ideal, by [2, Theorem 3], the rank one non-maximal primes
are quasi-principal. By hypothesis, the minimal primes over ((I + PPI) : PI) are
finitely generated and so by Lemma 5, the ideal ((I + PPI) : PI) has only finitely
many minimal primes.
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Lemma 11. Suppose every ideal (of R) generated by two elements has only finitely
many minimal primes and the non-maximal prime ideals are multiplication ideals.
Then the non-maximal prime ideals are quasi-principal.

Proof. Let P be a non-maximal prime ideal. As dimR ≤ 2, it follows that P is
either minimal or a rank one prime. If P is non-minimal, then P is quasi-principal
[2, Theorem 3]. Suppose P is minimal. By Lemma 8, P =

√
I for some finitely

generated ideal I of R. Note that every Bw-prime of I contains P , and by Lemma
8, the ideal ((I + PPI) : PI) has only finitely many minimal primes. Therefore
by Lemma 10(i), I has only finitely many Bw-primes. Again note that by Lemma
10(i), for every finitely generated ideal I0 with I ⊆ I0 ⊆ P , I0 has only finitely
many Bw-primes. As dimR ≤ 2, by [7, Theorem 1.3], P is finitely generated and
hence quasi-principal.

Lemma 12. Suppose every non-maximal prime ideal of R is a multiplication
ideal, the maximal ideals of R are finitely generated and every principal ideal has
only finitely many minimal primes. Then every principal ideal is a finite intersec-
tion of primary ideals.

Proof. Note that by hypothesis, R is an almost Q-ring, so by Lemma 4, dimR ≤ 2.
Let x ∈ R. Then by hypothesis, (x)∗ is a finite intersection of primary ideals.
Suppose (x) is not contained in any minimal prime. We show that (x) = (x)∗.
Let M be a maximal ideal. If x 6∈ M , then (x)M = (x)∗M . Suppose x ∈ M .
If M is minimal over (x), then (x)M = (x)∗M . Suppose M is not minimal over
(x). Then rank M = 2, so by [4, Corollary 6], RM is a π-domain. Therefore
(x)M = (x)∗M (see the proof of [10, Theorem 1.2] or [5, Theorem 3]). This shows
that (x)M = (x)∗M for all maximal ideals containing x and hence (x) = (x)∗.

Now assume that P1, P2, . . . , Pm be the primes minimal over (x). Let P1, P2,
. . . , Pt be the non-maximal minimal primes and let Pt+1, Pt+2, . . . , Pm be the
primes which are either maximal or rank one non-maximal primes. By Lemma
10(ii), the ideals ((x) + Pi(Pi)x : (Pi)x) for i = 1, 2, . . . , t have only finitely many
minimal primes, say M1, M2, . . . , Mn. Again by the proof of Lemma 10(ii), these
are either non-minimal maximal ideals or rank one non-maximal prime ideals.
Without loss of generality, assume that M1, M2, . . . , Mk are the rank one max-
imal prime ideals and Mk+1, Mk+2, . . . , Mn are either rank two maximal ideals
or rank one non-maximal prime ideals. Let M be any maximal ideal different
from M1, M2, . . . , Mk. We claim that (x)M = (x)∗M . Obviously, if x 6∈ M , then
(x)M = (x)∗M . Suppose x ∈ M . If either M is minimal over (x) or rank M = 2,
then (x)M = (x)∗M . Suppose M is not minimal over (x) and rank M = 1. Then M
is different from M1, M2, ..., Mn, so ((x) + Pi(Pi)x : (Pi)x) 6⊆ M for i = 1, 2, . . . , t
and hence ((Pi)x)

M
= (x)M for i = 1, 2, . . . , t. Consequently, (x)M = (x)∗M . If

(x)Mi
= (x)∗Mi

for i = 1, 2, . . . , k, then (x)M = (x)∗M for all maximal ideals,
so (x) = (x)∗. Suppose (x)Mi

6= (x)∗Mi
for i = 1, 2, . . . , l (1 ≤ l ≤ k). As RMi

is a Laskerian ring, it follows that there exist Mi-primary Qi such that (x)Mi
=

((x)∗)Mi
∩ (Qi)Mi

for i = 1, 2, . . . , l. Then (x)M = ((x)∗ ∩ Q1 ∩ Q2 ∩ · · · ∩ Ql)M

for all maximal ideals M of R. Therefore (x) = (x)∗ ∩ Q1 ∩ Q2 ∩ · · · ∩ Ql and
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hence (x) is a finite intersection of primary ideals. This completes the proof of the
lemma.

Lemma 13. Suppose R is a quasi-local ring in which the maximal ideal M is
finitely generated. If every ideal generated by two elements is a finite product of
primary ideals, then R is a Noetherian Q-ring.

Proof. If M is minimal, then we are through. Suppose M is non-minimal. By
Lemma 6, it is enough if we show that R satisfies the condition (∗). Let P be a
non-maximal prime ideal with P = PM . Let Ψ = {Pα | P ⊆ Pα, Pα is prime and
Pα = PαM}. Clearly Ψ 6= ∅ and by Zorn′s lemma, Ψ has a maximal element, say
P0. Note that P0 6= M . If P0 ⊂ P1 ⊂ M for some prime ideal P1, then P1 6= P1M ,
so by Lemma 3, P1 is principal and hence P is contained in a principal ideal. Now
assume that M covers P0. Choose any x ∈ M such that x 6∈ P0. Then P0 + (x)
is M -primary. As M is finitely generated, it follows that M k ⊆ P0 + (x) for some
positive integer k. Again since P0 = P0M , it follows that P0 ⊆ Mn for all positive
integers n. Therefore Mk ⊆ P0 + (x) ⊆ (x) + Mk+1 = (x) + MkM and hence by
Nakayama′s lemma P0 ⊂ Mk ⊆ (x). This shows that P is properly contained in
(x) and hence R satisfies the condition (∗).
Lemma 14. Suppose every finitely generated ideal of R is a finite product of pri-
mary ideals. Suppose I is an ideal of R such that I is locally finitely generated and
every prime minimal over I is a maximal ideal. Then I is finitely generated.

Proof. We claim that θ(I) = R. Suppose θ(I) 6= R. Then θ(I) ⊆ M for some
maximal ideal M of R. Since I is locally finitely generated, it follows that IM =
(I1)M for some finitely generated ideal I1 contained in I . By hypothesis, there
exist primary ideals Q1, Q2, . . . , Qn such that I1 = Q1Q2 . . . Qn. Without loss of
generality, assume that Qi ⊆ M for i = 1, 2, . . . , k and Qj 6⊆ M for j = k + 1,
k + 2, . . . , n. Then IM = (I1)M = (Q1)M (Q2)M . . . (Qk)M . Since IM ⊆ (Qi)M ,
it follows that I ⊆ Qi for i = 1, 2, . . . , k. Since M is minimal over I , it follows
that each Qi is M -primary and hence Q1Q2 . . . Qk is M -primary. Therefore I ⊆
Q1Q2 . . . Qk. Choose elements xj ∈ Qj such that xj /∈ M for j = k+1, k+2, . . . , n.
Let z = xk+1xk+2 . . . xn. Since I ⊆ Q1Q2 . . .Qk and z ∈ Qk+1Qk+2 . . . Qn, it
follows that Iz ⊆ Q1Q2 . . . Qn = I1, so z ∈ (I1 : I) ⊆ θ(I) ⊆ M , which is a

contradiction. Therefore θ(I) = R and hence R =
n
∑

i=1

(Ii : I), where Ii
,s are

finitely generated ideals contained in I . So I =
n
∑

i=1

Ii. This shows that I is a

finitely generated ideal.

Theorem 1. R is an almost Q-ring if and only if every non-maximal prime ideal
is locally principal.

Proof. The result follows from Lemma 6.

Corollary 1. Suppose every principal ideal is a finite product of primary ideals.
Then R is an almost Q-ring if and only if every non-maximal prime ideal is a
multiplication ideal.
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Proof. The proof of the corollary follows from Theorem 1 and Lemma 7.

Corollary 2. Suppose every principal ideal is a finite intersection of primary
ideals. Then R is an almost Q-ring if and only if every non-maximal prime ideal
is quasi-principal.

Proof. The proof of the corollary follows from Theorem 1 and [4, Theorem 12].

Theorem 2. The following statements on R are equivalent:

(i) R is a Q-ring.
(ii) R is an almost Q-ring in which every ideal generated by two elements is a

finite intersection of primary ideals.
(iii) R is an almost Q-ring in which every ideal generated by two elements is a

finite product of primary ideals.
(iv) Every ideal generated by two elements is a finite product of primary ideals

and for every maximal ideal M of R, RM satisfies the condition (∗).
(v) Every non-maximal prime ideal is a multiplication ideal and every ideal gen-

erated by two elements has only finitely many minimal primes.

Proof. (i)⇒(ii) and (i)⇒(iii) follow from [4, Lemma 4 and Theorem 10].
(ii)⇒(v) follows from Corollary 2.
(iii)⇒(iv) follows from Lemma 1.
(iv)⇒(v) follows from Lemma 6 and Corollary 1.
(v)⇒(i). Suppose (v) holds. By Lemma 4 and Lemma 6, dim R ≤ 2. By Lemma

8, R has Noetherian spectrum. Also by Lemma 11, every non-maximal prime ideal
is quasi-principal. Therefore by [4, Lemma 1], every primary ideal whose radical
is non-maximal is a power of its radical and hence quasi-principal. Consequently,
every primary ideal whose radical is non-maximal is finitely generated. Again by
[8, Corollary 2.3], R is Laskerian and hence by [4, Theorem 13], R is a Q-ring.

The following theorem gives some new equivalent conditions for Noetherian
Q-rings.

Theorem 3. The following statements on R are equivalent:

(i) R is a Noetherian Q-ring.
(ii) The maximal ideals are locally finitely generated and every ideal generated

by two elements is a finite product of primary ideals.
(iii) R is an almost Q-ring in which the maximal ideals are finitely generated and

every principal ideal is a finite product of primary ideals.

Proof. (i)⇒(ii) is obvious.
(ii)⇒(iii). Suppose (ii) holds. By Lemma 13, R is locally Noetherian and an

almost Q-ring. By Theorem 2, R is a Q-ring and so by Lemma 14, the maximal
ideals are finitely generated. Therefore (iii) holds.

(iii)⇒(i). Suppose (iii) holds. By Corollary 1, Corollary 2 and Lemma 12, R
is a Noetherian ring and hence by Theorem 2, R is a Noetherian Q-ring. This
completes the proof of the theorem.
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