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ALMOST Q-RINGS

C. JAYARAM

ABSTRACT. In this paper we establish some new characterizations for Q-rings
and Noetherian Q-rings.

1. INTRODUCTION

Throughout this paper R is assumed to be a commutative ring with identity.
L(R) denotes the lattice of all ideals of R. R is said to be a Q-ring [4], if every ideal
is a finite product of primary ideals. It is well known that if R is a @-ring, then
Ry is a Q-ring for every maximal ideal M of R [4, Lemma 4]. But in general the
converse need not be true. For example, if R is an almost Dedekind domain which
is not a Dedekind domain, then Rj; is a @-ring, for every maximal ideal M of R,
but R is not a @-ring. We call a ring R an almost Q-ring if Rys is a Q-ring, for
every maximal ideal M of R. The goal of this paper is to characterize those almost
@-rings which are also @-rings. We prove that R is an almost Q-ring if and only
if every non-maximal prime ideal is locally principal (see Theorem 1). Using this
result, we characterize Q-rings in terms of almost Q-rings (see Theorem 2). Finally,
we establish some equivalent conditions for Noetherian @Q-rings (see Theorem 3).

For any A, B € L(R), we denote A\ B={x € A|x ¢ B}. We use C for proper
set containment. For any x € R, the principal ideal generated by x is denoted by
(). For any ideal I € L(R), we denote (1) = Y {([1 : I) | L CTand [; is a
finitely generated ideal}. Recall that an ideal I of R is called a multiplication ideal
if for every ideal J C I, there exists an ideal K with J = K. If I is a multiplication
ideal, then I is locally principal [1, Theorem 1 and Page 761]. An ideal M of R
is called a quasi-principal ideal [9, Exercise 10, Page 147] (or a principal element
of L(R) [11]) if it satisfies the following identities (i) (AN (B: M))M = AM N B
and (ii) (A+ BM): M = (A: M)+ B, for all A, B € L(R). Obviously, every
quasi-principal ideal is a multiplication ideal. It should be mentioned that every
quasi-principal ideal is finitely generated and also a finite product of quasi-principal
ideals of R is again a quasi-principal ideal [9, Exercise 10, Page 147]. In fact, an
ideal I of R is quasi-principal if and only if it is finitely generated and locally
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principal (see [6, Theorem 4]) or [11, Theorem 2]). A B,-prime of I is a prime
ideal P such that P is minimal over (I : z) for some x € R. R is said to be a
Laskerian ring [8], if every ideal is a finite intersection of primary ideals. Tt is
well known that R is a Q-ring if and only if R is a Laskerian ring in which every
non-maximal prime ideal is quasi-principal [4, Theorem 13]. R is a 7-ring if every
principal ideal is a finite product of prime ideals. We say that R has Noetherian
spectrum, if R satisfies the ascending chain condition for radical ideals [12]. It is
well known that R has Noetherian spectrum if and only if every prime ideal is the
radical of a finitely generated ideal [12, Corollary 2.4]. Also it is well known that
if R has Noetherian spectrum, then every ideal has only finitely many minimal
primes.

For general background and terminology, the reader is referred to [9].

We shall begin with the following definition.

Definition 1. A quasi-local ring R with maximal ideal M is said to satisfy the
condition (x) if for each non-maximal prime ideal P with P = PM, there exists
t € M such that P + (¢) is finitely generated.

Note that valuation rings (i.e., any two ideals are comparable), quasi-local rings
in which the maximal ideals are principal and one dimensional quasi-local domains
are examples of quasi-local rings satisfying the condition ().

Lemma 1. Let R be a quasi-local Q-ring with maximal ideal M. Then R satisfies
the condition (x).

Proof. The proof of the lemma follows from [4, Lemma 5]. O

Lemma 2. Let R be a quasi-local ring with mazimal ideal M satisfying the con-
dition (x). Suppose every principal ideal is a finite product of primary ideals. If
P is a non-mazximal prime ideal with P = PM, then P = (0).

Proof. Suppose P is a non-maximal prime ideal with P = PM. By hypothesis,
there exists a € M such that P + (a) is finitely generated. If a € P, then P =
P + (a) is finitely generated, so by Nakayama’s lemma, P = 0. Suppose a ¢ P.
Since P+ (a) is finitely generated, it follows that P+(a) = P;+(a) for some finitely
generated ideal Py C P. Since P = PM, we have (P + (a))M = PM + (a)M =
PiM+(a)M, so P+ (a)M = PM + (a)M and hence P+ (a) = PyM + (a). Again
since P, C P+ (a) = (a) + PLM and P; is finitely generated, by Nakayama’s
lemma, it follows that P; C (a). Therefore P C (a). Let € P. By hypothesis
(x) = QA for some primary ideal @ C P and A € L(R). Since @ C (a), it follows
that @ = (a)@. Therefore () = QA = Q(a)A = (x)(a) and hence by Nakayama’s
lemma, (z) = (0). This shows that P = (0). O

Lemma 3. Let R be a quasi-local ring with mazximal ideal M. Suppose every
ideal generated by two elements is a finite product of primary ideals. If P is a
non-maximal prime ideal with P # PM, then P is principal.

Proof. Let P be a non-maximal prime ideal with P % PM. Choose any element
a € P such that a ¢ PM. Let t € M be any element such that ¢ ¢ P. Suppose
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2 € P. Then by hypothesis, (a) + (zt) is a finite product of primary ideals. Since
a ¢ PM, it follows that (a) 4 (xt) is primary. Again since (zt) C (a) 4 (zt) and
t ¢ +/(a)+ (zt) C P, it follows that € (a) + (2t), so by Nakayama’s lemma
(z) C (a). Therefore P = (a). O

Lemma 4. Let R be a quasi-local ring with mazimal ideal M satisfying the condi-
tion (x). Suppose every ideal generated by two elements is a finite product of pri-
mary ideals. Then the non-mazximal prime ideals are principal. Hence dim R < 2.

Proof. By Lemma 2 and Lemma 3, every non-maximal prime ideal is principal.
Again as shown in the last paragraph of the proof of Lemma 5 of [4], dim R < 2.
This completes the proof of the lemma. (|

Lemma 5. Suppose I is an ideal of R such that every prime minimal over I is
finitely generated. Then I contains a finite product of prime ideals minimal over
1. Further I has only finitely many minimal primes.

Proof. Suppose I does not contain a finite product of prime ideals minimal over I.
Let = {J € L(R) | I C J and J does not contain a finite product of prime ideals
minimal over I}. By Zorn’s lemma, S has a maximal element, say P. It can be
easily shown that P is a prime ideal. Again note that P contains a prime ideal
Py which is minimal over I, a contradiction. Therefore I contains a finite product
of prime ideals minimal over I. Consequently, I has only finitely many minimal
primes. (|

Lemma 6. Suppose R is a quasi-local ring. Then the following statements are
equivalent:
(i) R is a Q-ring.
(ii) R satisfies the condition (%) and every ideal generated by two elements is a
finite product of primary ideals.
(iii) Every non-mazimal prime ideal is principal.

Proof. (i)=-(ii) follows from Lemma 1.

(ii)=-(iii) follows from Lemma 4.

(iii)=-(i). Suppose (iii) holds. Then every ideal I is either M-primary (M is
a maximal ideal of R) or by Lemma 5, I has only finitely many minimal primes.
Again by the last paragraph of the proof of [4, Lemma 5], R is Laskerian. Now
the result follows from [4, Theorem 10]. O

Lemma 7. Let R be an almost Q-ring. Suppose every principal ideal is a finite
product of primary ideals. Then every non-mazximal prime ideal of R is a multi-
plication ideal.

Proof. Using Lemma 6 and by imitating the proof of [4, Lemma 7], we can get
the result. O

Lemma 8. Let dim R < 2 and let every ideal generated by two elements has only
finitely many minimal primes. Then R has Noetherian spectrum.
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Proof. First we show that every minimal prime ideal is the radical of a finitely
generated ideal. By hypothesis, R has only finitely many minimal primes. Let
P, P, ..., P, be the distinct minimal prime ideals. If n = 1, then P; is the

radical of the zero ideal. Suppose n > 1. Then P; € _@QPZ-. Choose any x € P;

such that x & ,QQPi. Let Q1,Q2,...,Qm be the distinct primes minimal over ().
Then P, = @, for some j, say Pi = Q1. If m =1, then P, is the radical of (x).
Suppose m > 1. Then P, € _@;Qi. Choose any y € P; such that y ¢ _iULQQZ-. By

hypothesis, (z) 4+ (y) has only finitely many minimal primes. Let Q’,Q5, ..., Q}
be the distinct primes minimal over (r) + (y). Note that Py = @’ for some j, say
P, = Q). If k=1, then P; is the radical of (z) + (y). Suppose k& > 1. Observe
that any Q;- different from P; contains @); properly, for some i # 1, and each Q;
different from P, is non-minimal. So each Q} is maximal, for 7 = 2,3,... k.

k
Choose any element z € P; such that z ¢ .UQQ;'- Now it can be easily shown that
=

P is the radical of (z)+ (y) + (z). Thus we have shown that every minimal prime
ideal is the radical of a finitely generated ideal.
Next we show that every non-minimal prime ideal is the radical of a finitely

generated ideal. Let P be a non-minimal prime ideal. Then P ¢ _@1Pi. Choose

any x € P such that z ¢ '61Pi' Let Q1,Q2,. .., Qm be the distinct primes minimal
i=

over (x). Then P D Q; for some j, say P D @Q;. If m =1 and P = ()1, then P
is the radical of (z) and so we are through. Suppose m > 1 and @1 C P. Then

P g -QQZ" Choose any y € P such that y & ,iUIlQZ-. Then (z) + (y) has only

finitely many minimal primes and every prime minimal over (z)+ (y) is a maximal
ideal. Therefore there exists a finitely generated ideal I such that P is the radical

of I. Finally assume that m > 1 and P = ;. Then P ¢ _iULQQZ-. Choose any

y € P such that y ¢ ingi' Let Q,Q5,. .., Q) be the distinct primes minimal
over (z) + (y). Note that Py 2 Q} for some j, say Py 2 Q7. Since z € Q) and
Q1 = P D @}, it follows that P = Q; = Q). If k = 1, then P, is the radical

k
of (z) + (y). Suppose k > 1. Then P ¢ _EJQQ; and each Q) different from P, is

2
maximal. Choose any element z € P such that z ¢ _UQQQ. Then P is the radical
1=

of () + (y)+ (z). Thus every prime ideal is the radical of a finitely generated ideal
and hence R has Noetherian spectrum. O

For any I € L(R) and for any prime ideal P minimal over I, we denote Py =
N{Q € L(R) | Q is a P-primary ideal containing I'}. It can be easily seen that Py
is the smallest P-primary ideal containing I. For any x € R, and for any prime
ideal P minimal over (x), we denote P, = N{Q € L(R) | Q is a P-primary ideal
containing (z)}.

For any x € R, we denote (z)* = N{P, | P is a prime ideal minimal over (x)}.
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Lemma 9. Let P be a prime minimal over an ideal I of R and let Py be a prime
properly containing P. Then the following statements hold:

(i) If P is a multiplication ideal, then P C ((I + PPy) : Pr).
(ii) If Py is a By-prime of I, then (Pr),, # In (in Rar) for all mazimal ideals
M containing P;.

Proof. (i) Consider the ideal ((I + PPr) : Pr). Note that P C ((I + PPr) : Pr).
Suppose P = ((I + PPr) : Pr). We claim that I + PPy is P-primary. Let
yz € I+ PPy and z ¢ P. Then yz € Py, so y € P;. Since P is a multiplication
ideal, by [3, Lemma 1] and [2, Corollary], P; is a multiplication ideal. As Py is a
multiplication ideal, it follows that (y) = P;C for some ideal C of R. If C C P,
then we are through. Suppose C ¢ P. Then (yz) = (2)P;C C I + PPy, so
zC C (({ + PPy): Pr) = P, a contradiction. Therefore I + PPr is P-primary and
hence Py = I + PP;. Consequently, 1 € (I + PPy) : P;) = P, a contradiction.
Therefore P C (I + PPr) : Pr).

(ii) Suppose P; is a By,-prime of I. Then P; is minimal over (I : r) for some
r € R. Since(I : r)r CI C Py, (I :7) < P and Py is P-primary, it follows that
re P If (PI)M = I for some maximal ideal M containing Py, then rs € I for
some s ¢ M. Sos € (I :r) C M, acontradiction. Therefore the result is true. O

Lemma 10. Let every non-mazximal prime ideal of R be a multiplication ideal.
Suppose P is a non-mazximal minimal prime and minimal over an ideal I of R.
Then the following statements hold:

(i) Any By,-prime of I which contains P properly, is a rank one mazimal ideal
and minimal over ((I + PPr): Pr).

(i) If the mazximal ideals of R are finitely generated, then the ideal ((I + PPr) :
Pr) has only finitely many minimal primes.

Proof. (i) Let P; be any B,-prime of I which contains P properly. If M is a
maximal ideal containing Py, then by Lemma 9(ii), Rps is not a domain. Note
that by Lemma 6, R is an almost Q-ring. As R is an almost Q-ring, by [4,
Corollary 6], it follows that rank M = 1, so P; is a rank one maximal ideal. If
((I + PP[) : P[) Z Py, then (P])pl C Ip, + (PP])pl. As P is a multiplication
ideal, it follows that P is a multiplication ideal, so Pr is locally principal, and
hence by Nakayama's lemma, it follows that (Pr)p, = Ip,. But this contradicts
the statement of Lemma 9(ii). Therefore ((I + PPy) : Pr) C P, and hence by
Lemma 9(i), P; is minimal over ((I + PPy) : Py).

(ii) Note that by hypothesis, R is an almost Q-ring and so dim R < 2. By
Lemma 9(i), every prime minimal over ((I + PPy) : Pr) is either a non-minimal
maximal ideal or a rank one non-maximal prime. As every non-maximal prime
is a multiplication ideal, by [2, Theorem 3], the rank one non-maximal primes
are quasi-principal. By hypothesis, the minimal primes over ((I + PPr) : Py) are
finitely generated and so by Lemma 5, the ideal ((I + PPr) : Pr) has only finitely
many minimal primes. [l
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Lemma 11. Suppose every ideal (of R) generated by two elements has only finitely
many minimal primes and the non-mazimal prime ideals are multiplication ideals.
Then the non-maximal prime ideals are quasi-principal.

Proof. Let P be a non-maximal prime ideal. As dimR < 2, it follows that P is
either minimal or a rank one prime. If P is non-minimal, then P is quasi-principal
[2, Theorem 3]. Suppose P is minimal. By Lemma 8, P = /T for some finitely
generated ideal I of R. Note that every B,,-prime of I contains P, and by Lemma
8, the ideal ((I + PPr) : Pr) has only finitely many minimal primes. Therefore
by Lemma 10(i), I has only finitely many B,,-primes. Again note that by Lemma
10(i), for every finitely generated ideal Iy with I C Iy C P, I has only finitely
many B,,-primes. As dimR < 2, by [7, Theorem 1.3|, P is finitely generated and
hence quasi-principal. [l

Lemma 12. Suppose every non-mazimal prime ideal of R is a multiplication
ideal, the mazimal ideals of R are finitely generated and every principal ideal has
only finitely many minimal primes. Then every principal ideal is a finite intersec-
tion of primary ideals.

Proof. Note that by hypothesis, R is an almost Q-ring, so by Lemma 4, dimR < 2.
Let x € R. Then by hypothesis, (z)* is a finite intersection of primary ideals.
Suppose (z) is not contained in any minimal prime. We show that (z) = (x)*.
Let M be a maximal ideal. If x ¢ M, then (z)p = (2)*,,. Suppose z € M.
If M is minimal over (z), then (z)y = (x)*,,. Suppose M is not minimal over
(x). Then rank M = 2, so by [4, Corollary 6], Ry is a m-domain. Therefore
(x)m = (x)*,, (see the proof of [10, Theorem 1.2] or [5, Theorem 3]). This shows
that (z)a = (z)*,, for all maximal ideals containing = and hence (z) = (z)*.
Now assume that Py, P, ..., P, be the primes minimal over (x). Let Py, P,
..., P, be the non-maximal minimal primes and let P41, Piyo,..., P, be the
primes which are either maximal or rank one non-maximal primes. By Lemma
10(ii), the ideals ((z) + P;(F;), : (P;),) for i = 1,2,...,t have only finitely many
minimal primes, say My, Ma, ..., M,. Again by the proof of Lemma 10(ii), these
are either non-minimal maximal ideals or rank one non-maximal prime ideals.
Without loss of generality, assume that My, Ms, ..., My are the rank one max-
imal prime ideals and Mpy41, Myio,..., M, are either rank two maximal ideals
or rank one non-maximal prime ideals. Let M be any maximal ideal different
from My, Ma,..., M. We claim that (z)a = (z)*,,. Obviously, if « ¢ M, then
(x)m = (x)*,;. Suppose & € M. If either M is minimal over (z) or rank M = 2,
then (x)a = (x)*,,. Suppose M is not minimal over (z) and rank M = 1. Then M
is different from M, My, ..., M, so ((x) + Pi(P;), : (Pi),) € M fori=1,2,...,t
and hence ((P;),),, = (z)n for i = 1,2,...,t. Consequently, (z)r = (2)*,,. If
(x)m;, = (x)*yy, for i = 1,2,...,k, then (v)y = (2)*), for all maximal ideals,
so (z) = (x)*. Suppose (z)n, # (x)*y,, fori=1,2,...,0 (1 <1< k). As Ry,
is a Laskerian ring, it follows that there exist M;-primary @; such that (z), =
((I)*)Ml N (Qi)IVIi fori=1,2,...,1. Then (l‘)]\/[ = ((:L‘)* N1 NQ2N---N Ql)M
for all maximal ideals M of R. Therefore (z) = ()* N Q1 NQ2N---NQ; and
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hence () is a finite intersection of primary ideals. This completes the proof of the
lemma. |

Lemma 13. Suppose R is a quasi-local ring in which the maximal ideal M 1is
finitely generated. If every ideal generated by two elements is a finite product of
primary ideals, then R is a Noetherian Q-ring.

Proof. If M is minimal, then we are through. Suppose M is non-minimal. By
Lemma 6, it is enough if we show that R satisfies the condition (*). Let P be a
non-maximal prime ideal with P = PM. Let ¥ ={P, | P C P,, P, is prime and
P, = P,M}. Clearly ¥ # () and by Zorn’s lemma, ¥ has a maximal element, say
Py. Note that Py # M. If Py C P, C M for some prime ideal P;, then P, # P, M,
so by Lemma 3, P; is principal and hence P is contained in a principal ideal. Now
assume that M covers Py. Choose any « € M such that © ¢ Py. Then Py + (z)
is M-primary. As M is finitely generated, it follows that M* C Py + (x) for some
positive integer k. Again since Py = PyM, it follows that Py C M™ for all positive
integers n. Therefore M* C Py + (z) C (x) + M**! = (z) + M*M and hence by
Nakayama’s lemma Py C M* C (z). This shows that P is properly contained in
() and hence R satisfies the condition (). O

Lemma 14. Suppose every finitely generated ideal of R is a finite product of pri-
mary ideals. Suppose I is an ideal of R such that I is locally finitely generated and
every prime minimal over I is a mazimal ideal. Then I is finitely generated.

Proof. We claim that 6(I) = R. Suppose 6(I) # R. Then 6(I) C M for some
maximal ideal M of R. Since [ is locally finitely generated, it follows that I, =
(I1)m for some finitely generated ideal I; contained in I. By hypothesis, there
exist primary ideals Q1, Qo,...,Q, such that I = Q1Q> ... Q,. Without loss of
generality, assume that @; € M for i = 1,2,...,kand Q; € M for j = k +1,
k+2,...,n. Then I = (Il)M = (Ql)M(Q2)M ce (Qk)M Since Iy C (Qz)M7
it follows that I C @Q; for ¢« = 1,2,...,k. Since M is minimal over I, it follows
that each ); is M-primary and hence Q1Q)s ... Q% is M-primary. Therefore I C
@Q1Q3 . .. Q. Choose elements z; € Q; such that z; ¢ M for j = k+1,k+2,...,n.
Let z = xpp12p42... @y, Since I C Q1Q2...Qxk and z € Qpi1Qk+2-..Qn, it
follows that Iz C Q1Q2...Qn = I1,s0 z € (I; : I) C (1) C M, which is a
contradiction. Therefore §(I) = R and hence R = > (I; : I), where I;’s are
i=1

n
finitely generated ideals contained in I. So I = Y I;. This shows that [ is a
i=1
finitely generated ideal. O
Theorem 1. R is an almost Q-ring if and only if every non-mazximal prime ideal
1s locally principal.

Proof. The result follows from Lemma 6. O

Corollary 1. Suppose every principal ideal is a finite product of primary ideals.
Then R is an almost Q-ring if and only if every non-mazximal prime ideal is a
multiplication ideal.
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Proof. The proof of the corollary follows from Theorem 1 and Lemma 7. |

Corollary 2. Suppose every principal ideal is a finite intersection of primary
ideals. Then R is an almost Q-ring if and only if every non-mazimal prime ideal
1S quasi-principal.

Proof. The proof of the corollary follows from Theorem 1 and [4, Theorem 12]. O

Theorem 2. The following statements on R are equivalent:
(i) R is a Q-ring.
(ii) R 4s an almost Q-ring in which every ideal generated by two elements is a
finite intersection of primary ideals.
(iii) R is an almost Q-ring in which every ideal generated by two elements is a
finite product of primary ideals.
(iv) Ewvery ideal generated by two elements is a finite product of primary ideals
and for every maximal ideal M of R, Ry satisfies the condition (x).
(v) Ewvery non-mazimal prime ideal is a multiplication ideal and every ideal gen-
erated by two elements has only finitely many minimal primes.

Proof. (i)=(ii) and (i)=-(iii) follow from [4, Lemma 4 and Theorem 10].

(ii)=-(v) follows from Corollary 2.

(iii)=(iv) follows from Lemma 1.
(iv)=(v) follows from Lemma 6 and Corollary 1.

(v)=-(i). Suppose (v) holds. By Lemma 4 and Lemma 6, dim R < 2. By Lemma
8, R has Noetherian spectrum. Also by Lemma 11, every non-maximal prime ideal
is quasi-principal. Therefore by [4, Lemma 1], every primary ideal whose radical
is non-maximal is a power of its radical and hence quasi-principal. Consequently,
every primary ideal whose radical is non-maximal is finitely generated. Again by
[8, Corollary 2.3], R is Laskerian and hence by [4, Theorem 13|, R is a Q-ring. O

The following theorem gives some new equivalent conditions for Noetherian
Q-rings.

Theorem 3. The following statements on R are equivalent:

(i) R is a Noetherian Q-ring.
(ii) The mazimal ideals are locally finitely generated and every ideal generated
by two elements is a finite product of primary ideals.
(iil) R 4s an almost Q-ring in which the mazimal ideals are finitely generated and
every principal ideal is a finite product of primary ideals.

Proof. (i)=-(ii) is obvious.

(if)=-(iii). Suppose (ii) holds. By Lemma 13, R is locally Noetherian and an
almost @-ring. By Theorem 2, R is a @-ring and so by Lemma 14, the maximal
ideals are finitely generated. Therefore (iii) holds.

(iii)=-(i). Suppose (iii) holds. By Corollary 1, Corollary 2 and Lemma 12, R
is a Noetherian ring and hence by Theorem 2, R is a Noetherian @-ring. This
completes the proof of the theorem. O
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