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Abstract. According to Mukai, any prime Fano threefold X of genus 7 is a linear section
of the spinor tenfold in the projectivized half-spinor space of Spinð10Þ. It is proven that the
moduli space of stable rank-2 vector bundles with Chern classes c1 ¼ 1, c2 ¼ 5 on a generic X

is isomorphic to the curve of genus 7 obtained by taking an orthogonal linear section of the
spinor tenfold. This is an inverse of Mukai’s result on the isomorphism of a non-abelian Brill–
Noether locus on a curve of genus 7 to a Fano threefold of genus 7. An explicit geometric
construction of both isomorphisms and a similar result for K3 surfaces of genus 7 are given.
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1 Introduction

The study of moduli spaces of stable vector bundles on Fano threefolds of indices 1
and 2 is quite a recent topic. The index of a Fano threefold X is the maximal integer
n dividing KX in the Picard group of X . The results known so far include the descrip-
tion of one component of moduli of rank-2 vector bundles on each one of the fol-
lowing four Fano threefolds: the cubic [22], [14], [6], [2], the quartic [15], the prime
Fano threefold of genus 9 [16] and the double solid of index 2 [34]. It turns out that
the flavour of the results one can obtain depends strongly on the index. In the index-2
case, the answers are given in terms of the Abel–Jacobi map of the moduli of vector
bundles into the intermediate Jacobian JðXÞ, defined by the second Chern class c2,
and the techniques originate from Clemens, Gri‰ths, and Welters. For the cubic X3,
the moduli space MX3

ðr; c1; c2Þ with invariants r ¼ 2, c1 ¼ 0, c2 ¼ 5 is of dimension 5
and is identified with an open subset of the intermediate Jacobian. For the double
solid Y2 of index 2, Tikhomirov found a 9-dimensional component of MY2

ð2; 0; 3Þ
whose Abel–Jacobi map is quasi-finite onto an open subset of the theta-divisor of
JðY2Þ, and its degree is 84 [23].
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In the index-1 case, the Abel–Jacobi map does not bring much new information
about the moduli spaces investigated up to now. For the quartic threefold X4, we
proved in [15] that MX4

ð2; 1; 6Þ has a component of dimension 7 with a 7-dimensional
Abel–Jacobi image in the 30-dimensional intermediate Jacobian JðX4Þ. One can con-
clude from here about the geometry of this component only that its Kodaira dimen-
sion is positive.

In the present paper, we consider one more index-1 case: we determine the moduli
space MX ¼ MX ð2; 1; 5Þ for a generic prime Fano threefold X ¼ X12 of genus 7.

Following the classical terminology, we call the Fano threefolds X2g�2 of index 1
and degree 2g � 2 with Picard number 1 prime Fano threefolds of genus g. They have
been classified, up to deformations, by Iskovskikh [18], [19]. There is only one moduli
family of threefolds X2g�2 for every g ¼ 2; . . . ; 12, g0 11 (see Table 12.2 in [19]).
Mukai [27] proved that X2g�2 is a linear section of some projective homogeneous
space S2g�2 for 7c gc 10. In the case g ¼ 7, S ¼ S12 is the spinor tenfold in P15. It
is self-dual, that is, the dual variety �SSH �PP15, formed by the hyperplanes in P15 tan-
gent to S, is isomorphic to S via some projectively linear map identifying P15 with its
dual �PP15. Thus, to a linear section X ¼ P7þk VS of S of dimension 2 � k we can as-
sociate the orthogonal linear section �XX :¼ �PP7�k V �SS of dimension 2 þ k, where �PP7�k ¼
ðP7þkÞ? H �PP15. For k ¼ 1, we obtain a curve linear section G ¼ �XX , which is a ca-
nonical curve of genus 7. Our main result is the following statement.

Theorem 1.1. Let X ¼ X12 be a generic prime Fano threefold of genus 7. Then MX is

isomorphic to the curve G ¼ �XX .

We prove also similar statements in the cases k ¼ 0, where X ; �XX are generic K3
surfaces of degree 12, and k ¼ �1, where X is a curve and �XX is a threefold. In the
latter case, one should take the non-abelian Brill–Noether locus of rank-2 vector
bundles on X with canonical determinant and 5 linearly independent global sections
on the role of MX . For k ¼ 0, Mukai [26], [31] proved that MX is another K3 surface
of degree 12 (MX represents the so-called Fourier–Mukai transform of X ; see [11]).
We make this statement more precise by identifying MX with the orthogonal K3 sur-
face �XX via an explicit map rX having a beautiful geometric construction.

For k ¼ �1, Mukai [30] proved that MX is a Fano threefold of degree 12. Again,
we show that this Fano threefold is isomorphic to the orthogonal linear section of the
spinor tenfold, and our Main Theorem represents the inverse of this result.

Iliev–Ranestad [16] obtained similar results for the 1-, 2- and 3-dimensional linear
sections of the symplectic Grassmannian S16 HP13, but in their case the dual of S16 is
a singular quartic hypersurface in �PP13, so the moduli spaces (or the non-abelian Brill–
Noether locus in dimension 1) that they consider are isomorphic to linear sections of
this quartic hypersurface.

Our construction of the map rX : �XX ! MX is very simple: for any w A �XX the cor-

responding hyperplane P14
w in P15 is tangent to S along a projective space P4, and the

linear projection pw of X VP14
w into P9 with center P4 has its image inside the Grass-

mannian Gð2; 5ÞHP9. It turns out that the pullback of the universal rank-2 bundle
from Gð2; 5Þ to X is stable and its class belongs to MX . This defines the image of w
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in MX . It is not so obvious that the thus defined map rX is nontrivial. In Proposition
5.4 we prove that its image is an irreducible component of MX . This enables us to
conclude the proof of the fact that rX is an isomorphism in the cases where the irre-
ducibility and smoothness of MX are already known from the work of Mukai: k ¼ �1
(Proposition 5.6) and k ¼ 0 (Proposition 5.7). For the case k ¼ 1, we prove in Prop-
osition 5.9 that every vector bundle E A MX is globally generated and is obtained by
Serre’s construction from a normal elliptic quintic contained in X . The irreducibility
of MX , equivalent to that of the family of elliptic quintics in X , is reduced to the
known irreducibility in the K3 case. The smoothness of MX is proved separately by
using Takeuchi–Iskovskikh–Prokhorov birational maps Fp : X aY ¼ Y5 and Cq :
X aQ, where p A X is a point, qHX a conic, Y5 the Del Pezzo threefold of degree
5 and Q the three-dimensional quadric hypersurface.

Takeuchi [33] has undertaken a systematic study of birational transformations of
Fano varieties that can be obtained by a blow up with center in a point p, a line l or
a conic q followed by a flop and a contraction of one divisor. Iskovskikh–Prokhorov
[19] have extended Takeuchi’s list, in particular, they found the two birational trans-
formations for X12 mentioned above. The techniques of proofs are those of Mori
theory, based on the observation that the Mori cone of X12 blown up at a point, line
or conic is an angle in R2, hence there are exactly two extremal rays to contract, the
first one giving the initial 3-fold, the second one defining the wanted birational map.
But before one can contract the second extremal ray, one has to make a flop. We de-
scribe in detail the structure of Fp;Cq (Theorems 6.3 and 6.5). The last contraction in
both cases blows down one divisor onto a curve of genus 7. Thus, we have 3 curves of
genus 7 associated to X : the orthogonal linear section G, and G 0;G 00 coming from the
birational maps. We prove that the three curves are isomorphic. We also identify the
flopping curves for Fp: they are the 24 conics passing through p, and their images are
the 24 bisecants of G 0.

The ubiquity of the maps Fp;Cq is in that they provide a stock of well-controlled
degenerate elliptic quintics: the ones with a node at p are just the proper transforms
of the unisecant lines of G 0 in Y and the reducible ones having q as one of compo-
nents are nothing else but the proper transforms of the exceptional curves contracted
by Cq into points of G 00, that is, they are parametrized by G 00. The smoothness of
MX follows from the existence, among the zero loci of sections of any vector bundle
E A MX , of a nodal quintic with a node at p such that the normal bundle of the cor-
responding unisecant of G 0 is OlO (see the proofs of Proposition 7.1 and Lemma
7.3). The family of lines on Y is well known (see for example [13], [8]). In particular,
Y contains a rational curve C0

6 which is a locus of points z such that there is a unique
line in Y passing through z, and the normal bundle of this line is Oð1ÞlOð�1Þ.
Hence our proof of smoothness does not work in the case when G 0 meets C0

6 . We
prove that in this case a generic deformation G 0

t of G 0 does not meet C0
6 (Lemma

7.6) and that G 0
t corresponds to some birational map Fpt

: Xt aY of the same type.
This explains why we state our Main Theorem only for generic X . We conjecture that
the conclusion of the Theorem is true for any smooth 3-dimensional linear section
SVP8.

In Section 2, we give a definition of the spinor tenfold S, represent it as one of
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the two components of the family of maximal linear subspaces of an 8-dimensional
quadric, and introduce the notion of the pure spinor associated to a point of S.

In Section 3, we study some properties of linear sections X of S, in particular, the
projections pw to the Grassmannian Gð2; 5Þ in P9, defined by the points w A �XX , and
prove that any linear embedding of X into Gð2; 5Þ, under some additional restric-
tions, is always given by such a projection (the case dim X ¼ 1 is postponed until
Section 5).

In Section 4, we list standard facts about the moduli space MX ðdim X ¼ 3Þ and
the Hilbert scheme of elliptic quintics on X ; we show that any E A MX is obtained by
Serre’s construction from a ‘‘quasi-elliptic’’ quintic and that the fibers of Serre’s con-
struction over MX are projective spaces P4.

In Section 5, we define the map rX : �XX ! MX in all the three cases dim X ¼ 1; 2; 3,
and prove that its image is a component M 0

X of MX . We prove that rX is an isomor-
phism for dim X ¼ 1; 2. For dim X ¼ 3 we obtain the following more precise version
of the result of the previous section: any E A MX is globally generated and is obtained
by Serre’s construction from a smooth elliptic quintic.

In the Sections 6 and 7, dim X ¼ 3. In Section 6, we provide some basic properties
of the families of lines and conics on X , in particular, we prove the irreducibility of
the family of conics, and we describe the structure of the two Takeuchi–Iskovskikh–
Prokhorov birational maps. We show that the vector bundles constructed from the
stock of quasi-elliptic quintics generated by these maps belong to M 0

X , and we deduce
the isomorphism of the three curves G;G 0;G 00.

Section 7 is devoted to the proof of Theorem 1.1.

Acknowledgements. The second author thanks V. A. Iskovskikh, who communicated
to him Moishezon’s Lemma 5.10, and Yu. Prokhorov for discussions.

2 Spinor tenfold

The spinor tenfold S10
12 is a homogeneous space of the complex spin group Spinð10Þ,

or equivalently, that of SOð10Þ ¼ Spinð10Þ=fG1g. It can be defined as the unique
closed orbit of Spinð10Þ in the projectivized half-spinor representation of Spinð10Þ on
P15. We will recall an explicit description of S10

12 and some of its properties, following
essentially [4], [28], [32].

Let Alt5ðCÞGC10 be the space of skew-symmetric complex 5 � 5 matrices.
For ÂA A Alt5ðCÞ denote by ~PfPfðÂAÞ A C5 the 5-vector with coordinates ~PfPfðÂAÞi ¼
ð�1Þ i Pf iðÂAÞ, i ¼ 1; . . . ; 5, where Pf i are the codimension 1 Pfa‰ans of an odd-
dimensional skew-symmetric matrix.

Definition 2.1. The Spinor tenfold S ¼ S10
12 HP15 is the closure of the image

jðAlt5ðCÞÞ under the embedding

j : C10 GAlt5ðCÞ ! P15; ÂA 7! ð1 : ÂA : ~PfPfðÂAÞÞ: ð1Þ

We will write homogeneous coordinates in P15 in the form ðu : X̂X : ~yyÞ, where
u A C, X̂X ¼ ðxijÞ A Alt5ðCÞ and ~yy ¼ ðy1; . . . ; y5Þ A C5.
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The map j parameterizes the points of the open subset jðAlt5ðCÞÞ ¼ SV ðu0 0Þ
and

ðu : X̂X : ~yyÞ A S , u~yy ¼ ~PfPfðXÞ and X̂X~yy ¼ 0: ð2Þ

Writing down the components of the above matrix equations, we obtain the defining
equations of S, or the generators of the homogeneous ideal of SHP15:

qþ
1 ¼ uy1 þ x23x45 � x24x35 þ x34x25

qþ
2 ¼ uy2 � x13x45 þ x14x35 � x34x15

qþ
3 ¼ uy3 þ x12x45 � x14x25 þ x24x15

qþ
4 ¼ uy4 � x12x35 þ x13x25 � x23x15

qþ
5 ¼ uy5 þ x12x34 � x13x24 þ x23x14

q�
1 ¼ x12 y2 þ x13 y3 þ x14 y4 þ x15 y5

q�
2 ¼ �x12 y1 þ x23 y3 þ x24 y4 þ x25 y5

q�
3 ¼ �x13 y1 � x23 y2 þ x34 y4 þ x35 y5

q�
4 ¼ �x14 y1 � x24 y2 � x34 y3 þ x45 y5

q�
5 ¼ �x15 y1 � x25 y2 � x35 y3 � x45 y4

An important property of the spinor tenfold is its self-duality [7]:

Lemma 2.2. The projectively dual variety S4HP154, consisting of all the hyperplanes

in P15 that are tangent to S, is projectively equivalent to S.

This follows also from the self-duality of the half-spinor representation of Spinð10Þ
and the fact that Spinð10Þ has only two orbits in P15: the spinor tenfold and its com-
plement [12].

There is an alternative interpretation of the spinor tenfold S: it is isomorphic
to each one of the two families of 4-dimensional linear subspaces in a smooth 8-
dimensional quadric Q8 HP9. In other words, it is a component of the Grassman-
nian Gqð5; 10Þ ¼ Sþ t S� of maximal isotropic subspaces of a nondegenerate qua-
dratic form q in C10. The varieties S;S4 can be simultaneously identified with Sþ;S�

respectively in such a way that the duality between S;S4 is given in terms of cer-
tain incidence relations between the four-dimensional linear subspaces of the quadric
Q8 ¼ fq ¼ 0g.

Namely, denote by P4
c the subspace of Q8 corresponding to a point c A SG, and let,

for example, c A Sþ. Then we have:

Sþ ¼ fd A GQð5; 10Þ j dimðP4
c VP4

d Þ A f0; 2; 4gg; ð3Þ

S� ¼ fd A GQð5; 10Þ j dimðP4
c VP4

d Þ A f�1; 1; 3gg; ð4Þ
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where the dimension equals �1 if and only if the intersection is empty. Furthermore,
if we denote by P14

w the hyperplane in P15 represented by a point w A �PP15 :¼ ðP15Þ4,
and by Hw the corresponding hyperplane section P14

w VS of S ¼ Sþ, then for any w A
S� ¼ S4, we have

Hw ¼ fc A Sþ : P4
c VP4

w 0qg ¼ fP4 HQ : dimðP4 VP4
wÞ is odd andd0g ð5Þ

For future use, we will describe explicitly the identifications of S;S4 with Sþ;S�.
Let V be a 2n-dimensional C-vector space (n ¼ 5 in our applications) with a non-
degenerate quadratic form q and ð� ; �Þ the associated symmetric bilinear form. Fix
a pair of maximal isotropic subspaces U0;Uy of V such that V ¼ U0 lUy. The bi-
linear form ð� ; �Þ identifies U0 with the dual of Uy. Let Sþ, resp. S� be the compo-
nent of Gqðn;VÞ that contains U0, resp. Uy. Let S ¼ 5�

Uy be the exterior algebra
of Uy; it is called the spinor space of ðV ; qÞ and its elements are called spinors. The
even and the odd parts of S

Sþ ¼ 5even
Uy; S� ¼ 5odd

Uy

are called half-spinor spaces. To each maximal isotropic subspace U A Sþ US� one
can associate a unique, up to proportionality, nonzero half-spinor sU A Sþ US� such
that juðsUÞ ¼ 0 for all u A U , where ju A EndðSÞ is the Cli¤ord automorphism of S

associated to u:

juðv15� � �5vkÞ ¼
X

i

ð�1Þ i�1ðu0; viÞv15� � �5bvivi5� � �5vk þ uy5v15� � �5vk;

if u ¼ u0 þ uy, u0 A U0, uy A Uy.
The element sU is called the pure spinor associated to U . The map U 7! ½sU � A

PðSGÞ is the embedding of SG into the projective space P2 n�1�1 from which we
started our description of the spinor tenfold (Formula (1), n ¼ 5). The duality be-
tween Sþ;S� is given by the so called fundamental form b on S, for which Sþ;S� are
maximal isotropic 2n�1-dimensional subspaces of S:

bðx; x 0Þ ¼ ð�1Þpðp�1Þ=2ðx5x 0Þtop

where deg x ¼ p and ðsÞtop denotes the 5n
Uy-component of a spinor s A 5�

Uy.
Describe now the spinor embedding in coordinates. Let U A Sþ. Then the inter-

section U VUy is always even-dimensional and generically U VUy ¼ 0. Choose
a basis e1; . . . ; en of Uy in such a way that U VUy ¼ hen�2k; en�2kþ1; . . . ; eni. Let
e�1; . . . ; e�n be the dual basis of U0. Then U possesses a basis u1; . . . ; un of the fol-
lowing form: ui ¼ e�i þ

Pn�2k�1
j¼1 aijej for i ¼ 1; . . . ; n� 2k � 1, and ui ¼ ei for i ¼

n� 2k; . . . ; n, where ðaijÞ is a skew-symmetric matrix of dimension n� 2k � 1. The
pure spinor associated to U is given by the following formula:

sU ¼ expðaÞ5en�2k5en�2kþ15� � �5en; a ¼ �
Xn�2k�1

j¼1

aijei5ej ð6Þ
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Here the exponential is defined by

exp a ¼
X½n=2�

i¼1

a5� � �5a

i!
¼

X
IHf1;...; n�2k�1g

Pf I ðAÞeI

where eI ¼ ei15� � �5eip if I ¼ fi1; . . . ; ipg and Pf I ðAÞ is, up to the sign, the Pfa‰an
of the submatrix of A consisting of its rows and columns with numbers i1; . . . ; ip (so
that only even values of p can yield nonzero terms). The coordinates in P15 used in
Formulas (1) and (2) are the ones corresponding to the basis 1; ei5ej; ei5ej5ek5el

of Sþ ¼ 5even
Uy.

3 Linear sections of the spinor tenfold

Mukai [27] has observed that a nonsingular section of the spinor tenfold S10
12 HP15

by a linear subspace P7þk for k ¼ �1; 0, resp. 1 is a canonical curve, a K3 surface,
resp. a prime Fano threefold of degree 12. He has proven that a generic canonical
curve of genus 7, a generic K3 surface of degree 12 and any nonsingular prime Fano
threefold X12 (with Picard group Z) are obtained as linear sections of S10

12 in a unique
way modulo the action of Spinð10Þ.

Definition 3.1. For a given linear section X of S, we denote its orthogonal linear
section by �XX and call it the dual of X . In particular, the dual of a Fano linear section
X12 is a canonical curve G ¼ G7

12 ¼ �XX12 (the superscript being the genus, and the sub-
script the degree), and the dual of a K3 linear section S is another K3 surface �SS of
degree 12.

Lemma 3.2. Let P7þk with k ¼ �1; 0 or 1 be a linear subspace in P15, transversal to S.
Then the orthogonal complement ðP7þkÞ? ¼ �PP7�k is transversal to S4. Thus there is a

natural way to associate to a linear section of S which is a Fano threefold, a K3 sur-

face, resp. a canonical curve, the orthogonal linear section of S4, which is a canonical

curve, a K3 surface, resp. a Fano threefold of degree 12.

Proof. Assume that c A X ¼ P7þk VS is a singular point. We can represent P7þk as
the intersection of 8 � k hyperplanes, so that X ¼ SVP14

u0
V � � �VP14

u7�k
. As c is a sin-

gular point, we can replace the ui by some linear combinations of them in such a way
that c A P4

u0
¼ Sing Hu0

. We can even represent X as the intersection SVP14
u0
V � � �V

P14
u7�k

with ui A �XX , since the span of the dual section �XX ¼ �PP7�k VS4 is the whole �PP7�k.

By reflexivity of tangent spaces, c A P4
u0

implies that Tu0
S4HHc ¼ P14

c VS4. We
can complete c to a sequence c ¼ c0; . . . ; c7þk in such a way that �XX ¼ S4VP14

c0
V � � �V

P14
c7þk

, and the fact that P14
c0

contains the tangent space Tu0
S4 implies that u0 is a sin-

gular point of �XX . We have proven that if X is singular, then �XX is. By the symmetry of
the roles of X and �XX , the converse is also true. r

For future reference, we will cite the following lemma on plane sections of S. As
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S is an intersection of quadrics, every nonempty section of it by a plane P2 is either a
0-dimensional scheme of lengthc 4, or a conic (possibly reducible), or a line, or
a line plus a point, or the whole plane. Mukai proves that the case of length 4 is
impossible:

Lemma 3.3. S has no 4-secant 2-planes.

Proof. This is Proposition 1.16 of [28]. r

Lemma 3.4. For any w A S�, the singular locus of Hw is a projective space P4, linearly

embedded into P15, and it consists only of points of multiplicity 2. Denote this P4

by P4
w, and its complement HwnP4

w by Uw. Then the linear projection prw : Uw ! P9

with center P4
w is surjective onto the Grassmannian Gð2; 5ÞHP9 and induces on Uw the

structure of the universal vector subbundle of C5 � Gð2; 5Þ of rank 3.

Proof. The statement about the multiplicity of Hw at the tangency locus fol-
lows from Formulas (3)–(5) and Proposition 2.6 in [28], saying that multv Uw ¼
1
2 ðdimP4

v VP4
w þ 1Þ.

The fact that the tangency locus of P14
w is a linearly embedded P4 follows from

a quite general observation, which one can refer to as the reflexivity property of the
tangent spaces (see [20]): Let Y HPN , Y � HPN4 be dual to each other, dim Y ¼ n,
dim Y � ¼ n�. Then for any nonsingular point ½H � A Y � representing a hyperplane
H in PN , the latter is tangent to Y along the linear subspace P of dimension
N � n� � 1, consisting of all the points ½h� A PN such that T½H �Y

� H h (a point
½h� A PN represents a hyperplane hHPN4). In our case N ¼ 15, n ¼ n� ¼ 10, so the
tangency locus P is P4. Now write down the projection with center P in coordinates.
By homogeneity of S104

12 , we can choose coordinates ðu : X̂X : ~yyÞ in such a way that
w ¼ ð1 : 0̂0 :~00Þ (in dual coordinates), so that the equation of the hyperplane section is

Hw ¼ SV ðu ¼ 0Þ:

In these coordinates, Hw HP14
w is defined by the restrictions of the Equations (2)

for SHP15:

~00 ¼ ~PfPfðX̂XÞ and X̂X~yy ¼ 0:

Therefore either rk X̂X ¼ 2 or X̂X ¼ 0̂0, and

Hw ¼ Uw UP4
w;

where

Uw ¼ fð0 : X̂X : ~yyÞ A Hc : rk X̂X ¼ 2; ~yy A ker X̂Xg;

and
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P4
c ¼ Hc � Uc ¼ fð0 : X̂X : ~yyÞ A Hc : rk X̂X ¼ 0g ¼ fð0 : 0̂0 : ~yyÞ : ~yy A C5g:

The constraint rk X̂X ¼ 2 cuts out exactly the Grassmannian Gð2; 5Þ, and ~yy A ker X̂X

defines the universal kernel bundle of rank 3 on it. This proves our assertion. r

Now let X ¼ SVP7þk for k ¼ �1; 0 or 1 be a general linear section of the spinor
tenfold, and �XX ¼ �PP7�k VS4 its dual. For any w A �XX , let prw : Uw ! Gð2; 5Þ be the
linear projection of Lemma 3.4. We have X HHw, and the nonsingularity of X im-
plies that X VP4

w ¼ q, that is X HUw. Let pw ¼ prwjX . Note that X is a linear sec-
tion of Uw and the fibers of prw are linear subspaces in Uw, so the fibers of pw are
also linear subspaces. They are obviously 0-dimensional if X is a curve ðk ¼ �1Þ. As
PicðX Þ ¼ Z for k ¼ 0; 1, they are 0-dimensional in these cases as well, and hence pw

is a linear isomorphism of X onto its image in Gð2; 5Þ. Moreover, X ¼ P7þk VUw,
hence hXi ¼ P7þk does not meet P4

w and pwðhXiÞ ¼ hpwðX Þi is of dimension 7 þ k.
We will now investigate an arbitrary linear embedding of X into Gð2; 5Þ. To this

end, we will need Mukai’s description of the embedding of X into the spinor tenfold.
Let us forget that our X is a linear section of S and construct a spinor embedding of
it in a functorial way. Consider X as a projectively normal subvariety of some pro-
jective space P7þk and denote by IX the ideal sheaf of X in this projective space.
According to [27], [28], the vector space V ¼ H 0ðP7þk;IX ð2ÞÞ is 10-dimensional, the

subspace Up ¼ H 0ðP7þk;IX ð2 � 2pÞÞHV is 5-dimensional for any p A X , and this
yields a map hX : X ! Gð5;VÞ, p 7! Up. There is only one quadratic relation be-
tween the elements of V (Theorem 4.2, [28]) providing a quadratic form qV on V ,
and all the spaces Up are maximal isotropic with respect to qV . Thus the image of hX

lies on one of the spinor varieties SG in Gð5;VÞ associated to the quadratic form qV .
Mukai proves (Theorem 0.4, ibid.) that hX is an isomorphism onto its image. Let us
declare this spinor variety to be Sþ, and denote the image of X by Xþ. Then �XX is nat-
urally embedded into S�, with image X�, and we can use the incidence Formulas (3),
(4) and (5).

Lemma 3.5. Let X be as above, and i : X ,! Gð2; 5Þ a projective linear embedding,
U ¼ H 0ðhGi;IGð2ÞÞ the 5-dimensional space of quadrics passing through G. Assume

that the natural map i� : U ! V is injective and that i�ðUÞ is maximal isotropic with

respect to qV . Then there exists w A X� such that the map i � h�1
X : Xþ ,! Gð2; 5Þ and

the restriction pw : Xþ ! Gð2; 5Þ of the projection prw defined in Lemma 3.4 are equiv-

alent under the action of PGLð5Þ on Gð2; 5Þ.

Proof. Consider G ¼ Gð2; 5Þ in its Plücker embedding in P9 and identify U with
its image in V . We have dim U ¼ 5 and Zp ¼ H 0ðhGi;IGð2 � 2pÞÞHU is 2-
dimensional for every p A Y . This defines a linear isomorphism z : G ! Gð2;UÞ.
Thus, the original embedding i : X ,! Gð2; 5Þ is equivalent to the map zX :¼ z � i :
X ,! Gð2;UÞ, sending a point p A X to the 2-plane Zp ¼ U VUp. By (4), w ¼
½U � A S�, by (5), Xþ HHw, and we obtain the linear projection pw : Xþ ! Gð2; 5Þ.
Let us complete U ¼ Uy to a decomposition V ¼ U0 lUy of V into the direct
sum of maximal isotropic subspaces. Then, as in the proof of Proposition 5.2(i),
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w ¼ sUy A S� and pwðpÞ is the Plücker image x ¼ xUp VUy
of the 2-plane

Zp ¼ U VUy. This ends the proof. r

Lemma 3.6. Let X be a nonsingular Fano 3-fold ðk ¼ 1Þ or a K3 surface of genus 7
with Picard number 1 ðk ¼ 0Þ. Then for any linear embedding i : X ,! Gð2; 5Þ such

that the map i� : U ¼ H 0ðhGi;IGð2ÞÞ ! V ¼ H 0ðhXi;IX ð2ÞÞ is injective, U is a

maximal isotropic subspace of V with respect to the quadratic form qV .

Proof. Assume that U is not isotropic. Then qV defines a 3-dimensional quadric Q in
PðUÞ. In the notation from the proof of Lemma 3.5, the isotropy of the 5-spaces Up

implies that the projective lines PðU VUpÞ ðp A XÞ are all contained in Q. Thus the
map p 7! PðU VUpÞ, projectively equivalent to i, transforms X isomorphically onto
a subvariety of the family of lines Gð1;QÞ on the 3-dimensional quadric Q.

Let k ¼ 1, that is X is a Fano threefold. If Q is nonsingular, Gð1;QÞFP3, and this
is absurd, as X VP3. If Q is of rank 4, then the family of lines on Q has two com-
ponents, each one of which is a P2-bundle over P1; this is absurd because X does not
contain any plane. The cases of smaller rank lead also to contradictions, hence U is
isotropic.

The argument is similar for the case of a K3 surface: if rk Q ¼ 5, then X HP3,
which is absurd, and if rk Q ¼ 4, then X has a pencil of curves defined by the P2-
bundle over P1, but the generic K3 surface has no pencils of curves. r

Similar statements hold also in the case k ¼ �1, but the proof uses vector bundle
techniques and is postponed until Section 5.

4 Elliptic quintics and rank-2 vector bundles on X12

Let X ¼ X12 ¼ P8 VS be a Fano 3-dimensional linear section of the spinor tenfold
S. An elliptic quintic in X is a nonsingular irreducible curve C HX of genus 1 and
of degree 5. We will also deal with degenerate ‘‘elliptic’’ quintics, which we will call
just quasi-elliptic quintics. A quasi-elliptic quintic is a locally complete intersection
curve C of degree 5 in X , such that h0ðOCÞ ¼ 1 and the canonical sheaf of C is trivial:
oC ¼ OC . A reduced quasi-elliptic quintic will be called a good quintic.

Lemma 4.1. Let C A X be a quasi-elliptic quintic. Then hCi ¼ P4, where the angular

brackets denote the linear span.

Proof. Assume that C HP3. Then a general section of C by a plane P2 HP3 is a
0-dimensional scheme of length 5. This contradicts Lemma 3.3. Hence dimhCid 4.

To prove the opposite inequality, it su‰ces to show that h0ðC;OCð1ÞÞc 5. This
follows from the Serre duality and the Riemann–Roch formula. r

Starting from any quasi-elliptic quintic C HX , one can construct a rank-2 vector
bundle E with Chern classes c1ðEÞ ¼ 1, c2ðEÞ ¼ 5. It is obtained as the middle term
of the following nontrivial extension of OX -modules:
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0 ! OX ! E ! ICð1Þ ! 0; ð7Þ

where IC ¼ IC;X is the ideal sheaf of C in X . One can easily verify (see [22] for a
similar argument) that, up to isomorphism, there is a unique nontrivial extension (7),
thus C determines the isomorphism class of E. This way of constructing vector bun-
dles is called Serre’s construction. The vector bundle E has a section s whose scheme
of zeros is exactly C. Conversely, for any section s A H 0ðX ;EÞ such that its scheme
of zeros ðsÞ0 is of codimension 2, the vector bundle obtained by Serre’s construction
from ðsÞ0 is isomorphic to E. As detEFOX ð1Þ, we have EFE4ð1Þ.

The proofs of the following three lemmas are standard; see, for example, [22],
where similar facts are proved for elliptic quintics in a cubic threefold.

Lemma 4.2. For any quasi-elliptic quintic C HX , the associated vector bundle E pos-

sesses the following properties:

(i) h0ðEÞ ¼ 5, hiðEð�1ÞÞ ¼ 0 for i A Z, and hiðEðkÞÞ ¼ 0 for i > 0, k d 0.

(ii) E is stable and the local dimension of the moduli space of stable vector bundles at

½E� is at least 1.

(iii) The scheme of zeros ðsÞ0 of any nonzero section s A H 0ðX ;EÞ is a quasi-elliptic

quintic.

(iv) If s; s 0 are two nonproportional sections of E, then ðsÞ0 0 ðs 0Þ0. This means that

ðsÞ0 and ðs 0Þ0 are di¤erent subschemes of X .

Lemma 4.3. Let E be a vector bundle as in Lemma 4.2, C the scheme of zeros of any

nonzero section of E, and NC=X its normal bundle. Then the following properties are

equivalent:

(i) h1ðNC=X Þ ¼ 0;

(ii) h0ðNC=X Þ ¼ 5;

(iii) h1ðE4nEÞ ¼ 1;

(iv) h2ðE4nEÞ ¼ 0.

If one of the properties (i)–(iv) is true, then we have:
(a) The Hilbert scheme Hilb5n

X of subschemes in X with Hilbert polynomial wðnÞ ¼ 5n

is smooth and of dimension 5 at the point ½C � representing C.
(b) The moduli space MX ¼ MX ð2; 1; 5Þ of stable vector bundles of rank 2 with

Chern classes c1 ¼ 1, c2 ¼ 5 is smooth and of dimension 1 at the point ½E� representing

the vector bundle E.
(c) ½E� has a Zariski neighbourhood U in MX with a universal vector bundle E over

U � X , and the projective bundle Pðpr1� EÞ is isomorphic to an open subset HU of

Hilb5n
X via a map that can be defined pointwise on the fiber over each point t A U by

s 7! ðsÞ0, where s A ðpr1� EÞt ¼ H 0ðX ;EtÞ.
The map ½D� 7! ½ED� given by Serre’s construction is a smooth morphism from HU

onto U with fiber P4 ¼ PH 0ðEDÞ.
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Lemma 4.4. Let E be a vector bundle as in Lemma 4.2, C the scheme of zeros of

any nonzero section of E, and NC=X its normal bundle. Then h2ðE4nEÞ0 0 if and

only if NC=X is a decomposable vector bundle on C. In this case NC=X FOC lOCð1Þ
and h2ðE4nEÞ ¼ h1ðNC=X Þ ¼ 1.

Now we will exploit the restrictions of the vector bundles E to the hyperplane sec-
tions H HX , which are K3 surfaces of genus 7.

Lemma 4.5. Let E A MX ð2; 1; 5Þ, H a general hyperplane section of X , and EH ¼ EjH
the restriction of E to H. Then EH is stable and has the following cohomology:
h0ðEHÞ ¼ 5, h1ðEHðnÞÞ ¼ 0 for all n A Z, h2ðEHðnÞÞ ¼ 0 for all nd 0.

Proof. By [24], Theorem 3.1, EH is Mumford–Takemoto semistable for general
H. Hence h0ðEHð�1ÞÞ ¼ 0, and the determinant of EHð�1Þ being odd, the semi-
stability is equivalent to the stability. We have wðEHÞ ¼ 5 and h2ðEHÞ ¼ h0ðEHð�1ÞÞ
¼ 0, so h0ðEHÞd 5. Let s be a section of EH and Z ¼ ðsÞ0 its scheme of zeros. It is
0-dimensional, because if it contained a curve from jOðkÞj, then EHð�kÞ would have
nonzero global sections. Thus s defines a Serre triple

0 ! O ! EH ! IZð1Þ ! 0 ð8Þ

which provides the equivalence

h0ðEHÞ ¼ 5 þ k , dimhZi ¼ 3 � k;

where the angular brackets denote the linear span. If we assume that h0ðEHÞ > 5,
then Z HP2, which contradicts Lemma 3.3. Hence h0ðEHÞ ¼ 5, hiðEHÞ ¼ 0 for i > 0.
Twisting (8) by OðnÞ, we deduce the remaining assertions. r

In fact, by the same arguments as above, one proves:

Lemma 4.6. Let S be any nonsingular surface linear section of S10
12 by a subspace

P7 with Picard group Z. Then a rank-2 vector bundle E on S with Chern classes

c1 ¼ 1, c2 ¼ 5 is stable if and only if it is obtained by Serre’s construction from a zero-

dimensional subscheme Z of S whose linear span is P3. The twists EðnÞ of any such

vector bundle on S have the same cohomology as EH in Lemma 4.5.

Lemma 4.7. Let E A MX ð2; 1; 5Þ. Then hiðEð�1ÞÞ ¼ 0 for all i A Z, and E can be

obtained by Serre’s construction from a quasi-elliptic quintic C HX . Hence E satisfies

also the properties (i), (iii), (iv) of Lemma 4.2.

Proof. The exact triple

0 ! Eðn � 1Þ ! EðnÞ ! EHðnÞ ! 0 ð9Þ

for generic H together with Lemma 4.5 implies that h2ðEðn � 1ÞÞ ¼ h2ðEðnÞÞ
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and h1ðEðn � 1ÞÞd h1ðEðnÞÞ for all nd 0. By the Kodaira vanishing theorem,
h2ðEðnÞÞ ¼ 0 for ng 0, hence h2ðEðnÞÞ ¼ 0 for all nd�1. Now look at the same
triple for n ¼ 0. By stability and Serre duality, h0ðEð�1ÞÞ ¼ h3ðEð�1ÞÞ ¼ 0; and
we have just proved that h2ðEð�1ÞÞ ¼ 0, which implies, by Serre duality, that
h1ðEð�1ÞÞ ¼ 0. Hence h1ðEðnÞÞ ¼ 0 for all nd 0. As wðEÞ ¼ 5, h0ðEÞ ¼ 5. Take
any section s0 0 of E. Its scheme of zeros C ¼ ðsÞ0 is of codimension 2, because
h0ðEð�1ÞÞ ¼ 0, so E is obtained by Serre’s construction from C. r

5 The map rX : �XX ?MX

Let X ¼ P7þk VS for k ¼ �1; 0 or 1 be a nonsingular linear section of the spinor
tenfold S, and �XX ¼ �PP7�k VS4 its dual. In the case k ¼ 0, assume that X is su‰ciently
general, so that Pic X FZ. In the case k ¼ �1, assume that X is a generic curve of
genus 7.

Let MX be the moduli space MX ðr; c1; c2Þ of stable vector bundles of rank r ¼ 2 on
X with Chern classes c1 ¼ 1, c2 ¼ 5 in the cases when X is K3 or Fano ðk ¼ 0; 1Þ,
and the non-abelian Brill–Noether locus W a

r;K of stable vector bundles on X of rank

r ¼ 2 with canonical determinant K and with at least a ¼ 5 global sections in the case
when X is a canonical curve ðk ¼ �1Þ. In Proposition 5.2, we will construct a natural
morphism r ¼ rX : �XX ! MX .

Lemma 5.1. Let i : G ! Gð2; 5Þ be an embedding of a generic canonical curve of genus

7, linear with respect to the Plücker coordinates and such that hiðGÞi ¼ P6. Let QG

be the universal quotient rank-2 bundle on G ¼ Gð2; 5Þ and E ¼ i�QG. Then E is stable

and h0ðEÞ ¼ 5.

Proof. Assume that h0ðEÞ < 5. Then there is a section of QG vanishing identically on
the image of G. The zero loci of the sections of QG are the sub-Grassmannians Gð2; 4Þ
in G, so i embeds G into some Gð2; 4ÞHG. This is absurd, because the linear span of
Gð2; 4Þ is P5, but by hypothesis, that of iðGÞ is P6. Thus, h0ðEÞd 5 and the restric-
tion map i� : H 0ðG;QGÞ ! H 0ðG;EÞ is injective. Denote by W the image of i�. The
initial embedding i is projectively equivalent to the map

jW : x A G 7! W?
x ¼ fu A W4j uðsÞ ¼ 0 for all s A Wxg A Gð2;W4Þ;

where Wx ¼ fs A W j sðxÞ ¼ 0g is of codimension 2 for any x A G.
Assume that E is non-stable. Then there is an exact triple

0 ! L1 ! E ! L2 ! 0;

in which L1;L2 are line bundles, L2 ¼ oG nL�1
1 and deg L1 d 6. Remark first that

the case h0ðL2Þ ¼ 0 is impossible. Indeed, in this case all the sections of E are those of
the line subbundle L1 and the subspaces Wx are of codimension 1.

Assume now that h0ðL2Þ ¼ 1. Then either W HH 0ðG;L1Þ and this brings us to a
contradiction as above, or the map W ! H 0ðG;L2Þ is surjective. In the latter case
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the Plücker image of jW ðGÞ is contained in a linear subspace P3 of P9 of the form
he15e5; e25e5; e35e5; e45e5i, where e1; . . . ; e5 is a basis of W4 such that e5 gener-
ates the image of the natural inclusion H 0ðG;L2Þ4! W4. This is absurd, because
jW is projectively equivalent to i and the linear span of iðGÞ is P6.

Hence h0ðL2Þd 2. As G has no g1
4 , we have deg L2 d 5. Hence deg L2 ¼ 5 or 6.

1st case: deg L1 ¼ deg L2 ¼ 6. By Riemann–Roch, h0ðL1Þ ¼ h0ðL2Þ. As h0ðEÞ
must be at least 5, we have h0ðLiÞd 3, i ¼ 1; 2. Therefore G has two (possibly coin-
cident) g2

6 ’s. By [1], Theorem V.1.5, the expected dimension of the family G r
d of linear

series gr
d on a curve of genus g is rg;d; r ¼ g � ðr þ 1Þðg � d þ rÞ, and G r

d ¼ q for a

generic curve of genus g if rg;d; r < 0. Hence a generic G of genus 7 has no g2
6 ’s.

2nd case: deg L1 ¼ 7, deg L2 ¼ 5. If h0ðL2Þd 3, then G has a g2
5 , which is impos-

sible by the same argument as above. So, h0ðL1Þ ¼ 3, h0ðL2Þ ¼ 2. The Bockstein
morphism d : H 0ðL2Þ ! H 1ðL1Þ being given by the cup-product with the extension
class e A H 1ðL1 nL�1

2 Þ ¼ H 0ðLn2
2 Þ4, the vanishing of d implies that of e. Hence

E ¼ L1 lL2. Let s1; s2; s3 be a basis of H 0ðL1Þ and t1; t2 that of H 0ðL2Þ. Then jW

can be given in appropriate Plücker coordinates by x 7! ðs1ðxÞe1 þ s2ðxÞe2 þ s3ðxÞe3Þ
5ðt1ðxÞe4 þ t2ðxÞe5Þ. Thus if we fix t ¼ ðt1 : t2Þ we will get a plane P2

t ¼ he1; e2; e3i5
ðt1e4 þ t2e5Þ in Gð2; 5Þ which meets jW ðGÞ in 5 points in which ðt1ðxÞ : t2ðxÞÞ ¼
ðt1 : t2Þ. This contradicts Lemma 3.3.

According to [3], the non-abelian Brill–Noether loci W a
2;K on a generic curve

of genus gc 8 are empty if and only if their expected dimension d ¼ 3g � 3�
aðaþ 1Þ=2 is negative. Hence in our case W 6

2;K ¼ q and h0ðEÞ ¼ 5. r

Proposition 5.2. Denote by prw : Uw ! Gð2; 5Þ for any w A �XX the linear projection of

Lemma 3.4. We have X HUw ¼ HwnP4
w. Let pw ¼ prwjX . It is an isomorphism of X

onto its image in Gð2; 5Þ. Define a rank-2 vector bundle E ¼ Ew on X as the pullback of

the universal quotient rank-2 bundle on the Grassmannian: Ew :¼ p�
wQGð2;5Þ. Then Ew is

stable and the map r ¼ rX : w 7! ½Ew� is a morphism from �XX to MX . Any vector bundle

E in the image of r possesses the following properties.
(i) h0ðEÞ ¼ 5 and if k ¼ 0 (resp. k ¼ 1), then E is obtained by Serre’s construction

from a l. c. i. 0-dimensional subscheme Z of length 5 such that hZi ¼ P3 (resp. from a

quasi-elliptic quintic C HX ).
(ii) E is globally generated and, for a generic section s of E, ðsÞ0 is a smooth elliptic

quintic if k ¼ 1 and a subset of 5 distinct points if k ¼ 0.
(iii) Let k ¼ 1, that is X is a Fano threefold. Then the family of singular curves

ðsÞ0 ðs A H 0ðEÞÞ is a divisor in PH 0ðEÞ. For generic p A X , there are at most three

curves ðsÞ0 which are singular at p.

Proof. In the case k ¼ �1, the wanted assertion is an immediate consequence of
Lemma 5.1. Consider now the case k ¼ 1. It implies easily the one of k ¼ 0 by taking
hyperplane sections. We will first prove Part (i), and the stability of Ew will follow
from Lemma 4.2.

(i) The sections of QGð2;5Þ are in a natural one-to-one correspondence with linear
forms l on the 5-dimensional vector space W , if we think of Gð2; 5Þ as the variety
of 2-planes P in W , the fiber Qt of QGð2;5Þ at t A Gð2; 5Þ being just P4. Let sl be the
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section of QGð2;5Þ associated to l; denote by the same symbol the induced section of
pr�w QGð2;5Þ and by s its restriction to X .

Let us choose coordinates ðu : xij : ykÞ in P15 in such a way that the equations of
fsl ¼ 0g acquire a very simple form. First of all, as in the proof of Lemma 3.4, we
choose the origin at w, so that w ¼ ð1 : 0̂0 :~00Þ. In a coordinate free form, we fix an
identification of S with Sþ, as in Section 2, corresponding to a decomposition V ¼
U0 lUy of a 10-dimensional vector space V endowed with a nondegenerate qua-
dratic form into the direct sum of maximal isotropic subspaces, and choose w ¼ sUy A
S�. Then by (6), the 52

Uy component of the pure spinor sU associated to any maxi-
mal isotropic U HV , ½U � A Uw ¼ HwnP4

w, is just the Plücker image x ¼ xUVUy
of the

2-plane U VUy; in the notation of (6), x ¼ e45e5. Thus the above 5-space W used
for the definition of Gð2; 5Þ is naturally identified with Uy. So, if we choose coor-
dinates ðx1; . . . ; x5Þ in Uy in such a way that l ¼ x5, we obtain the following equa-
tions for the zero locus of sl in the Plücker coordinates associated to ðx1; . . . ; x5Þ:
x15 ¼ x25 ¼ x35 ¼ x45 ¼ 0. To these, one should add the equation u ¼ 0 of Hw and
the 10 quadratic ones for S ¼ Sþ. Five of the latter ones are trivially satisfied under
the above linear constraints, so finally we obtain the following system of equations
for the closure Zl of fsl ¼ 0gHUw in P15:

u ¼ x15 ¼ x25 ¼ x35 ¼ x45 ¼ 0

qþ
5 ¼ x12x34 � x13x24 þ x23x14 ¼ 0

q�
1 ¼ x12 y2 þ x13 y3 þ x14 y4 ¼ 0

q�
2 ¼ �x12 y1 þ x23 y3 þ x24 y4 ¼ 0

q�
3 ¼ �x13 y1 � x23 y2 þ x34 y4 ¼ 0

q�
4 ¼ �x14 y1 � x24 y2 � x34 y3 ¼ 0

The five quadratic equations are just (up to sign) the quadratic Pfa‰ans of the
skew-symmetric matrix

M ¼

0 �y1 y2 �y3 y4

y1 0 x34 x24 x23

�y2 �x34 0 x14 x13

y3 �x24 �x14 0 x12

�y4 �x23 �x13 �x12 0

2
666664

3
777775:

By an obvious linear change of variables, we see that the quadratic Pfa‰ans of M

define the 6-dimensional Grassmannian Gð2; 5Þ in the projective space P9 with co-
ordinates y1; y2; y3; y4; x12; x13; x14; x23; x24; x34, and in taking into account the coor-
dinate y5 missing in all the equations, we conclude that Zl is the 7-dimensional cone
over Gð2; 5Þ with vertex ð0 : . . . : 0 : 1Þ A P15.

It is well known that the degree of Gð2; 5Þ is 5 and that its curve linear sections
are quintics with trivial canonical bundle [10], so the same property is true for Zl,
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if one considers only complete intersection linear sections (that is, defined by 6
equations). Adding to the above equations of Zl the 6 linear equations of X in Hw,
we obtain the wanted zero locus ðsÞ0 of s ¼ sljX as a linear section of Zl of expected
dimension 1. If it is indeed a curve, we are done. It cannot contain a surface, be-
cause the degree of the surface would not exceed 5, but the Picard group of X is
generated by the class of hyperplane section which is of degree 12. Finally, s can-
not be identically zero. Indeed, assume the contrary. The map pw projects X line-
arly and isomorphically onto its image X in Gð2; 5Þ, and the fact that s1 0 means
that X is contained in the zero locus of sl. The latter is the Schubert subvariety
s11ðLÞ, where L denotes the hyperplane l ¼ 0 in V , that is the Grassmannian Gð2; 4Þ
of vector planes contained in L. This is impossible, because X cannot be repre-
sented as a hypersurface in a 4-dimensional quadric. This proves the wanted as-
sertion about the loci ðsÞ0 and that H 0ðGð2; 5Þ;QGð2;5ÞÞ is mapped injectively into
H 0ðX ;EwÞ.

(ii) QGð2;5Þ is globally generated, hence so is Ew ¼ p�
wQGð2;5Þ. The smoothness of the

zero locus of the generic section follows then by Bertini’s Theorem.
(iii) Consider X as a subvariety of Gð2; 5Þ. Let us verify that for any p A X , there

is a Grassmannian Gð2; 4Þ ¼ s11ðLÞ passing through p and such that its intersec-
tion with X is not transversal at p, that is, dim TpX VTpGð2; 4Þ > 1. To this end,
choose a basis e1; . . . ; e5 of C5 in such a way that p ¼ ½e15e2�. We may assume that
s11ðL0ÞVX is a smooth elliptic quintic, where L0 ¼ he1; e2; e3; e4i and that TpX is
not contained in the span P5 of s11ðL0Þ. Assume also that there is no line on s11ðL0Þ
through p whose tangent direction coincides with that of the elliptic quintic; the case
when there is one is treated similarly. Under this assumptions we can represent a
basis of TpX in the form ðe15e3 þ e25e4; e15e5 þ a14e15e4 þ a23e25e3 þ a24e25
e4; e25e5 þ b14e15e4 þ b23e25e3 þ b24e25e4Þ, where aij ; bij are constants. Any L

such that p A s11ðLÞ is given by the equation a3x3 þ a4x4 þ a5x5 ¼ 0. Then Tps11ðLÞ
is spanned by four bivectors ei5vj, 1c i; j c 2, where ðv1; v2Þ is a basis of the vector
plane fa3x3 þ a4x4 þ a5x5 ¼ 0gH he3; e4; e5i. For example, if a5 0 0, then one can
choose v1 ¼ �a5e3 þ a3e5, v2 ¼ �a5e4 þ a4e5. It is an easy exercise to check that the
7 � 8 matrix of components of the vectors generating TpX þ Tps11ðLÞ is of rank < 6
for at least one value of ða3 : a4 : a5Þ A P2, and if the number of such values is finite,
then it is at most three. Since a generic curve ðsÞ0 A PH 0ðEÞ is smooth, the family of
singular ones is at most three-dimensional. We have seen that the subfamily Zp of
curves ðsÞ0 A PH 0ðEÞ singular at p is nonempty for any p A X , hence, by a dimension
count, Zp is finite for generic p. This ends the proof. r

Part (ii) of the proposition implies the following corollary.

Corollary 5.3. In the case k ¼ 1, the family of elliptic quintics in X is nonempty.

For instance, we have not even verified that the morphism r : �XX ! MX is non-
constant. This follows from the next lemma.

Proposition 5.4. The image of r is an irreducible component M 0
X of MX .
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Proof. It su‰ces to prove that the image of r is open. Let E0 be a vector bundle on X

in the image of r. Then E0 is generated by global sections and the natural quotient
map H 0ðX ;E0ÞnOX ! E0 defines a linear embedding of X into the Grassmannian
Gð2; 5Þ of 2-dimensional quotients of C5 ¼ H 0ðX ;E0Þ. This is an open property and
it will be verified for a vector bundle E in a neighborhood of E0 in MX . Also the
conditions in the hypotheses of Lemmas 3.5, 3.6 are open, so, in the cases when X is
either a K3 surface or a Fano threefold (k ¼ 0 or 1), the embedding of X into Gð2; 5Þ
by global sections of E is given, up to a linear change of coordinates, by the projec-
tion pw for some w A �XX , and hence E is in the image of r. The case k ¼ �1 follows in
the same manner from Lemma 5.5 below. r

Lemma 5.5. Let X ¼ G be a generic canonical curve of genus 7. Under the hypotheses

of Lemma 5.1, suppose in addition, as in Lemma 3.6, that the map i� : U ¼ H 0ðhGi;
IGð2ÞÞ ! V ¼ H 0ðhXi;IX ð2ÞÞ is injective. Then U is a maximal isotropic subspace

of V with respect to the quadratic form qV .

Proof. Assume that U is not isotropic. As in the proof of Lemma 3.6, qV defines a
3-dimensional quadric Q in PðUÞ and the isotropy of the 5-spaces Up implies that
the projective lines PðU VUpÞ are all contained in Q. Let E ¼ i�ðQGÞ be the pullback
of the universal quotient rank-2 vector bundle on G ¼ Gð2; 5Þ. The fiber of E over
p A X is canonically identified with the dual of the 2-plane U VUp. By Lemma 5.1, it
is stable and h0ðX ;EÞ ¼ 5. We can now apply Proposition 4.1 of [3], which yields the
injectivity of the modified Petri map Sym2ðH 0ðX ;EÞÞ ! H 0ðX ; Sym2ðEÞÞ. Further,
the authors of [3] prove in the claim on p. 267 that the injectivity of the modified Petri
map is equivalent to the following property: there is no quadric Q in PðH 0ðX ;EÞ�Þ
containing all the lines PðExÞ for x A X . This ends the proof. r

Proposition 5.6. Let k ¼ �1, that is, X is a generic canonical curve of genus 7. Then

MX is a Fano threefold of genus 7 and rX : �XX ! MX is an isomorphism of Fano

threefolds.

Proof. Mukai [30] has proved that MX is a Fano threefold of genus 7 with Picard
number 1. By Proposition 5.4, rX is surjective. It is easy to see that any non-constant
morphism between two Fano threefolds of genus 7 with Picard number 1 is an iso-
morphism. Indeed, let f : X1 ! X2 be such a morphism. The fact that Pic X1 FZ
implies that f is finite of degree dd 1. Suppose that d > 1. As X1;X2 are smooth, the
ramification divisors Di HXi are smooth surfaces. Let Hi be a hyperplane section of
Xi. We have, for some positive integers d > 1, ed 1, the following relations:

f �H2 @ dH1; KXi
@�Hi; f �D2 @D1; KX1

@ f �KX2
þ ðe � 1ÞD1:

One deduces immediately the relations

D1 @
d � 1

e � 1
H1; D2 @

d � 1

d
� e

e � 1
H2:
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As the Di are integer multiples of Hi, we conclude that d ¼ e and Di @Hi ði ¼ 1; 2Þ.
Hence PicðX2nD2Þ ¼ 0, and this contradicts the fact that f induces a non-ramified
covering of X2nD2. Hence d ¼ 1 and f is an isomorphism. r

Proposition 5.7. If k ¼ 0, that is, X is a K3 surface, then MX ¼ M 0
X is a K3 surface;

in particular, it is irreducible and nonsingular. Moreover, if X is generic, then rX :
�XX ! MX is an isomorphism of K3 surfaces.

Proof. The first assertion is due to Mukai (Proposition 4.4 in [26], or Theorem 6.1.8
in [11]). The fact that rX is an isomorphism follows, as above, from Proposition 5.4
and the fact that there are no surjective morphisms between K3 surfaces that are not
isomorphisms. r

Corollary 5.8. If k ¼ 0, that is, X is a K3 surface with Picard number 1, then any

E A MX is globally generated, and for generic s A H 0ðX ;EÞ, the zero locus ðsÞ is a set

of 5 distinct points which span P3.

Proof. By Proposition 5.7, MX is the image of r and the wanted assertions follow
from Proposition 5.2. r

Proposition 5.9. Let k ¼ 1, that is, X is a generic prime Fano threefold of degree 12.
Then any E A MX is globally generated and the curve ðsÞ is a (smooth) elliptic quintic

for generic s A H 0ðX ;EÞ.

Proof. In the setting of Lemma 4.7, we deduce from the restriction isomorphism
H 0ðX ;EÞ ! H 0ðH;EHÞ and from Corollary 5.8 that for generic s A H 0ðX ;EÞ, the
curve Cs ¼ ðsÞ0 is reduced and may be singular only at a finite set of points T HX

where E is not generated by global sections. If the restriction EH of E to some K3
linear section H of X through a point x A T were stable, we would apply the same
argument to see that EH , and hence E itself is globally generated, which would be a
contradiction. Hence T possesses the property that for any x A T and for any non-
singular K3 linear section H passing through x, EH is unstable. By Lemma 4.7 and
the restriction exact sequence (9), h0ðEHð�1ÞÞ ¼ 0, hence EH is stable for any non-
singular K3 linear section H of X such that PicðHÞFZ. By Theorem 5.4 of [25], this
condition is verified for a very general H (‘‘very general’’ means ‘‘in the complement
of a union of countably many Zarisky closed subsets’’). But the proof in [25] actually
implies a subtler result in dimension 3:

Lemma 5.10 (Moishezon). Let V be a nonsingular projective 3-fold and fHtgt AP1 a

Lefschetz pencil of hyperplane sections of V such that h2;0ðHtÞ > h2;0ðVÞ for the non-

singular members Ht of the pencil. Assume also that the base locus of the pencil is a

nonsingular curve. Then the restriction map PicðVÞ ! PicðHtÞ is an isomorphism for a

very general t A P1.

It is easy to see that through any point x A X passes a Lefschetz pencil of K3 linear
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sections satisfying the hypothesis of the lemma. Hence E is globally generated and T

is empty. r

6 Takeuchi–Iskovskikh–Prokhorov birational maps

The general setting for the constructions of the two birational maps that we will dis-
cuss is as follows: let X be a Fano 3-fold, and Z HX a point or a nonsingular curve.
Let X 0 be the blowup of Z. Assume that the linear system j�nKX 0 j for some n > 0
defines a nontrivial birational morphism. Then it has only finitely many positive-
dimensional fibers, which are curves, there exists a flop X 0

aXþ centered on these
curves, and the resulting variety Xþ possesses an extremal ray that can be contracted
down onto some variety Y . Sometimes Y is a 3-fold, and this is the case studied by
Takeuchi–Iskovskikh–Prokhorov. In what follows, X ¼ X12 is a prime Fano three-
fold of genus 7, Z will be either a point, or a conic in X .

In order to identify the flopping curves we will need several facts about lines and
conics in X .

Lemma 6.1. The family of lines on X is parametrized by an equidimensional reduced

curve tðXÞ. A line lHX is a regular (resp. singular) point of tðX Þ if and only if

NC=X FOP1ð�1ÞlOP1 (resp. NC=X FOP1ð�2ÞlOP1ð1Þ). For generic X , tðXÞ is a

nonsingular curve.
Every line on X meets only finitely many other lines. The union of lines RðXÞ ¼

6
v A tðX Þ lv is a surface from the linear system jOX ð7Þj, and a generic line meets 8 other

lines on X .

Proof. All the assertions, except for the nonsingularity of tðXÞ for generic X , fol-
low from [17], Proposition 1, [18], Proposition 2.1, (iv), Proposition 2.4, (iii), Lemma
2.6, and Theorem 3.1, (vii). Though the statement of the latter Theorem does not
assert that the number of lines meeting the given one is 8, the proof gives this value
(p. 808).

Let us prove the nonsingularity of tðXÞ for generic X . By [32], 6.12, the family of
lines tðSÞ on the spinor tenfold is a nonsingular irreducible 15-dimensional variety
which can be identified with the family of planes P2 contained in the 8-dimensional
quadric Q8. The identification is done as follows: the line lGP2 HSG corresponding to
a plane P2 HQ8 is the pencil fw A SG jP4

w IP2g. The family of lines contained in
the section of S by 7 generic hyperplanes is the scheme of zeros of a generic section of
the rank-14 vector bundle V ¼ 7QtðSÞ which is the 7-uple direct sum of the universal
rank-2 vector bundle. As QtðSÞ ¼ QGð2;16ÞjtðSÞ and QGð2;16Þ is generated by global sec-
tions, the same is true for V, so the generic section defines a nonsingular curve. r

Lemma 6.2. Let X be a generic Fano threefold of degree 12 with Picard number 1.
Then the family of conics on X is parametrized by a generically reduced irreducible

scheme FðX Þ of dimension 2 (the ‘‘Fano surface’’ of X ). A generic conic C is non-

singular and NC=X FOP1 lOP1 . The number of conics passing through a generic point

of X is finite.
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Proof. By Proposition 4.2.5 and Theorem 4.5.10 of [19] the scheme FðX Þ is ge-
nerically reduced and equidimensional of dimension 2, and the number of conics
passing through a generic point of X is finite. Let us prove that FðX Þ is indeed ir-
reducible.

It is obvious that the family of Fano threefold linear sections of the spinor tenfold
S that contain a fixed conic in S, if nonempty, is irreducible and of constant dimen-
sion 42. Hence the incidence variety I parametrizing the pairs ðC;XÞ, where C HX

is a conic and X is a Fano threefold linear section of S, is irreducible. The fiber of
its projection I ! Gð9; 16Þ to the second factor over X is the Fano surface FðX Þ. By
a monodromy argument, to prove the irreducibility of FðXÞ, it su‰ces to present
a distinguished component of FðXÞ for generic X . To this end, we will construct a
natural map Sym2 G ! FðX Þ, where G is the dual of X , and the wanted distinguished
component is the one containing the image of Sym2 G.

Identify S with Sþ and let u; v A GHS� be two generic points and pu; v ¼ P4
u VP4

v .
Then dim pu; v A f0; 2; 4g. The dimension is definitely not equal to 4. By the descrip-
tion of lines in S given in Lemma 6.1, it is not 2, because otherwise l�pu; v

would be a
bisecant line of G contained in S�, but this would contradict the fact that G is a linear
section of S�. So pu; v is a point. The family of all the P4’s in Q8 in each one of
the two components SG passing through a given point p is a 6-dimensional quadric
Q6G

p A SG which can be identified with an orbit of Spinð8ÞH Spinð10Þ. We can com-

plete u ¼ u1, v ¼ u2 to a family of 7 points u1; . . . ; u7 A G in such a way that X is the
intersection of Sþ with 7 hyperplanes P14

ui
, i ¼ 1; . . . ; 7. Denote Hui

the hyperplane
sections Sþ VP14

ui
.

It is easy to see that Q6þ
pu; v

HHu VHv. Indeed, if P4
þ A Q6þ

pu; v
, then u A P4

u VP4
þ, hence

P4
u VP4

þ 0q and, by (4), P4
þ A Hu. Similarly, P4

þ A Hv. Hence Q6þ
pu; v

VHu3
V � � �V

Hu7
HX is a conic.

We have constructed a rational map f : Gð2Þ ! FðXÞ, and this ends the proof. r

We will use the symbol Cg
d ½k�Z to denote the family of all the connected curves of

genus g, degree d, meeting k times a given subvariety Z. More precisely, let Z HX

be a nonsingular curve (resp. a point). Then Cg
d ½k�Z is the closure in the Chow

variety of X of the family of reduced connected curves C of degree d such that length
ðOX=ðIC þIZÞÞ ¼ k (resp. multZ C ¼ k) and pað ~CCÞ ¼ g, where ~CC is the proper
transform of C in the blowup of Z in X .

Birational isomorphisms Fp :X12 ?Y5. These are birational isomorphisms from a
given variety X ¼ X12 to a Del Pezzo threefold Y ¼ Y5 of degree 5 parametrized by
a su‰ciently general point p in X . The threefold Y5 is defined as a smooth section of
the Grassmannian Gð2; 5ÞHP9 by a subspace P6. It is a Fano threefold of index
two, that is �KY is twice the class of hyperplane section of Y .

Theorem 6.3. Let X ¼ X12 HP8 be a smooth anticanonically embedded Fano 3-fold of

index 1 and of degree 12, and let p A X be a su‰ciently general point of X . ‘‘Su‰-

ciently general ’’ here means that it does not lie on a line in X and satisfies the Condi-

tion (4.1)(**) from [19]. Then the following assertions hold:
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(a) The non-complete linear system jOX ð3 � 7pÞj defines a birational isomorphism

Fp ¼ j : X ! Y , where Y ¼ Y5 is the Fano 3-fold of index 2 and of degree 5.
(b) The one-dimensional family C0

7 ½3�p of curves C HX of degree 7, of genus 0 and

such that multpðCÞd 3 sweeps out the unique e¤ective divisor M ¼ Mp in the linear

system jOX ð5 � 12pÞj.
(c) The birational map j : X ! Y can be represented as a product j ¼ t�

k � s�1, where s : X 0 ! X is the blowup of p A X , k : X ! Xþ is a flop over the double

projection X 00 of X from p, and t : Xþ ! Y is a blow-down of the proper image

Mþ HXþ of M onto a canonical curve GHY HP6 of degree 12 (and of genus 7).
The extremal curves Cþ HXþ contracted by t are the strict transforms of the curves

C A C0
7 ½3�p.

(d) The birational map c ¼ j�1 : Y ! X is defined by the non-complete linear sys-

tem jOY ð12 � 7GÞj.
(e) The two-dimensional family C0

7 ½12�G of curves C HY of degree 7 and genus 0
meeting G 12 times sweeps out the unique e¤ective divisor N ¼ NG in the linear system

jOY ð5 � 3GÞj. The proper transform N 0 HX 0 of N coincides with the exceptional divi-

sor s�1ðpÞGP2 of s.
The extremal curves C 0 HX 0 contracted by s are the strict transforms of the curves

C A C0
7 ½12�G.

(f ) Let q1; . . . ; qe HX be all the conics on X which pass through p, q 0
1; . . . ; q 0

e HX 0

the proper transforms of q1; . . . ; qe on X 0. Let l1; . . . ; le 0 be all the bisecant lines to

G which lie on Y , and lþ1 ; . . . ; lþ0e the proper transforms of l1; . . . ; le 0 on Xþ. Then for

generic p A X we have e ¼ e 0 ¼ 24, q 0
1; . . . ; q 0

e HM 0 (resp. lþ1 ; . . . ; l
þ
e HNþ) are all the

flopping curves of k (resp. k�1), and k transforms q 0
i into lþi for an appropriate ordering

of the li ði ¼ 1; . . . ; eÞ. The map p 0
2p (resp. pþG ) is a small birational morphism con-

tracting the curves q 0
i (resp. lþi ) into isolated ordinary double points. It is given by

the linear system jKX 0 j ¼ s�jOX ð1Þ � 2pj (resp. jKXþ j ¼ t�jOY ð2Þ � Gj) and its image

X ¼ Y is a quartic threefold in P4 with only e ¼ 24 singular points p 0
2pðq 0

i Þ (resp.

pþG ðlþi Þ), i ¼ 1; . . . ; e.

The statement of the theorem is illustrated by Diagram 1.

Proof. The Parts (a)–(e) are essentially an expanded version of Theorem 4.5.8, (ii)
from Iskovskikh–Prokhorov [19]. According to loc. cit., the linear system of the
divisor N is nothing but the proper transform of j�5KXþ � 2Mþj, which coincides
with our jOX ð5 � 12pÞj. Other values of a; b in various linear systems jOX ða� bpÞj or
jOY ða� bGÞj are extracted from the preliminary material of Chapter 4 in [19] (Lem-
mas 4.1.1–4.1.9).

Now turn to the proof of (f ). By [19], Lemma 4.1.1, the small morphisms p 0
2p; p

þ
G

are given by n-th multiples of the anticanonical linear system for some n > 0. By
ibid., the proof of Proposition 4.5.10, n ¼ 1 and the image is a quartic threefold. By
Lemma 4.5.1, the image F of any flopping curve of k in X belongs to one of the three
types: a conic passing through p, a quartic with a double point at p, or a sextic with
a triple point at p. But the second and the third types are impossible, because such
curves F span P3, and hence F has a 3-dimensional family of 4-secant planes. It
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defines a 3-dimensional family of conics in X by Lemma 3.3, which contradicts the
fact that the family of conics on X is 2-dimensional. Hence the only flopping curves
in X are the conics passing through p.

By Lemma 6.2, all the conics passing through p have normal bundle Nqi=X F
OP1 lOP1 . They also have di¤erent tangent directions at p (see Remark 6.6 below),
so the curves q 0

i are disjoint. Hence Nq 0
i
=X 0 FOP1ð�1ÞlOP1ð�1Þ and k consists in

blowing up all the curves qi and blowing down the obtained exceptional quadrics
P1 � P1 along the other ruling. For such a one-storey flop, its defect ðN 0Þ3 � ðNþÞ3

is just the number e of flopping curves. It can be determined from the second For-
mula (2.6.4) of [33]; one obtains e ¼ 24.

To identify the images of q 0
i in Y , remark that the images qþ

i of q 0
i under k

are contained in Nþ and satisfy ðqþ
i Þ

2
Nþ ¼ ðqi � NþÞX ¼ �1. As Nþ @ 5t�H � 3Mþ,

where H is the hyperplane section of Y , we obtain the Equation 5 deg tðqþ
i Þ�

3 lengthðtðqþ
i ÞVGÞ ¼ �1. Further, by the general definition of a flop, all the flopping

curves have zero intersection number with the canonical class, so ðqþ
i � KXþÞ ¼ 0,

which gives the Equation 2 deg tðqþ
i Þ � lengthðtðqþ

i ÞVGÞ ¼ 0. Thus deg tðqþ
i Þ ¼ 1,

lengthðtðqþ
i ÞVGÞ ¼ 2, that is, tðqþ

i Þ is a bisecant line to G. This ends the proof of the
Theorem. r

The first application of this theorem is the following lemma.

Lemma 6.4. Let p be a generic point of X. Then all the curves C A C0
5 ½2�p, except

Diagram 1. The birational isomorphism between X12 and the Del Pezzo 3-fold Y5 ¼
Gð2; 5ÞVP6 defined by a point p A X12.
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for finitely many of them, are irreducible good quintics with only one double point

(node or cusp) at p, dimC0
5 ½2�p ¼ 1, and there is a rational dominant map of curves

p : C0
5 ½2�p ! G7

12 of degreec 3, where G7
12 is the genus-7 curve from the statement of

Theorem 6.3.

Proof. The map Fp transforms the curves C from C0
5 ½2�p into lines meeting G one

time, so all of them are rational curves with a node or a cusp, except for finitely many
ones which are transforms of lines in Y5 meeting the flopping curves. The structure of
the family of lines on Y5 is well known (see e.g. [13], [8]). There is only one variety
Y5 up to projective equivalence, and it possesses a SLð2Þ-action with three orbits:
C0

6 ;S10nC 0
6 and Y5nS10, where C0

6 is a rational normal sextic curve and S10 its tan-
gential scroll (the subscript indicates the degree). The family of lines on Y5 is para-
metrized by P2 and through any point of the k-th orbit for k ¼ 1; 2; 3 (in the above
order) pass exactly k lines. Define p by assigning to each C A C0

5 ½2�p the point of in-
tersection of FpðCÞ with G7

12. r

Birational isomorphisms Cq with a three-dimensional quadric. This is the family of
birational maps Cq : X12 ! Q2 to the three-dimensional quadric Q2 HP4 para-
metrized by a su‰ciently general conic qHX .

Theorem 6.5. Let X ¼ X12 HP8 be a smooth anticanonically embedded Fano 3-fold of

index 1 and of degree 12, and let qHX be a su‰ciently general conic in X. ‘‘Su‰-

ciently general ’’ here means that it satisfies the Conditions (4.1)(*), (**) from [19].
Then the following assertions hold:

(a) The non-complete linear system jOX ð2 � 3qÞj defines a birational isomorphism

Cq ¼ j : X ! Q, where Q ¼ Q2 is a smooth three-dimensional quadric.
(b) The one-dimensional family C0

3 ½2�q of twisted cubics C HX meeting twice the

conic q sweeps out the unique e¤ective divisor M ¼ Mq in the non-complete linear

system jOX ð5 � 8qÞj.
(c) The birational map j : X ! Y can be represented as a product j ¼ t � k � s�1,

where s : X 0 ! X is the blowup along qHX , k : X ! Xþ is a flop over the projection

X 00 of X from q, and t : Xþ ! Y is the blow-down of the proper image Mþ HXþ of

M onto a curve GHQ of degree 10 and of genus 7.
The extremal curves Cþ HXþ contracted by t are the strict transforms of the curves

C A C0
3 ½2�q.

(d) The birational map c ¼ j�1 : Q ! X is defined by the linear system

jOQð8 � 3GÞj.
(e) The one-dimensional family C0

3 ½8�G of twisted cubics on Q intersecting the curve

G in a divisor of degree 8 sweeps out the unique e¤ective divisor N ¼ NG in the linear

system jOQð5 � 2GÞj. The proper transform N 0 HX 0 of N coincides with the excep-

tional divisor s�1ðqÞGP1 � P1 of s.
The extremal curves C 0 HX 0 contracted by s are the strict transforms of the curves

C A C0
3 ½8�G.

The statement of the theorem is illustrated by Diagram 2.
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Proof. See Iskovskikh–Prokhorov [19], Theorem 4.4.11, (iii). r

Remark 6.6. According to [19], p. 66 (Remark) and Proposition 4.4.1, the Conditions
(4.1)(*)–(**) will be satisfied for a smooth conic qHX if:

a) there is a finite number of lines on X which intersect q;
b) there is a finite number of bisecant conics to q on X .
It is easy to see that the property b) is automatically verified and in fact even a

stronger condition is satisfied: there are no pairs of bisecant conics in X . Indeed, the
union of two bisecant conics has a 3-dimensional family of 4-secant planes P2, each
of which determines a conic contained in X by Lemma 3.3. This is absurd, because
the family of conics in X is 2-dimensional. It seems very likely that the property a) is
also true for any smooth conic on X .

The second birational isomorphism also provides examples of good quintics in X :

Lemma 6.7. Let q be a general conic in X. Then all but a finite number of curves of

the form qUC0
3 with C0

3 A C0
3 ½2�q are good quintics. The family of good quintics of this

form is birationally parametrized by an open set of the genus-7 curve G7
10 from Theorem

6.5.

Proof. By Part (c) of the above theorem, the strict transforms of curves from C0
3 ½2�q

with respect to s are the extremal curves of the contraction t, that is, they form the
family of P1’s in Mþ contracted to the points of G. r

Three curves of genus 7 associated to X . So far, we have associated to the Fano three-
fold X ¼ X12 three curves of genus 7: the dual linear section �XX , the curve G7

12 from
Theorem 6.3, and G7

10, the one from Theorem 6.5. Denote them by di¤erent symbols,
say, G;G 0 and G 00 respectively. We will see right now that G 0;G 00 are isomorphic; the
isomorphism with G will be deduced later from the birational isomorphisms of G;G 00

to the same component of the moduli space MX ¼ MX ð2; 1; 5Þ of vector bundles
on X .

Lemma 6.8. The intermediate Jacobian JðXÞ is isomorphic to the Jacobians of both

curves G 0;G 00, so by Torelli’s Theorem, G 0 FG 00.

Diagram 2. The birational isomorphism between X12 and the quadric 3-fold Q2 HP4 defined
by a conic qHX12.
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Proof. By [5], the intermediate Jacobian of the blowup ~YY of a smooth curve D in a
smooth projective 3-fold Y is isomorphic, as a p. p. a. v., to the product JðYÞ� JðDÞ.
As JðQ2Þ ¼ JðY5Þ ¼ 0 and the birational isomorphisms Fp;Cq are obtained by blow-
ing up or down only one nonrational curve and some sets of rational curves, we have
JðXÞF JðG 0ÞF JðG 00Þ, so the assertion follows by Torelli’s Theorem. r

The good quintics from Lemmas 6.4 and 6.7 define some vector bundles of the type
considered in Section 4. We will see that they fill an irreducible component of the
moduli space.

Lemma 6.9. Let MX ¼ MX ð2; 1; 5Þ be as in Section 4. Let p A X be a generic point and

qHX a generic conic. Let MX ðpÞ, resp. MX ðqÞ be the closure in MX of the locus of

vector bundles EC on X obtained by Serre’s construction from generic good quintics

C A C0
5 ½2�p, resp. C ¼ qUC0

3 with C0
3 A C0

3 ½2�q. Then MX ðpÞ;MX ðqÞ coincide with

a 1-dimensional irreducible component M 1
X of MX which does not depend on p; q.

Moreover, a generic vector bundle from M 1
X can be obtained by Serre’s construction

from a smooth elliptic quintic, and ðM 1
X Þred is birational to G 00.

Proof. Denote by M 1
X the closure of the union of all the MX ðpÞ, where p runs over the

open subset U A X for which the conditions of Theorem 6.3 are satisfied. A generic
E0 in any component of M 1

X is obtained by Serre’s construction from a good quintic,
so by Lemma 4.2, the family of curves ðsÞ0 of zeros of all the sections s of E0 is
P4 ¼ PH 0ðE0Þ. By Proposition 5.9, the generic curve ðsÞ0 is nonsingular. As the locus
of points of P4 corresponding to singular quintics is non-empty, it is a hypersurface
in P4, hence it is 3-dimensional. The family 6

p AU
C0

5 ½2�p being 4-dimensional, the

subfamily of these quintics contained in PH 0ðE0Þ for generic E0 is 3-dimensional;
if we fix now such a generic E0, then the subfamily of quintics with only one node
at p is nonempty for any p A U and forms a curve for generic p. In particular,
E0 A MX ðpÞ for any p A U . Hence M 1

X ¼ MX ðpÞ for generic p. Further, M 1
X is a union

of components of MX . Indeed, the same argument as above shows that any E A MX

close to a generic E0 A M 1
X also belongs to M 1

X . Finally, by Lemma 6.4, M 1
X is bira-

tional to the family of lines in Y5 meeting G 0, so it dominates G 0 with degree at most 3.
Let us show now that MX ðqÞ for a generic conic q is contained in M 1

X . Indeed,
the structure of Cq as described in Theorem 6.5 implies easily that the two points
p; p 0 A q of the intersection C0

3 V q are movable on q, when C 0
3 runs over C0

3 ½2�q, so
for generic q and generic C0

3 , any of them is a generic point of X . Thus the curve
C ¼ C0

3 U q for generic C 0
3 A C0

3 ½2�q is an element of C0
5 ½2�p, where p satisfies the hy-

potheses of Theorem 6.3. Let E A MX ðqÞ be the vector bundle associated to C. By
Lemma 4.2, the family of curves ðsÞ0 of zeros of all the sections s of E is P4 ¼
PH 0ðEÞ. The family of curves of type C0

3 U q ðC0
3 A C0

3 ½2�qÞ being 3-dimensional, C

deforms inside PH 0ðEÞ into a curve with only one node, hence E is in the closure of
the union of MX ðxÞ, x A X generic. Hence MX ðqÞHM 1

X is an irreducible compo-
nent, birational to G 00.

It remains to see that M 1
X is irreducible. Let E A MX ðpÞ for generic p. Then

PH 0ðEÞ contains a 3-dimensional family of curves D with two nodes x; x 0 for which
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each one of the points x; x 0 runs over a dense subset of X . As paðDÞ ¼ 1, the generic
D is reducible. There is no line through a generic point of X , so the only possible type
of decomposition of D is a conic plus a cubic. The cubic is rational and nonsingular,
because X is an intersection of quadrics. Hence E A MX ðqÞ and M 1

X ¼ MX ðqÞ for
some q. r

As G 0;G 00 are curves of the same genus, G 00 does not have a dominant rational map
to G 0 of degree > 1, so we can deduce from the proof of the lemma the following
corollary:

Corollary 6.10. Let p A X be a generic point. Let EC be the vector bundle on X ob-

tained by Serre’s construction from a generic good quintic C A C0
5 ½2�p and l ¼ FpðCÞ

the line in Y5 meeting G 0 at a point u. Then there are at most three distinct lines li in Y5

meeting G 0 at u (l1 ¼ l), and the vector bundles obtained by Serre’s construction from

the curves Ci :¼ F�1
p ðliÞ are isomorphic to E. Equivalently, the family P4 ¼ PH 0ðEÞ

of curves ðsÞ0 of zeros of all the sections s of E contains at most three distinct curves

Ci A C
0
5 ½2�p and their images li under Fp are precisely all the lines in Y5 meeting G 0 at u.

In Section 5 we constructed a map rX : G ! MX and proved that rX ðGÞ ¼ M 0
X is

an irreducible component of MX .

Lemma 6.11. M 0
X ¼ M 1

X .

Proof. Let E A M 0
X be generic. The sections of E embed X into the Grassmannian

G ¼ Gð2; 5Þ of lines in P4 and EFQGjX . The sections of QG correspond to linear
forms on P4 and the restriction to X sends them isomorphically onto the sections of
E. Let qHX be any smooth conic. Considered as a family of lines in P4, q is either a
pencil of generators of a quadric in P3 HP4, or the curve of tangents to a conic in
P2. In the first case, there is a unique, up to proportionality, section of QG vanishing
on q, the one defined by the P3 which is the linear span of the quadric. In the second
case there is a pencil of such sections in PH 0ðQGÞ. The span of the lines parametrized
by a reducible conic q is P3, hence the same is true for a generic q. So, for generic q,
the projective space PH 0ðEÞ of zero loci of sections of E contains a unique reducible
curve D having q as one of its components, and D does not contain other conics
or lines. Hence D is a union of the conic q and of a rational twisted cubic. Hence
E A MX ðqÞ ¼ M 1

X . r

M 0
X being birational to G, we obtain:

Corollary 6.12. GFG 0 FG 00.

7 Smoothness and irreducibility of MX

Let X ¼ X12 be a generic Fano threefold of degree 12 with Picard number 1, and G
its dual curve of genus 7. Let MX ; r be defined as in Section 5 and let M 0

X be the com-
ponent of MX that is the image of r. Propositions 7.1 and 7.8 prove Theorem 1.1.
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Proposition 7.1. For generic X ;M 0
X is in the smooth locus of MX .

Proof. Let E A M 0
X . By Lemma 4.4, to prove the smoothness of MX at E it su‰ces to

find a quintic C in PH 0ðX ;EÞ such that NC=X VOC lOCð1Þ. Lemmas 7.2, 7.3 and
7.4 prove, for generic p A X , the existence of such a quintic having a node at p. r

Lemma 7.2. Let E A M 0
X , p A X a generic point. Let Zp ¼ fCig1cicn ðn ¼ 1; 2 or 3Þ

be the set of curves with singularity at p which are zero loci of sections of E, q1; . . . ; q24

all the conics on X passing through p and ~CCi; q 0
j the proper transforms of the above

curves on the blowup of p. Then ~CCi V q 0
j ¼ q for all i ¼ 1; . . . ; n, j ¼ 1; . . . ; 24.

Proof. The curves Ci are rational quintics with only one node. The assertion of the
lemma is not satisfied for E; p if and only if there is a pair i; j, for which Ci meets qj

in such a way that lengthðCi V qjÞd 3.
We want to prove that for generic p A X , there is no conic q through p meeting any

one of the curves Ci in such a way that lengthðCi V qÞd 3. Assume the contrary. By
Theorem 6.3, the number of conics through a generic point p is 24. Hence, if we
assume that at most seven conics qj can meet a curve Ci with lengthd 3, then such
conics form a proper irreducible component of FðX Þ. This contradicts the irreduci-
bility of the family of conics on X (Lemma 6.2). But it is immediate to see that two
di¤erent conics q1; q2 passing through p cannot meet Ci with length of intersec-
tiond 3. Indeed, if we assume that such conics q1; q2 exist, then Ci U qj ð j ¼ 1; 2Þ are
two distinct reducible fibers of the ruled surface M (notation from Theorem 6.3). The
flop transforms the components qj into secant lines lj to the curve GHY5, and the
proper transform of Ci is contracted to a point of G. This is absurd, because two
distinct fibers of M are contracted to two distinct points of G. Hence each Ci meets at
most one conic qj and we are done. r

Lemma 7.3. Let E A M 0
X , U HX the open set of points p A X for which the birational

map Fp of Theorem 6.3 exists, and p A U . Assume that there are at least two nodal

rational quintic curves C1;C2 with only one node at p as singularity which are zero loci

of sections of E. Assume also that the proper transform ~CCi of Ci ði ¼ 1; 2Þ on the

blowup X 0 of X at p does not meet any of the flopping curves of k introduced in Theo-

rem 6.3. Then the normal bundle of Ci in X is indecomposable and MX is nonsingular at

the point representing the vector bundle E.

Proof. Assume the contrary, that is, NC=X FOC lOCð1Þ, where C is one of the two
curves Ci, say, C ¼ C1. Then ~CC FP1 and n�NC=X FOP1 lOP1ð5Þ, where n : ~CC ! C

is the normalization map; n ¼ sj ~CC . Let N~CC denote the normal bundle to C as a
parametrized curve in X : N~CC ¼ cokerðdn : T~CC ! n�NC=X Þ. Then n�NC=X is ob-
tained from N~CC by a positive elementary transformation described in [9]: n�NC=X ¼
elmþ

T N~CC , where T is the set of two points in PðN~CCÞ corresponding to the tangent
directions of the two branches at p. Hence N~CC FOP1ð�2ÞlOP1ð5Þ, OP1ð�1Þl
OP1ð4Þ or OP1 lOP1ð3Þ. Hence N~CC=X 0 FN~CCð�TÞFOP1ð�4ÞlOP1ð3Þ, OP1ð�3Þl
OP1ð2Þ or OP1ð�2ÞlOP1ð1Þ.
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In the notation of Theorem 6.3, the image l of ~CC under t � k is a line in Y meeting
G transversely at one point z ¼ zðp;EÞ, so we have for the normal bundles Nl=Y ¼
elmþ

1 point N~CC=X 0 Hence the only possible case is Nl=Y FOP1ð�1ÞlOP1ð1Þ. Accord-
ing to the description of lines on Y , if z B C0

6 (notation from the proof of Lemma
6.4), then there is another line on Y passing through z with normal bundle OP1 lOP1

giving the other nodal quintic C2 and, in replacing C by C2 in the above argument,
we come to the conclusion that NC2=X VOC2

lOC2
ð1Þ. This ends the proof. r

We have seen that E may be a singular point of MX only if for generic p A X C

is the unique nodal quintic from PH 0ðX ;EÞ, or, equivalently, zðp;EÞ A C 0
6 and

l ¼ TzC0
6 is the unique line on Y passing through zðp;EÞ.

Lemma 7.4. Let E A M 0
X , p A X a generic point. Then there are at least two di¤erent

curves with a singular point at p which are zero loci of sections of E.

Proof. The assertion that we are to prove now is equivalent to the fact that for generic
X and generic p A X the curve GHY ¼ Y5 defined by Theorem 6.3 does not meet
the closed orbit C 0

6 of SLð2Þ. We prove this fact in three steps in Lemmas 7.5, 7.6 and
Proposition 7.7: we prove, first, that the family of canonical curves G in Y is irre-
ducible. Second, we present a canonical curve G A Y which does not meet C0

6 , and
this implies that the generic G does not meet C 0

6 either. Third, we show that a generic
canonical curve G A Y is obtained as in Theorem 6.3 via the map Fp applied to some
X and some p A X .

Lemma 7.5. Let Y be a Del Pezzo threefold of degree 5, that is, a nonsingular threefold

linear section P6 VGð2; 5Þ of the Grassmannian Gð2; 5Þ in P9. Then the family of ca-

nonical curves G of genus 7 in Y is irreducible of dimension 24.

Proof. When saying that G is a canonical curve in Y, we mean that the restriction of
the class of the hyperplane section of Y to G is canonical and that the dimension of
the linear span of G in P9 coincides with that of the canonical linear system of G,
so hGi ¼ hYi ¼ P6. By [18], Y is unique up to projective equivalence and h0ðP6;
IY ð2ÞÞ ¼ 5. Hence the hypotheses of Lemmas 5.1, 5.5 are verified for the embed-
ding G ,! Y ,! Gð2; 5Þ and this embedding is determined uniquely, up to projective
equivalence, by a point p A X , where X is the dual Fano threefold of G. Let I be the
variety parametrizing all the canonical embeddings G ,! Gð2; 5Þ such that G is a ge-
neric genus-7 curve and hGiVGð2; 5Þ is a (smooth) Del Pezzo threefold. Then I is
irreducible of dimension

dim I ¼ dimM7 þ dim X þ dim PGLð5Þ ¼ 18 þ 3 þ 24 ¼ 45:

Let pr be the natural projection from I to the open subset U of Gð7; 10Þ para-
metrizing linear sections of Gð2; 6Þ which are (smooth) Del Pezzo threefolds. Then
for generic u A U, the fiber pr�1ðuÞ is equidimensional and dim pr�1ðuÞ ¼ dim I �
dim Gð7; 10Þ ¼ 24. By the monodromy argument, to prove the assertion of the
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lemma, it su‰ces to present a distinguished component of the family of canonical
curves in Y . Then it has to be the unique one.

There is such an obvious component: the one containing all the curves G obtained
from the generic pairs ðp;X Þ via the map Fp of Theorem 6.3. This ends the proof of
the lemma. r

Lemma 7.6. Let F HY be any curve. Then there exists a reducible smoothable ca-

nonical curve C0 ¼ E1 UE2 U q such that the following conditions are verified:

(a) E1;E2 are elliptic quintics meeting each other transversely at 3 distinct points;

(b) q is a conic meeting each one of the curves Ei transversely at 2 points;

(c) C0 VF ¼ q.

Proof. Choose a conic q not meeting F ; let P2
q ¼ hqi. Choose a generic 3-secant P2

to Y meeting P2
q . Let z ¼ P2 VP2

q , fp1; p2; p3g ¼ P2
q VY . Let l1; l2 be two generic

lines in P2
q passing through z, and fpi

4; pi
5g ¼ li V q. Let P3

i ¼ hP2; lii and P4
i ge-

neric 4-spaces containing P3
i ði ¼ 1; 2Þ. Then Ei ¼ P4

i VY are elliptic curves such that
P3

i VEi ¼ fp1; p2; p3; pi
4; pi

5g, that is, the intersection of Ei with the residual curve
E3�i U q defines the divisor from the linear system Oð1Þ. For q, the degree of the in-
tersection with E1 UE2 is 4, which is deg Kq þ degOð1Þjq. Hence C0 ¼ E1 UE2 U q is
embedded by a subsystem of the canonical system, and since hC0i ¼ P6, it is a ca-
nonical curve. It is obvious that for a generic choice of the above P4

i , we have P4
i V

F ¼ q.
It remains to see that C0 is smoothable, but this follows immediately by the tech-

nique of [9] and from the known normal bundles to the components of our curve:
NEi

¼ 2Oð1ÞjEi
and Nq ¼ 2OP1ð1Þ. r

Proposition 7.7. Let Y be a Del Pezzo threefold of degree 5 and G a generic canonical

curve of genus 7 in Y. Let X be the dual Fano threefold of G. Then there exists a point

p A X such that the embedding G ,! Y is obtained via the birational map Fp of Theo-

rem 6.3.

Proof. We have to invert the construction of the map Fp for generic GHY . Let
G0 ,! Y be an embedding corresponding to some pair ðp0;X0Þ. Then the antica-
nonical linear system j�K ~YY0

j on the blowup ~YY0 of G0 in Y defines a small contrac-
tion p0 of 24 ð�1;�1Þ-lines which are bisecant to G0 whose image is a quartic three-
fold in P4 with 24 ordinary double points, and the flop over this small contraction
gives rise to an exceptional P2 with normal bundle Oð�1Þ which can be contracted
to a nonsingular point. It is easy to verify that this situation is stable under small
deformations. Let Gt ,! Y be a deformation of G0 ,! Y with parameter t. By the
semicontinuity of hið ~YYt;Oð�K ~YYt

ÞÞ ¼ 0 and because the hi vanish for t ¼ 0 and i > 0,
the linear system j�K ~YYt

j defines also a map pt to P4 for small t. The base-point-free
condition is open, so pt is a morphism. By the semicontinuity of the degree of a
morphism, pt is birational. The stability of the ð�1;�1Þ-curves under deformations is
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well-known. See for example [21], where the stability of nonsingular subvarieties with
negative normal bundle is proved, and the type of the normal bundle is preserved in
our case, because a vector bundle of type OðkÞlOðkÞ has no nontrivial infinitesimal
deformations on P1. So, ~YYt contains 24 ð�1;�1Þ-curves, which have to be contracted
by the anticanonical system. Their intersection indices with the exceptional divisor of
~YYt ! Y being constant, they descend to bisecant lines of Gt in Y .

Now we can blow up all the 24 ð�1;�1Þ-curves and blow down the obtained
quadrics P1 � P1 along the second ruling simultaneously in all the varieties ~YYt for
small t. We will obtain the family of nonsingular projective threefolds X 0

t . The fiber
X0 possesses an exceptional P2. Again by [21], this P2 deforms in a unique way to a
compact submanifold in the neighboring fibers; it is again P2 with normal bundle
Oð�1Þ, because both P2 and the line bundle OðkÞ on it have no nontrivial infini-
tesimal deformations. Thus there is a relative contraction X 0

t ! Xt blowing down P2

to a nonsingular point in each fiber. The fiber X0 is a Fano threefold of genus 7 with
Picard group Z, and these properties are stable under small deformations. r

Proposition 7.8. For a generic Fano threefold X of degree 12 with Picard group Z, the

moduli space MX is irreducible.

Proof. Let E A MX . By Proposition 5.9, the sections of E define a regular map from
j : X ! Gð2; 5Þ. Restricting to a generic hyperplane section H and using Proposition
5.7, we see that i ¼ jjH embeds H linearly into Gð2; 5Þ and satisfies the hypotheses of
Lemma 3.6. Hence the linear subspace U defined in the lemma is a maximal isotropic
subspace in V ¼ H 0ðP7;IHð2ÞÞ ¼ H 0ðP8;IX ð2ÞÞ. Hence, by Lemma 3.5, j is a linear

embedding associated to a point w A �XX , and hence E A M 0
X . r
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