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A family of flat Minkowski planes admitting 3-dimensional
simple groups of automorphisms
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Abstract. In this paper we construct a new family of flat Minkowski planes of group dimen-
sion 3. These planes share the positive half with the classical real Minkowski plane and admit
simple groups of automorphisms isomorphic to PSL,(IR) acting diagonally on the torus. We
further determine the full automorphism groups and the Klein—Kroll types of these flat Min-
kowski planes.
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1 Introduction and result

A flat Minkowski plane . is an incidence structure of points, circles and two kinds
of parallel classes whose point set is the torus S! x S! (where the 1-sphere S! usually
is represented as R U {oo}), whose circles are graphs of homeomorphisms of S! and
whose parallel classes of points are the horizontals and verticals on the torus. We fur-
thermore require that for every point p of .# the associated incidence structure .7,
whose point set 4, consists of all points of .# that are not parallel to p and whose set
of lines .%, consists of all restrictions to 4, of circles of .# passing through p and of
all parallel classes not passing through p is an affine plane. We call .o/, the derived
affine plane at p; compare [5] or [4], Chapter 4. This implies that three mutually non-
parallel points can be joined by a unique circle and that for two non-parallel points
p and ¢ and a circle K > p there is a unique circle which touches K at p and passes
through ¢. The classical flat Minkowski plane is obtained in this way as the geometry
of all graphs of fractional linear maps on S'. Each derived affine plane of the classi-
cal flat Minkowski plane is Desarguesian.

When the circle sets are topologized by the Hausdorff metric with respect to a
metric that induces the topology of the torus, then the planes are fopological in the
sense that the operations of joining three mutually non-parallel points by a circle,
intersecting of two circles, and touching are continuous with respect to the induced
topologies on their respective domains of definition. For more information on topo-
logical Minkowski planes we refer to [5] and [4], Chapter 4. The flat Minkowski
planes are precisely the 2-dimensional topological Minkowski planes.
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The circle space € of a flat Minkowski plane has two connected components; one,
%™, consists of all circles in % that are graphs of orientation-preserving homeomor-
phisms S! — S! and the other, ¥, consists of all circles in % that are graphs of
orientation-reversing homeomorphisms. We call ¥ and %~ the positive and negative
half of ., respectively. It turns out that these two halves are completely independent
of each other, that is, we can interchange components from different flat Minkowski
planes and obtain another flat Minkowski plane; see [4], 4.3.1.

An automorphism of a flat Minkowski plane is a homeomorphism of the torus such
that parallel classes are mapped to parallel classes and circles are mapped to circles.
The collection of all automorphisms of a flat Minkowski plane .# forms a group with
respect to composition, the automorphism group I' of .#. This group is a Lie group
of dimension at most 6 with respect to the compact-open topology; see [4], 4.4. We
say that a flat Minkowski plane has group dimension n if its automorphism group is
n-dimensional. All flat Minkowski planes of group dimension at least 4 have been
classified by Schenkel [5], see also [4], 4.4.5. In particular, the classical flat Minkowski
plane is the only flat Minkowski plane of group dimension at least 5 and every flat
Minkowski plane of group dimension 4 fixes two parallel classes. Many flat Min-
kowski planes of group dimension 3 have also been constructed, see [4], 4.3 for a
summary, but no complete classification flat Minkowski planes of group dimension 3
has yet been achieved.

In this paper we contribute to the eventual classification by constructing a new
family of flat Minkowski planes of group dimension 3. These planes admit simple
groups of automorphisms isomorphic to PSL,(IR). They are obtained from the clas-
sical flat Minkowski plane by replacing the circles in the negative half in such a way
that PSL,(IR) acts diagonally. Thus these planes are not isomorphic to the well-
known flat Minkowski planes that admit PSL,(R) as a group of automorphisms in
one of the kernels.

Main Theorem. Each incidence structure 4 (k) for k > 1, see the beginning of Section
2, is a flat Minkowski plane. Furthermore, these planes are mutually non-isomorphic
and the full automorphism group of each such plane is isomorphic to PGL,(R) and acts
diagonally on the torus. Each 4 (k) is of Klein—Kroll type IV.A.1.

The author wishes to thank the referee for his suggestions and comments in the
preparation of the final version of this paper.

2 The incidence structures .# (k)

We construct a flat Minkowski plane .# (k) by replacing the negative half of the
classical flat Minkowski plane by the images of the generating circle

Cr = {(x, =x|x|“) [ x e R}U{ (o0, 20)}
under the group

2= {(x,) = (0(x),0(y)) [ € PSLo(R) }.
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More precisely, let k& > 1. Then the incidence structure .#(k) on the torus S' x S!
has circles of the following form.

* The graphs of elements in PSL,(RR), that is,

ax+b 1
{(x’bx+d> IXES }
where a,b,¢,d € R, ad — bc > 0, with the obvious definitions for x = oo and when

the denominator becomes 0. These circles are the same as the circles in the positive
half of the classical flat Minkowski plane.

- The graphs of df;.0 ! ford e PSL,(RR) where

k=1 .
—x|x|*7, if xe R,
fk<x>={ S
o0, if x = o0.

We shall show in the following that .# (k) is indeed a flat Minkowski plane. Note
that the restriction g; of —f; on IR, that is, the function given by

gi(x) = x|x|*!

for x € IR is a multiplicative strictly increasing homeomorphism of R. Moreover, gy is
continuously differentiable and its derivative is given by g, (x) = k|x|*~' > 0. Hence
kgi(x) = xg;(x) for all x € R.

The multiplicativity of g, implies that f; commutes with the transformation
o € PSL,(R) given by

og(x)=—1/x.

Hence 0 and Jo define the same circle. In fact, this is the only instance that this
happens, that is, if 9f30 ' = yfiy~! for y,0 € PSL,(IR), then y =6 or y = do. More
generally, we show the following.

Proposition 2.1. Let o € PSLy(R). Then the homeomorphism o~ ;- afy of S! fixes at
least three points of S' if and only if o. = id or o« = & as above.

Proof. For « € PSLy(R) let F, = S' be the set of all fixed points of «~' f; 'af, and

let G = PSL;(R) be the collection of all € PSL,(IR) such that F, contains at least

three points. By definition, o € G if and only if the cardinality of C; Na~'(C}) is at

least 3. From o(Cy) = C; we infer ¢ € G. Applying « and o to the intersection, we see

that the set {o, o, 0o, o0 = (g0t~ ) oao} is contained in G if one of its elements is.
Given a € PSL,(IR) one finds

o ‘ oo ‘ oo ‘ goo
ax+b ‘ bx—a —cx—d ‘ —dx+c
X ex+d x d—c | X ax+b X
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From the above table we see that if o : x — “"”’ 7 belongs to G we may assume that
either all coefficients a, b, ¢, d € R are nonzero or that c=0.

We first assume that ¢ = () Then o can be written in the form o : x — r(x + )
where r,s € R, r > 0. Since o~ ! € G too, we may further assume that s > 0. More-
over, o~ - I Lofy fixes oo € S! and has at least two fixed pomts X1 < xp in R. For these
fixed points x; one then finds afi (x) = fro(x), that s, [r|* 'gx(x; + 5) = ge(x;) — s for
i = 1,2. Eliminating r from these two equations, we obtain /i(s) = 0 where

h(s) = gi(s + x2)(s — gr(x1)) — gr(s + x1) (s — gr(x2))
= s(gk(s +x2) — g (s + x1)) + g (x2(s 4+ x1)) — gr(x1 (5 + x2)).

Since x; < x» and s> 0, the first term s(gi(s+ x2) — gx(s + x1)) is nonnegative.
The second term gi(xa(s+ x1)) — gr(x1(s+ x2)) is 0 if and only if xy(s+ x1) =
x1(s+ x), that is, if and only if s=0. Since gr(x2(s+ x1)) — gr(x1(s + x2)) =
i (8) (gr (X2 +52) — gie (31 +2)) > 0 for large s> 0, it follows by continuity
that gi (x2(s + x1)) — gr(x1(s + x2)) > 0 for all s > 0. Hence A(s) = gr(x2(s + x1)) —
gk (x1(s + x2)) > 0 for s > 0. This shows that we must have s = 0. But then r = 1.
Therefore o« = id in this case.

We now show that the second case where a, b, c,d # 0 is not possible. We write o
in the form a(x) = r3 where r, 5,1 € R, r(t — s) > 0. By passing over to o~ !, aa, . .
if necessary, we may further assume that 0 < s < ¢ or s < 0 < ¢. This then 1mplles
that r > 0. Note that in this case neither co nor o~'(o0) can be fixed by o~! f; af;.
Then fro(x) = afi(x) is equivalent to /4, 5 ;,(x) = 0 where x € IR and

st (%) = 1] gic (x4 ) (9a (%) = 1) + guloc + 1) (9w (x) = 5)

We show that £, ;, has at most two real zeros. By looking at where the factors
gie(x +5), gr(x) — 1, gr(x + 1), g (x) — s occurring in A, ; ,(x) are positive or negative
we find that A, ,(x) > 0 for x > max{—s,g; ' (¢),g;'(s)} or x < min{—s, —7,¢;'(s)}
(note that ¢ > 0).

Using kgi(x) = xg;.(x) one finds for the derivative of /, ; , that

xh) o () = Ky o (x) = (1) ge(x +5) + gp (x + ) (xgie(x) + s1). (+)

The first factor |r|*"'g/(x +s) + g, (x+1) on the right-hand side is always posi-
tive. We now assume that 0 < s < £. Then the second factor xgi(x)+ st in (x) is
also positive. This implies that 4]  ,(xo) > 0 for every positive zero xo of 4, ;, and
h; . (x0) < 0 for every negative zero xo of 4, ,,. Hence there can be at most one
positive and at most one negative zero of A, s ,. Since

By s (0) = —t]r|* " gi(s) — sgi(e) = —se(|rs|* " + 1) <0,

we see that &, , , has precisely two zeros in case 0 < s < 1.
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We finally assume that s < 0 < 7. In this case one further finds that /4, , (x) > 0 for
max{—7,¢g;'(s)} <x < min{—s,g;'(¢)}; see also Table 1 below.

X ‘ hy. s 1(x) xgi(x) + st

—t e+ Vet =) > 0 (s + gi(1))

g () | (=9 ge()g (s + 1) > 0| s(t+g¢' (5)

g (0 (1= ault )gk<|z|‘/" "D >0 | s+ gc' ()

—s —s(Is)""" + Dgr(t—5) >0 s(t+ gr(s))
Table 1.

Thus every zero of &, s ; must be in the open intervals

I = (min{~t,g; ()}, max{~1,g;'(9)}) and
I = (min{—s, g (1)}, max{—s,g; ' (1)}):

Note that for g;!(s) = —t we have I_ = & and A, (x) >0 for all x <0. Like-
wise, g; () = —s implies I, = & and &, ,(x) > 0 for all x > 0. We will see below
that 4, , can have at most two zeros in /;. Therefore in each of the above two
cases where one of the intervals is empty we obtain the desired result. In order to
avoid unnecessary special cases in the following, we now assume that g; ! (s) # —¢
and g; !(7) # —s, that is, that both intervals I, are nonempty.

The map x — xgi(x) + st has precisely two zeros xo = |t ) and —x,. Since
s+ gi(2) and ¢+ g;'(s) have the same sign, we see from Table 1 that xgy(x) + s
takes on opposite signs at the boundary points of 7. We similarly obtain that
xgx(x) + st takes on opposite signs at the boundary points of 7,. This shows that
xo€l, and —xp e [_.

If x # X is a zero of /i, 5 ;, then we obtain from Equation (x) that & ( ,(x) > 0 for
X > Xxq or —x0<x<0andhr“( x) <0 for 0 < x < xp or x < —Xxo. As before this
implies that /4, has at most one zero in each of the intervals (mln{—t g7 ()}, —x0),
(—x0, max{—1,g; '(s)}), (min{—s, g (1)}, x0) and (xo, max{—s,g;'(¢)}). Thus
has at most two zeros in I, unless perhaps A, 5 ,(—xo) = 0 or &, 5 (x¢) = 0. Suppose
that 4, 5 ;(x0) = 0. Then A/ ,(x9) = 0 too by (x) and differentiating (%) at xo we ob-

1/(k+1)

tain !
xohy! (x0) = (1] g (0 +5) + i (x0 + 1) (9e(x0) + x0g; (x0))
= (Il gi(x0 + 5) + gic(x0 + 1)) (k + 1))ga (x0).
Hence h;’ N ,(x0) > 0 and it then follows that x, is the only zero of 4, ; in I;.. The case

hy s, (— xo) = 0 is dealt with similarly and results in only one zero of 4, ,, in I_. So in
any case /, ; , has at most two zeros in /.

We still have to exclude the case that hy s, has more than two zeros in I, U/_.
Let
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r _( gi(x0 + 1) (g <o>—s>)‘/<’“”
T\ koo +9)(ge(v0) = 1)
gi(~
K-

. ( Ik X0+t)(gk(( XO)—S)>1/(k1>

—Xo) — 1)
that is, ry. are such that 4,  ,(xo) = A, 5 (—x¢) = 0. Then

B k-1
rfl — rf’l :; > 0.

Hence ry >r_>0. Since gi(xo+s)(gx(x0) —¢) <0 on I;, we obtain that
hes(x0) <0, =0, >0 for r>ry, r=ry, r<ry, respectively. Similarly,
gi(—x0 + $)(gx(—x0) — t) > 0 on I_ implies that A, ; ,(—x¢) < 0, =0, > 0 forr < r_,
r=r_, r>r_, respectively.

If h, 5, has two zeros in I, then /4, 5 (x9) < 0 and thus r > r, from above. But
then r > r_ and A, 5 ;(—x¢) > 0. From what we have seen before, this then implies
that %, ; , has no zeros in /_. The case that 4, ; , has two zeros in /_ is dealt with simi-
larly. This concludes the proof that £, , , has at most two real zeros and the statement
of the proposition is established. O

Xo + 8)(gk

xo— ¢t xe ¢

Xo+ S

X0 — S

Corollary 2.2. Two different circles of 4 (k) intersect in at most two points. Hence two
points in a derived geometry at a point of M (k) are on at most one line.

Proof. The circles of .#(k) are the graphs of  and df;6~" for all 8,0 € PSLy(IR).
Since the first kind of homeomorphism is orientation-preserving and the latter kind
is orientation-reversing, we obtain that any two such associated circles intersect in at
most two points. The same is true for any two circles of the first kind because we are
essentially in the classical flat Minkowski plane.

If the circles associated with yf;y~! and 5fk ! for 7,6 € PSL,(IR) have three dis-
tinct points in common, then (6~ ')~ fk (0~'9) fx fixes three points so that 5!y = 1d
or 5~y = ¢ by Proposition 2.1 and the circles are the same. This shows that if 7/~
and 5_}’;(5*1 describe different circles in .#(k), that is, y # J,d0, then these circles can
have at most two points in common. O

From the definition of circles it is obvious that circles are described by homeo-
morphisms of S'. Hence, in order to verify that ./ (k) is a flat Minkowski plane, we
only have to make sure that each derived incidence geometry is an affine plane.
Since the group X is a group of automorphisms of the classical flat Minkowski
plane, and, by construction, also acts on the negative half of .#(k), we see that X is
a group of automorphisms of .# (k). Furthermore, ¥ has two orbits on the torus, the
circle

D={(x,x)|xeS"}
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in the positive half and its complement (S' x S')\D. It therefore suffices to show that
the derived incidence geometries at the points (oo, o0) and (oo, 0) are affine planes.

Note moreover that X is even doubly transitive on the points of D and that D is the
only circle fixed by X.

3 The derived geometry .o/ at (o0, 0)

The lines of the derived geometry .o of .# (k) at (oo, c0) are the horizontal and ver-
tical Euclidean lines (coming from parallel classes of .#(k)), all Euclidean lines of
positive slope (coming from circles in the positive half that pass through (oo, 00)),

and the lines
X —t
{(x,i’fk(—r )-l—t) ‘erR}

for r,te R, r> 0 (coming from circles in the negative half that pass through
(00, 00)). The latter circles are the images of the generating circle C; under the sta-
bilizer A = X, ) of (00, ), that is, the group

A={(x,y)— (rx+t,ry+1)|r,teR,r>0} = L,.

Note that the transformation 6 : (x, y) — (—1/x,—1/y) in X leaves C; invariant.
Therefore the coset Ag gives rise to the same set of circles.

Using the restriction g; of —f; on R, the lines of the latter kind in .7 can then be
rewritten as

y=sgr(x—1)+1t

for s,te R, s <0 (s = —r'=%). Hence we obtain the following description of the the
lines in 7.

The geometry .oZ. The lines of .« are the verticals {¢} x R for ¢ € R and

le:

)

{(x,sx+ 1)} |x e R}, for s,te R, s >0,
{(x,s9x(x—1t)+8)} | xe R}, fors,teR,s<0.

Proposition 3.1. The derived geometry <of of 4 (k) at (00, 00) is an affine plane.

Proof. We first show that two distinct points of R? can be joined by a unique line
in .«/. Let (x;, y;), i = 1,2, be two such points. If (y2 — y;)(x2 — x1) = 0, there is a
unique Euclidean line of nonnegative slope or a vertical line through these points.
Moreover, no line L, , for s < 0 can pass through (x;, y1) and (x2, y2). It (y2 — »1) -
(x2 —x1) <0, no such Euclidean line with s > 0 can exist and we have to find a
unique line L, , where s < 0 through both points. Without loss of generality we may
assume that x; < x,. From the system of equations
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y1—t=Ssgi(x1 —t)
y2 —t=s5gi(x2 — 1)

we obtain (y, —1)/(y1 — 1) = gi((x2 — 1)/(x1 — 1)). Taking the inverse of the frac-
tional linear map ¢ — (y2 —)/(y1 —¢) on both sides and using that g; is multi-
plicative, we obtain

Vigi(x2 — 1) — yagi(x1 — 1)

o0 —gu—n "

The left-hand side defines a strictly decreasing homeomorphism /4 of R. Hence /4 has
a unique fixed point 7. Since x| # x,, we have ¢y # x; for at least one i = 1,2. Then
so = (yi — t0)/gr(x; — to) is well defined and L, , is the unique line in ./ through
(x1, y1) and (x2, y2).

For the parallel axiom note that L, , for s > 0 and s < 0 are graphs of orientation-
preserving and orientation-reversing homeomorphisms of R. We therefore see that
the parallel axiom is clearly satisfied for horizontal or vertical lines and that the pa-
rameter s’ of any parallel Ly , of a line L; ; in .7 must have the same sign as s. Hence
there is a unique parallel in ./ to a line L; ,, s > 0 (that is, a Euclidean line of positive
slope) through a given point. We thus only consider the case s < 0.

We first verify that two lines L, and Ly , where s, s’ < 0 are parallel if and only if
s = s'. Straightforward computation shows that the automorphism (x, y) — (ax + b,
ay + b), where a,b € R, a > 0, takes Ly , to the line L,i-«y 44p. Using the group A
we may therefore assume that s’ = —1 and ¢/ = 0. Then

> —gi(x) + 1> —gi(x), if >0,
—gr(x— 1)+ 11 =—gx(x), if 1=0,
< —gk(x) + 1 < —gi(x), if 1<0.

This shows that L_; , is parallel to L_j o. If s # —1, then x > gp(x) + sgx(x — t) + ¢
is a continuous function on IR that tends to +oco as x goes to +o0 if —1 < s < 0 and
to Foo for x — +oo if s < —1. Therefore this function is surjective in any case and
the value 0 is attained. This shows that L;, intersects L_; ¢ in a point if s # —1.

Now given a point (xg, yo), a line parallel to L_; o that passes through this point
must be of the form L_; ,. To find ¢ just note that gi (¢ — xo) = —gx(xo — ?) is strictly
increasing in ¢ and yg — ¢ is strictly decreasing in z. Furthermore, both functions are
unbounded. Hence there is a unique #) € R such that —gi(xo — ) = yo — ¢, that is,
L_, ,, is the unique line parallel to L_; o that passes through (xo, yo).

Hence the axioms of an affine plane are satisfied. |

Note that Proposition 3.1 also follows from [3], Theorem 2.7. Rotation through
45° brings the geometry .7 in the form used in [3]. In the new coordinates the group
A acts on IR? as (x, y) — (rx,ry + ) and the distinguished line fixed under A is the y-
axis. Straightforward computation shows that the triple ({F;}, {F>}, ¢), where F} and
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F; are functions from R to IR defined by F»(x) = —F;(x), Fi(x) = v2u — x, where
u is the unique solution of u — f; (1) = x, and ¢ is given by ¢(x) = —x, satisfies the
conditions (F1)—(F3) of [3], p. 7, so that .o/ is an affine plane by [3], Theorem 2.7.

The transitivity of £ on D implies that Proposition 3.1 carries over to any point
on D.

Corollary 3.2. Each derived geometry of M (k) at a point of D is an affine plane.

Note that £ = 1 does not yield an affine plane because we do not get enough lines
in .. This of course means that we cannot extend the definition of .# (k) to k = 1.
Indeed, the orbit of the generating circle C; under X only yields a 2-dimensional
family of circles so that we do not obtain enough circles in the negative half in this
case. (However, k = 1 results in the Desarguesian affine plane for the derived geom-
etry at (o0, 0), see the following section for this geometry.)

For later, when we determine isomorphism classes, we conclude this section by
showing that .«7 is not an affine plane that occurs as a derivation of the classical flat
Minkowski plane.

Lemma 3.3. o7 is not Desarguesian.

Proof. We consider the triangles with vertices p; = (0,0), p» = (1,—1), p3 = (1,-3),
and ¢; = (=2,0), g» = (—1,—1), g3 = (—1,-3), respectively. The lines through p;
and ¢; are horizontals and thus are parallel for i = 1,2, 3. Furthermore, correspond-
ing lines through p, and ¢, are also parallel. (The lines p,p; and ¢.g3 are verticals
and the lines p1p> and ¢1¢4» are L_; o and L_; _;, respectively.) Finally, the line p; p3
is L 5 and the line through ¢; and g3 is L_3,,(2)/2,—3/2- But k > 1 implies g;(2) > 2
and thus —%gk(Z) # —3. Hence p;p3; and ¢;¢3 are not parallel, compare the proof
of Proposition 3.1, and Desargues’ configuration does not close for the above six
points. |

Note that the proof of Lemma 3.3 only uses horizontals, verticals and lines L,
with s < 0, that is, parallel classes and circles in the negative half of .# (k).

4 The derived geometry £ at (c0,0)

For a description of the lines in the derived incidence geometry 4 of .# (k) at (0, 0)
we use the coordinate transformation (x, y) — (x,1/y). A circle through (o0,0) is
the graph of a fractional linear map x — b/(cx + d) where bc = —1 or the graph of
9f10~" where 5 € PSLy(IR), df;0 ' (o0) = 0. Under the above coordinate transforma-
tion the former circles give rise to the lines y = mx + ¢t where m,t € R, m < 0. As
for the latter circles, note that each such circle intersects the distinguished circle D
in two points, say (u,u) and (v,v) where u,v € R\{0}, u # v. Furthermore, because
the derived geometry at (u,u) is an affine plane by Corollary 3.2, the points (o0, 0),
(u,u) and (v,v) determine a unique circle. We must even have uv < 0. This follows
from the fact that df;0 " is strictly decreasing on R\{w} where w = df; 197" (o0) < 0
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so that the graph must intersect D in a point with negative coordinates and one
with positive coordinates. Then 6~ !(x) and 6! (v) are both fixed points of f; so
that {0~'(u),0 ' (v)} = {o0,0}, that is, {u,v} = {6(c0),0(0)}. Let 5(x) = (ax + b)/
(ex+d), ad —bc = 1. Then u=06(0) =a/c, v=06(0) =b/d, or v=a/c, u="b/d.
In the first case we obtain a = uc, b = vd, and 1 = ad — bc = (u — v)cd. Therefore
3(x) = (uex + vd)/(ex +d) and 07'(x) = (dx — vd)/(—ex + uc) = —(d/c)(x —v)/
(x —u). Furthermore, —(vd)/(uc) =0""(0) = fido~'(0) = fi(—d/c) = gr(d/c).

oo =o-n(-£357))
(£ (=2))
“o(-sen (=)
-o(- fzz'; 5)

LdflA ( v)
ugi (x—u)

0

+ vd

+d

—gk(x —v) + gi(x —u)
—vgi(x — v) + ugr(x — u)

= uv

Under the above coordinate transformation we obtain the lines L, , given by
y = F(u,v,x) where u,v e R, uv < 0, and

- i ugi(x — u) — vgx(x — v)

F(u,v,x .
( uv  gr(x —u) — gr(x — v)

Note that the above denominator is never 0 so that the right-hand side is defined for
all x e R.

In the second case the roles of u and v are interchanged and we obtain the same
equation. Note that the above equation is symmetric in # and v. In particular, we can
always assume that u < 0 < v.

Since gy is multiplicative, it follows that F(u,v,x) = L "gi E: Z;g ;f‘ll L;/Y for x # 0

_ k(o— ) |x—u*x—v
(g (x—u)—gi (x—v))*
>0 for all x # u,v so that F(u,v,x) is strictly increasing in x. This verifies that
x +— F(u,v,x) is indeed a homeomorphism of IR for all admissible # and v.

In summary, we have found the following description of the lines of the derived
geometry 4.

k—1
and thus lim,_.. F(u,v,x) = +oo. Furthermore, & (u,v,x) = |
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Figure 1. E_; 5 and L_; ), for k =3

The geometry 4. The lines of # are
+ the verticals {¢} x R for c € R;
+ the Euclidean lines y = mx + t of nonpositive slope m < 0;
* the sets
Ly, ={(x,F(u,v,x))}|xeR}

foru,ve R, u <0 <.

Lemma 4.1. The line L,, has the Euclidean line E,, given by y=—1"

kuv
(x — %(u + v)) as an oblique asymptote. Furthermore, L, , and E, , have precisely

the point (*3°,%2) in common and E, , is below Ly, to the right of that point and

above L, , to the left.

Proof. Since k > 1, the function g is continuously differentiable and even twice con-
tinuously differentiable for all x # 0. The respective derivatives are g (x) = k|| <!
and g;/(x) = k(k — 1)x|x|* 7. If z € R such that x and x — z are in the same open
interval (—o0,0) or (0,+400), Taylor’s formula then yields

22
gi(x = 2) = gr(x) = 293(x) + 5 92 (9)

where Z is between x — z and x. Note that if z is fixed and x tends to +-c0 we obtain
that g (2)|x|' " tends to 0 and that g} (2)x|x|'™* = g/(2) L|x|** tends to k(k — 1).
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Letu<O<wvsothat x —v <0< x<i@<x—u. Then
(4 = v)gi(x) = (u* = v*)gp(x) + 3 (g} (@) — v g} (0))
—(u = v)g(x) + 3 (uPg} (@) — v2g} (7))
3//(

(u—v)x — (W — v*)k +3 (g} (@) — v*g}/ (B ))IXI

) —
—(u— o)k +§ (u2g{ (@) — v2g{ () Ix]'~

uvF (u,v,x) =

(
) -

and

1
uvF (u, v, x) —&—%x

—(? — )k +1 (g} (@) — v} (0)) x| + 5 (u?g] ( ) vg}/(0))x|x|'
—(u— o)k + 4 (g} (@) — v2g{ (0))|x] "~

The numerator and denominator on the right-hand side tend to —(u? — v?)k +
s (W = vHk(k = 1) = szrl (u* — v?) and —(u — v)k, respectively, as x goes to +00.
Thus limy_, 4o, F(u, 0, x) + X = kjkl (u +v). This shows that the E, , is an oblique
asymptote of L, ,.

Let

for u,v,x e R, u < 0 < v. Then E(u,v,"3*) = F(u,v,"*) = 5 s0 that (*5*,4%) is on
E, ;N L, ,. Now consider the equation E(u,v,x) = F(u,v, x) for fixed u < 0 < v. We

write x = 5%z 4+ 5 for z € R. Then

1 (ugr(x —u) —vgr(x—v) 1 v4u
_%(Qk(x_u)_gk(x_v) +E<x_(k+1) 2 ))
_ 1 fug(z+1) —vge(z —1) 1 v—u__vtu
_uv<gk(z+1)—gk(2—1) +k< 2 k 2 ))
_ =)z =K)g(z+1) = 2+ K)g(z = 1))

2kuv(gr(z+ 1) — ge(z — 1)) '

Hence (z—K)gi(z+ 1)~ (z +K)gez = 1) =0 or (z4k)/(z—k) = ge(z + 1)/
gkz—1D)=gr((z+1)/(z—=1)). Let t=(z+1)/(z—1) so that z= (¢t +1)/(t —1).
Then the above equation becomes
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and thus
h(t) = (k = D[] — (k + Do) + (k + 1)t — (k— 1) = 0.

The function /4 is differentiable and even twice differentiable for ¢ # 0. For the de-
rivatives one finds

W (1) = (kK2 = Do = (k+ Dkl + k + 1,
W'(1) = k(k* = D)) (= 1).

Hence A"(f) > 0 for t <0 or t > 1 and /4"(¢) < 0 for 0 < ¢ < 1. Consequently, A’ is
strictly increasing on (—o0,0) and A’'(1) = 0 is a relative minimum of /4’ on (0, 400).
The latter implies that 4 is strictly increasing on (0, +c0) and thus 1 is the only posi-
tive zero of h. The former and the fact that #/(0) =k +1 >0, h'(—1) = =2(k* - 1)
< 0 imply that 4’ has precisely one negative zero ¢_ for which we have —1 < ¢_ < 0.
Furthermore, / is strictly decreasing on the interval (—oo,¢_) and strictly increasing
n (z-,0). But 2(0) = —(k — 1) < 0 and A(—1) = 0. This shows that —1 is the only
negative zero of A.
In summary we have found that % has precisely two zeros, namely =1 and
t = —1. This in turn yields the only solution z =0, that is, x = (u+ v)/2, of our
original equation. (Note that = —1 corresponds to z =0 and that =1 yields
z = oo and thus does not contribute to a solution in IR.) This proves that (“3%,%™)
is the only point of intersection of E,, and L, ,. The remaining statements on
the relative positions of E, , and L, , readily follow from E(u,v,u)— F(u,v,u) =
(k—1)(v—u) (k—1)(v—u

- 2kuv7 >0 and E(u’ U, U) - F(uv U, U) = 2kuv ) <0. D

Note that every Euclidean line of positive slope occurs precisely once as an
asymptote E, , for some u < 0 < v. Indeed, if m, e R, m > 0, then u = —(k+—’l)m —

1 12 _ t 1 12 :

T e <0 and v = _(k+—1)m+ wt e > 0 are such that E, , is the
Euclidean line given by y = mx + ¢.

In the coordinates of 4, the distinguished circle D induces the Euclidean hyperbola

H=1{(x,y) e R?|xy=1}.

The stabilizer ¥ = X, o) of (o0, 0) also fixes the points (0, ), (o0, c0) and (0,0).
Hence

¥ = {(x,y) = (rx,ry) [r > 0}.

This group induces a group ® of collineations of 4. In the new coordinates of % one
obtains

© = {(x,») = (rx, p/r)[r >0}
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Figure 2.

Lemma 4.2. The derived geometry B of M (k) at (0,0) is a linear space, that is, any
two distinct points can be uniquely joined by a line.

Proof. Given two distinct points (x;, y;) and (x2, y2) in R? we have to find a line of
2 that passes through them. Clearly, if (x, — x1)(y2 — »1) < 0, then these points are
on a vertical line or a Euclidean line of nonpositive slope. Furthermore, such a line is
unique.

We now assume that (x, — x1)(y> — y1) > 0. Without loss of generality we may
further assume that x; < x,. Since the derived geometry at each point of D is an
affine plane by Corollary 3.2, we may moreover assume that none of the points is on
H, that is, x;y; # 1 for i = 1,2. A line through the two points must then be of the
form L, , where u < 0 < v. By Corollary 2.2 a joining line will be unique and we only
have to verify the existence of such a line.

Since each line L, , is the graph of a strictly increasing homeomorphism of IR and
because L, , passes through (u,1/u) and (v,1/v), we see that (x; —u)(y1 —1) > 0is
a necessary condition, that is,

(x1 —u)(wy1 — 1) <O0.
We similarly find that
(x1 —v)(oy1 — 1) > 0;

compare Figure 2.
Depending on the position of (xj, y;) relative to the coordinate axes and to H one
obtains from the above two inequalities certain restrictions for u and v where I =
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(—00,0) and I, = (0,+00) denote the maximal (open) intervals we can choose u and
v from; see Table 2 below.

X1y XN I I - g9+ | G- G. o«
=0 0 (—00,0) (x1,40) | >0 <0 | 1 1 l
<0 0 (—o0,x1) (0,40) | >0 <O | 1 i} l
<0 >0 (—oo,x1)  (0,1/y1) | >0 <O0| 1T [
>0 >0 >1]| (-0,00 (I/yi,x1) | >0 >0] 1 T
>0 >0 <1 | (0,00 (x,1/y)|>0 <0]| 1T [
>0 <0 (1/y1,0)  (x1,+o) | >0 <0 | 7 ]
<0 <0 >1|(x,1/»m) (0,40) | <0 <0| | (.
<0 <0 <11 ({1/y,x1) (0,40) >0 <ol 1 | |

Table 2.
For L, , to pass through (xi, y;) we find the condition

yiuo(ge(x1 — u) — gi(x1 = v)) = ugr(x1 — u) — vgr(x1 — v)

which yields
ugk(x1 — u) _ vgk(x1 —v)
yiu—1 yio—1
that is, G(u) = G(v) where
_zgr(z — x1)
G(z) = R

for ze R, y;z # 1. We denote by Gy the restriction of G to the open interval I.. G
is differentiable and has derivative

k—1
_ |Z — X1|

G'(z
) (z—1)°

(ky1z* — (k + 1)z + x1).

The first term |z — x;|* 7' /(y1z — 1)® in G'(z) above is always positive on I, and
it readily follows that the last factor ¢(z) = kyz> — (k + 1)z + x; has no zero in I5.
(Note that ¢(z) = kz(y;z— 1)+ (x; — z) and that z(y;z— 1) and x; — z have the
same sign on 7...) In the above table the sign of ¢, that is, the restriction of ¢ to I, is
indicated in the columns labelled ¢_ and ¢g.. Hence Gy is strictly increasing or strictly
decreasing on /... In Table 2 this is indicated by an arrow up T or an arrow down |,

respectively.
Clearly, G(0) = G(x;) =0,

+oo, if y; >0,
lim G(z) =4 —c0, if y1 =0,
z—+o0 .

Foo, if y1 <0,
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and lim._/, G(z) = £oo depending on the relative position of y; # 0 to 0 and x,
but the sign changes in any case when z approaches 1/y; from opposite sides. It then
follows that in any case G4 takes I;. onto the negative real numbers (—o0,0). In par-
ticular, this shows that for each u € I_ there is a unique v € I; such that L, , passes
through (xi, y1). In fact, there is a homeomorphism o; : /- — I, such that L, ,
passes through (xy, y1). Clearly, «; = G7'G_, and o, is strictly decreasing if and only
if x;y1 < 1 (that is, (x1, y1) is between the two branches of the Euclidean hyperbola
H) and strictly increasing if and only if x;y; > 1 (that is, (x;, y1) is above or below
H); see Table 2. Moreover, «; is differentiable and its derivative is given by o] (1) =
G (u)/ G (o (u)).

(Note that there is no explicit formula for «; except for special cases. For exam-
ple, in the case x; = y; = 0 one has o;(u) = —u. It then readily follows that there is
a unique line L, _, through a point (x», y») where x,y, > 0. Hence (0,0) can be
uniquely joined to any other point in 4.)

One similarly obtains a homeomorphism o; : I — I, such that Ly, oy(u) Passes
through (x», y») where I_ < (—o0,0) and I, = (0,+00) are open intervals defined in
a similar fashion as the intervals 7_ and I, for «;.

We consider the three connected components of IR?\ H; more precisely, let

Cr ={(x,») e R*|xy > 1,x > 0},
Co={(x,y) e R*|xy < 1},
C-={(x ) eR*[xy > 1,x <0}

see Figure 2. The reflection p about the origin of IR? given by p(x, y) = (—x, — ) is
an automorphism of the incidence structure 4. (Note that —F(u, v, —x) = F(—v, —u,
x).) Furthermore, p interchanges C; and C_ and leaves Cj invariant. Using p and
perhaps relabelling the points, if necessary, we can assume that x; < x, and we can
restrict ourselves to the four cases (x1, y1) € Co, (x2,y2) € Cy or (x1, y1), (X2, y2) €
C, or (x1, 1), (x2,2) € Cy or (x1, 1) € C—, (x2, y2) € C;. for the relative positions
of the two points (xy, y1) and (x2, »2). In each of theses cases we are looking at either
o= o005 ! or o« = apa;! and verify that « fixes a point. Such a fixed point v leads to
u=05"(v) = a7 (v) so that L, , is a line through (xi, y;) and (x2, y2).

We encounter essentially two situations. In the first one «: 1 — J is a strictly
increasing homeomorphism and 7/ and J are two open intervals in IR such that J is
finite and its closure J is contained in /. If J = (c,d), we define v, inductively by
vop = ¢ and v,y = a(v,) for n =0, that is, v, = o”(c). Then the v,’s are increasing
and bounded from above by d. Thus v = lim,_,, v, exists and by continuity of « it
follows that « fixes v. In the other situation o : I — J is a strictly decreasing homeo-
morphism and / and J are two open intervals in R such that /N J is nonempty and
J is finite. If 7 = (a,b), J = (c,d) and we INJ, we find that lim,_,a(x) —x =
d—a>w—w=0 and lim,_,a(x) —x=c—b <w—w=0. By continuity of « it
follows that there is a v € I such that a(v) — v = 0, that is, « fixes v.

For example, if we assume that (x|, )€ Co, (x2,12) e Cy, then I. =T =
(—=00,0), I, = (1/y2,x;) is finite and I, N1, # J because this intersection contains
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the first coordinate of the point of intersection of the positive branch of H and the
line segment from (xj, y1) to (x2, y2). Moreover, o is strictly decreasing and o, is
strictly increasing so that o = ooy : I, — ap(I-) is a strictly decreasing homeo-
morphism. Since ay(/_) = I,, we obtain that ay(I_) is finite. In order to show that
I, Noy(I_) is nonempty we distinguish several cases.

If x;,y; >0, then /_=1_ and thus op(1-) =1,. In case x;,y; <0 we have
I, = (0,4+00) so that op(I_) = I. If x; <0 < yi, we have I_ = (—o0,x;) and I, =
(0,1/y1); see Table 2. But then oz (7_) = (1/y2,02(x1)) and because 0 < y; < y> we
obtain that I, Mo (1) = (1/y2, min{1/y1, e (x1)}). Finally, if x; > 0 > y;, we have
I_ = (1/y1,0) and I, = (x,+00); see Table 2. But then o (I_) = (02(1/y1), x2) and
because 0 < x| < xp we have I Nop(1-) = (max{xy,02(1/y1)}, x2).

The other cases are dealt with in a similar fashion. In any case one finds that « has
a fixed point.

This finally shows that (x;, y;) and (x2, y2) can be joined by a line in 4. O

In order to show that .#(k) is a flat Minkowski plane we still have to verify that
the parallel axiom is satisfied in 4, that is, that 4 is an affine plane. As a first step in
that direction we characterize parallelity in 4.

Lemma 4.3. Two lines L, , and L, v are parallel if and only if uv = u'v'.

Proof. We first assume that uv # u'v’. Then the Euclidean lines given by

1 k+1 _ 1 k1o,
y= kuu(x 3 (u—i—u)) and y= —ku’v’(x — (u —l—v))

have different slopes and intersect transversally in a point. Since these Euclidean lines
are oblique asymptotes to the lines L, , and L, ,» by Lemma 4.1 we see that L, , and
L, , must also intersect in a point.

Conversely assume that uv = u’v’. Assume that L, , and L,/ ,» have a point (xo, yo)
in common. Since we already have a linear space by Lemma 4.2 the two lines
are either parallel (that is, L, , = L, ) or (xo, »o) is the only common point of
Ly, and L, ,. In the latter case the asymptotes of L, , and L, , are different
parallel Euclidean lines so that F(u,v,x) — F(u’,v’,x) has the same sign for large
|x|. This then implies that L,, and L, , touch analytically at (xo, yo), that is,
% (u7 v, XO) = % (u/v U/a XO)'

We now show that L, , is uniquely determined by the point (xg, yo) on it and
the slope of the Euclidean tangent line at that point, that is, the partial derivative
;—f (u,v,x0). Then the second case is not possible and the two lines must be parallel.

By using the group ® we may assume that uv = —1. Let x¢, yo, ¥, € R, y; > 0. We
then have to find a unique u# < 0 such that

F(u,v,x0) = yo

oF
a(uv v, XO) = y(l)a
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that is,

yol(qu(”—v)(Xo—vg(x >

uv k(gi(xo — u) (X0 —

1(v+ (u —v)(xo — u)gy(xo — u) )

o k(gr(xo — u) — gi(xo — v))

y = (v — u)(g;(x0 — u)gi(xo — v) — g(u)g (xo — v))
' uv(gi(x0 = ) = g(x0 — v))’

(v — )’ g5 (xo — w)gi(x0 —v)
kuv(gi(xo — u) — ge(xo — v))?

(Note that kgi(x) = xg;(x) for all x € R.) Hence
Yo(xo = u)(xo — v) + k(uyo — 1)(vyo — 1) =

But v = —1/u so that after multiplying through by u we obtain the quadratic equa-
tion

(kyo + xoy)(® = 1) + (k(y5 — 1) = (x5 = Dyg)u =0

for u. If kyo+ xoyy # 0, then the above equation has precisely one positive and
one negative zero (the coefficients of the quadratic and the constant terms have
opposite signs). Thus there is at most one u < 0 that satisfies our two equations. If
kyo + xoy;, = 0, then we must also have k(y? —1) — (x —1)y{ =0. These two
equations imply that yo = —x¢ and y) = k. The first of these identities yields
(xo — u)gk(xo — u) = (xo — v)gk(xo —v) and further xo = (u+v)/2. Thus u? —

2xou — 1 =0 and u = xo — /x3 + 1. Hence there is again a unique u < 0. O

Note that the proof of Lemma 4.3 further shows that there is at most one line L, ,
with a given value uv through a given point, that is, we have the following.

Corollary 4.4. Through each point there is at most one line L, parallel to a line L,, .
Proposition 4.5. The derived geometry % of 4 (k) at (c0,0) is an affine plane.

Proof. It remains to show that the parallel axiom is satisfied in 4. Since Euclidean
lines of negative slope and lines of the form L, , are graphs of orientation-reversing
and orientation-preserving homeomorphisms of R we see that a parallel of a Eucli-
dean line or of L, , in 4 must be of the same form. Hence there is a unique parallel in
2 to a horizontal line, a vertical line or a Euclidean line of negative slope through a
given point. Given a point (x¢, yo) and a line L, , we know from Lemma 4.3 that any
parallel through (x¢, yo) must be of the form L, ,» where u'v’ = uv. As in the proof
of Lemma 4.3 we may assume that uv = —1. Then we have to find a unique v’ < 0
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such that F(u', —1/u’, xo) = yo. But /(z) defined by h(z) = F(z,—1/z,x¢) for z e R,
z < 0, is continuous and lim._,_ /i(z) = 400 and lim._y- /s(z) = —oo. This shows
that /4 is onto R and there is at least one u’ such that h(u’) = yo. But Corollary 4.4
shows that such a «’ must be unique, that is, there is a unique parallel to L, , through

(X0, o). O

The transitivity of X on points not on D implies that Proposition 4.5 carries over to
any point not on D.

Corollary 4.6. Each derived geometry of 4 (k) at a point not on D is an affine plane.
Corollary 3.2 and Corollary 4.6 now imply the following.

Theorem 4.7. Each incidence geometry M (k) for k > 1 as defined at the beginning of
Section 2 is a flat Minkowski plane.

5 Isomorphism classes and automorphisms

Since each derived affine plane of the classical flat Minkowski plane is Desarguesian,
we immediately obtain the following from Lemma 3.3.

Theorem 5.1. No flat Minkowski plane 4 (k) is classical.

We now turn to isomorphisms between the planes .# (k) and their automorphisms.
We want to show that, in fact, these planes are mutually non-isomorphic. As a first
step in this direction we prove that any isomorphism must respect the point orbits.

Lemma 5.2. Let y: 4 (k) — #(l) be an isomorphism between the flat Minkowski
planes M (k) and M (I). Then y takes the distinguished circle D in (k) to the corre-
sponding circle D in 4 (1).

Proof. We assume that y(D) # D. Then .#(I) admits the 3-dimensional connected
groups X and yXy~! as groups of automorphisms. Since D is the only circle fixed by X,
it follows that £ # yZy~! and hence that the automorphism group I'(/) of . (I) must
be at least 4-dimensional. From the classification of flat Minkowski planes of group
dimension at least 4 (see [5] or [4], 4.4.5) we see that .#(/) must be classical or that
I'(/) fixes two parallel classes. The former case is not possible by Theorem 5.1 and the
latter cannot occur since X is already transitive on each set of all (+)-parallel classes.

U

Theorem 5.3. Two flat Minkowski planes (k) and (1) are isomorphic if and only if
k=1

Proof. Let y: (k) — (I) be an isomorphism between the flat Minkowski planes
M (k) and . (I). Then y takes the distinguished circle D in .# (k) to the distinguished
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circle D in .#(l) by Lemma 5.2. Since X is doubly transitive on D, we may assume
that y takes p = (o0, o0) and (0,0) in .# (k) to the ‘same’ respective points (o, o0)
and (0,0) in .#(I). Moreover, the stabilizer of these two points is transitive on the
set of circles in the negative half through these two points. We therefore can further
assume that y takes the generating circle Cy in .# (k) to the generating circle C; in
VAGH

The induced isomorphism 7 from the derived affine plane .o7(k) of .# (k) at p onto
the derived affine plane .«/(/) of .#(I) at p then takes (0,0) to (0,0), the lines L; g
induced from D and L_; o in o/(k) to Ly o and L_; o in .&/(/), respectively. Further-
more, horizontal lines are mapped to horizontal lines and vertical lines to vertical
lines, or these two sets of lines are interchanged. In the former case, 7 is of the form
(x,¥) — (a(x),f(»)) and (x, y) — (a(y), f(x)) in the latter case, where o and f are
homeomorphisms of R. Since L, ¢ is taken to L; o and (0,0) to (0,0), one finds o« = f
and «(0) = 0 in both cases.

A line L; ,, which is parallel to L; o, must be taken to a parallel to L ¢ in .2/(/),
that is, for every 7 € IR there is a ¢’ € R such that 7(L; ;) = L; ». In the former case,
this condition implies that a(x + ¢) = a(x) + ¢’. For x = 0 we obtain ¢/ = «(¢) so that

a(x + 1) = a(x) + o)

for all x, ¢ € R. Hence o(x) = ax for some a € IR\{0}. We arrive at the same form for
o in the second case where the horizontals and verticals are interchanged.
We finally look at L_; . This line is taken by ¥ to the set

{(x, —agk(x/a)) | x e R} = {(x, —agi(x)/gi(a)) | x e R}
which, of course, must be the line L_; ¢ in ./ (/). Thus

. agi(x)
91(x) = gk(a)

for all x € R. For x = 1 we find a = gx(a) and thus g; = gx. This shows that k = /.
In the second case we similarly obtain g;' = gi. But g;' = gy, so that k = 1/1.
This clearly is not possible, because k,/ > 1. O

Note that the transformation y : (x, y) — (y, x) is a homeomorphism of the torus
that interchanges the horizontals with the verticals. The image y(.#(k)) of .4 (k) is a
again a flat Minkowski plane that, in addition, has a very similar description to our
planes as .#(1/k). Thus we could have extended the definition of our flat Minkowski
planes as given in Section 2 to values for the parameter k between 0 and 1.

Since X is a group of automorphisms of the flat Minkowski plane .#(k), each such
plane has group dimension at least 3. In fact, all these planes have group dimension 3.

Theorem 5.4. Each flat Minkowski plane 4 (k) has group dimension 3. The connected
component X of the automorphism group of M (k) that contains the identity is isomor-
phic to the simple group PSL,(R). Furthermore, /4 (k) also admits the automorphism
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o:(x,y) — (—x,—y). The group generated by o and X is the full automorphism group
of M (k) and is isomorphic to PGL;,(R).

Proof. Let T'(k) be the full automorphism group of .# (k). From Lemma 5.2 we know
that every automorphism of .# (k) must fix the circle D. Hence the orbit under I'(k)
of any point on D is (at most) 1-dimensional. Choosing three distinct points on D
the stabilizer of these points is 0-dimensional; see [4]. The dimension formula then
implies that I'(k) is at most 3-dimensional. We thus conclude that a Minkowski plane
(k) has group dimension 3.

It is readily verified that « is indeed an automorphism of .# (k). Let y € T'(k). Up
to automorphisms in ¥, we may assume that y fixes (o0, o0), (0,0), D and the gen-
erating circle Ci. As in the proof of Theorem 5.3 we then see that y must be of the
form (x, y) — (ax,ay) or (x,y) +— (ay,ax) where a € R satisfies a = gy (a), that is,
a = +1. The former case gives us y = id and y = « for « = 1 and a = —1 respectively.
However, the transformation (x, y) — (»,x) does not define an automorphism of
M (k), because the generating circle Cy is taken to Cy /. = {(x, —g1x(x)) | x € S'} and
Ci/k # Ci unless k = 1. This shows that I'(k) is generated by o and X and the re-
maining statements about I'(k) readily follow. O

Similar to the Lenz—Barlotti classification of projective planes with respect to cen-
tral collineations, Minkowski planes have been classified by Klein and Kroll in [2]
and [1] with respect to central automorphisms, that is, automorphisms that fix at least
one point and induce central collineations in the projective extension of the derived
affine plane at that fixed point; see [2] and [1] or [4] Section 4.5, for a definition of the
so-called Klein—Kroll types.

Proposition 5.5. Each flat Minkowski plane .4 (k) has Klein—Kroll type TV.A.1.

Proof. The group X from Theorem 5.4 contains the translations (x, y) — (x+1¢, y + ¢)
for te R. They form a (p, B(p, D))-transitive group of (p, B(p, D))-translations where
p = (00, 00) and B(p, D) is the tangent bundle of circles that touch the distinguished
circle D at p. Since X is transitive on D, we see that . (k) is (p, B(p, D))-transitive for
each point p € D. Hence .# (k) is of Klein—Kroll type at least IV. However, type V or
higher implies classical; see [8], Corollary 4.2. But then .#(k) must be of combined
type IV.A.1 by [8], Theorem 6.1. O

There are flat Minkowski planes that admit the group PSL,(R) as a group of
automorphisms in one of the kernels, that is, the normal subgroups of all automor-
phisms that fix each (+)-parallel class or each (—)-parallel class. These planes are
obtained from the classical flat Minkowski plane by replacing the circles in the neg-
ative half by the graphs of the composition of all fractional linear maps not in
PSL,(R) with a fixed orientation-preserving homeomorphism f of S'. The resulting
plane .#(f) has group dimension 3 or 4 or is classical, depending on the form of f;
see [4], Theorem 4.3.3 or [7]. Clearly, such a plane .#(f) cannot be isomorphic to
any of our planes . (k).
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There is however a looser connection between flat Minkowski planes via general-
ised quadrangles. From one half of a flat Minkowski plane one can construct an
antiregular 3-dimensional compact generalised quadrangle that admits a Minkowski
involution as the ‘lifted Lie geoemtry’, see [6] or [4] Chapter 6 for details. Vice versa
such a generalised quadrangle gives rise to one half of a flat Minkowski plane by
taking the set of fixed points S of the Minkowski involution ¢ as the point set, the
fixed lines of 7 as the parallel classes, and as circles the traces SN p* of points p
not fixed by 7. By using different Minkowski involutions of the same antiregular 3-
dimensional generalised quadrangle, one can establish a relationship between halves
of different flat Minkowski planes. Following the notation in [6] we say halves of two
flat Minkowski planes are sisters of each other if they can be obtained in this way.

Since the verification of the axioms of a Minkowski plane is straightforward for the
planes .#(f), the question arises whether or not the negative half .#~ (k) of a flat
Minkowski plane .# (k) is a sister of the negative half of a plane .#(f). Note that the
positive half in both types of planes, .#(f) and .#(k), is the same as in the classical
flat Minkowski plane. Furthermore, the negative half of .Z(f) is also isomorphic
to the positive half of the classical flat Minkowski plane. Hence, in order for .#~ (k)
to be a sister of a half of some .#(f) this half must be obtainable from the clas-
sical antiregular 3-dimensional compact generalised quadrangle. This implies that
Desargues’ configuration must close in the derived geometry of .#~ (k) at each
of its points where all occuring lines are horizontals, verticals or in the negative
half of .# (k). However, as seen in the proof of Lemma 3.3 this is not the case.
Hence our planes .# (k) are not related to the planes .#(f) and there is no ‘easy
way’ to verify the axioms of a Minkowski plane.
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