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Abstract. Cameron–Liebler line classes are sets of lines in PGð3; qÞ that contain a fixed number
x of lines of every spread. Cameron and Liebler classified them for x A f0; 1; 2; q2 � 1; q2;
q2 þ 1g and conjectured that no others exist. This conjecture was disproven by Drudge and his
counterexample was generalised to a counterexample for any odd q by Bruen and Drudge.
Nonexistence of Cameron–Liebler line classes was proven for di¤erent values of x by Penttila,
Bruen and Drudge, Drudge, and Govaerts. In this paper, a new lower bound on x for existence
of Cameron–Liebler line classes is obtained, and in the specific cases where q is a square or a
cube, this new bound is improved upon.

1 Introduction

Cameron–Liebler line classes were introduced by Cameron and Liebler [9] in an at-
tempt to classify collineation groups of PGðn; qÞ that have equally many point orbits
and line orbits. In their paper, they conjectured which groups these are. It is now
known (T. Penttila, private communication, 2002) that the conjecture is true when
the group is irreducible, but there is no classification yet of Cameron–Liebler line
classes. In this paper, some new nonexistence results are presented.

Following Penttila [12], a clique in PGð3; qÞ is either the set of all lines through
a point P, denoted by starðPÞ, or dually the set of all lines in a plane p, denoted
by lineðpÞ. The planar pencil of lines in a plane p through a point P is denoted by
penðP; pÞ.

There are many equivalent definitions for Cameron–Liebler line classes. Here
three of them are listed: the first one because it is the most elegant one, the other ones
because they will be useful later on.

Definition 1.1 (Cameron and Liebler [9], Penttila [12]). Let L be a set of lines
in PGð3; qÞ and let wL be its characteristic function. Then L is called a Cameron–

Liebler line class if one of the following equivalent conditions is satisfied.

1. There exists an integer x such that jLVSj ¼ x for all spreads S.

2. There exists an integer x such that for every incident point-plane pair ðP; pÞ

jstarðPÞVLj þ jlineðpÞVLj ¼ xþ ðqþ 1ÞjpenðP; pÞVLj: ð1Þ



3. There exists an integer x such that for every line l of PGð3; qÞ

jfm A L : m meets l;m0 lgj ¼ ðqþ 1Þxþ ðq2 � 1ÞwLðlÞ: ð2Þ

It follows from the proof of the equivalence of these properties that the number x

in each of these statements is the same. It is called the parameter of the Cameron–
Liebler line class. We remark that the first definition implies that x A f0; 1; 2; . . . ;
q2 þ 1g. Cameron and Liebler [9] showed that a Cameron–Liebler line class of
parameter x consists of xðq2 þ qþ 1Þ lines and that the only Cameron–Liebler line
classes for x ¼ 1 are the cliques and for x ¼ 2 the unions of two disjoint cliques. They
also noticed that the complement of a Cameron–Liebler line class with parameter x

is a Cameron–Liebler line class with parameter q2 þ 1 � x. So, it su‰ces to study
Cameron–Liebler line classes with parameter xc bðq2 þ 1Þ=2c. Thus, the case q ¼ 2
was immediately solved. In their paper, Cameron and Liebler conjectured that no
other Cameron–Liebler line classes exist.

Penttila [12] shows that for q0 2 there exist no Cameron–Liebler line classes with
parameter x ¼ 3 or x ¼ 4, with possible exception of the cases ðx; qÞ A fð4; 3Þ; ð4; 4Þg.
Bruen and Drudge [7] prove the nonexistence of Cameron–Liebler line classes with
parameter 2 < xc

ffiffiffi
q

p
. Drudge [10] excludes the existence of a Cameron–Liebler line

class with parameter x ¼ 4 in PGð3; 3Þ, and proves that for q0 2 there exist no
Cameron–Liebler line classes with parameter 2 < xc e, where qþ 1 þ e denotes the
size of the smallest nontrivial blocking sets in PGð2; qÞ, see Section 2. He also gives
a counterexample to the conjecture of Cameron and Liebler: a Cameron–Liebler line
class with parameter x ¼ 5 in PGð3; 3Þ, in this way settling the case q ¼ 3. Bruen
and Drudge [8] then construct a Cameron–Liebler line class with parameter x ¼
ðq2 þ 1Þ=2 for any odd q. In Govaerts [11], the study of the case x ¼ 4 is completed
by showing that there exists no Cameron–Liebler line class with parameter x ¼ 4 in
PGð3; 4Þ.

In this paper, new bounds on x for nonexistence of Cameron–Liebler line classes
are obtained. Theorem 4.5 gives a new bound for general q0 2, while Theorem 5.1
(Theorems 6.1 and 6.3) improves upon it for q square ðq ¼ p3h; pd 7 prime; hd 1Þ.

These theorems will be proved by studying how the lines of the Cameron–Liebler
line class are distributed among the cliques of PGð3; qÞ. In the proofs, these cliques
will be assumed to be of the form starðPÞ for some point P, but the dual arguments
show that the considered properties also hold for cliques of the form lineðpÞ for a
plane p.

To study the lines of the Cameron–Liebler line class in a clique, we follow
Drudge’s approach [10]. A clique C and its lines correspond to a projective plane and
its points in the following way. If C ¼ starðPÞ, then it su‰ces to take the quotient
space with respect to P. If C ¼ lineðpÞ, then the dual plane can be considered. In this
way, the lines of the line class in a clique correspond to a set of points in a plane.

2 Cameron–Liebler line classes and blocking sets

A k-fold blocking set in PGð2; qÞ is a set of points that intersects every line in at least
k points. It is called minimal if no proper subset is a k-fold blocking set. A 1-fold
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blocking set is simply called a blocking set. It is called trivial if it contains a line. The
following two lemmas show where (multiple) blocking sets show up in the study of
Cameron–Liebler line classes.

Lemma 2.1 (Drudge [10]). Let L be a Cameron–Liebler line class with parameter x. If
C is a clique satisfying x < jCVLjc qþ x, then CVL forms a blocking set B in C. If
there exist no Cameron–Liebler line classes with parameter x� 1, then B is nontrivial.

Lemma 2.2. Let L be a Cameron–Liebler line class with parameter x. If C is a clique

satisfying xþ aðqþ 1Þ < jCVLj, then CVL forms an ðaþ 1Þ-fold blocking set in C.

Proof. Suppose that C ¼ starðPÞ is a clique satisfying xþ aðqþ 1Þ < jCVLj. Let p
be any plane through P. By (1) and the fact that jlineðpÞVLj is at least zero, it can
be concluded that jpenðP; pÞVLj is greater than a. r

Blocking sets are much-studied objects. Below, some results are listed that will be
used later on. In these theorems, cp equals 2�1=3 when p A f2; 3g and 1 when pd 5.

Theorem 2.3. Let B be a nontrivial blocking set of PGð2; qÞ, q > 2.

1. (Blokhuis [2]) If q is a prime, then jBjd 3ðqþ 1Þ=2.

2. (Bruen [5]) If q is a square, then jBjd qþ ffiffiffi
q

p þ 1.

3. (Blokhuis [3], Blokhuis et al. [4]) If q ¼ p2eþ1, p prime, ed 1, then jBjd
maxðqþ 1 þ peþ1; qþ 1 þ cpq

2=3Þ.

Theorem 2.4. Let B be a blocking set in PGð2; qÞ, q square, containing neither a line

nor a Baer subplane.

1. (Blokhuis et al. [4]) If q > 16, q ¼ ph, p prime, then jBjd qþ 1 þ cpq
2=3.

2. (Szőnyi [16]) If q ¼ p2, p prime, then jBjd 3ðqþ 1Þ=2.

Theorem 2.5 (Polverino and Storme [15]). In PGð2; qÞ, q ¼ p3h, pd 7 prime, hd 1,
the smallest minimal nontrivial blocking sets that are not Baer subplanes are:

1. a minimal blocking set of size qþ p2h þ 1, projectively equivalent to the set K ¼
fðx;TðxÞ; 1Þ : x A GFðqÞgU fðx;TðxÞ; 0Þ : x A GFðqÞnf0gg, with T the trace func-

tion from GFðqÞ to GFðphÞ;

2. a minimal blocking set of size qþ p2h þ ph þ 1, projectively equivalent to the set

K ¼ fðx; xph

; 1Þ : x A GFðqÞgU fðx; xph

; 0Þ : x A GFðqÞnf0gg.

(Polverino [14]) If h ¼ 1, then these are the only minimal nontrivial blocking sets of size

smaller than 3ðqþ 1Þ=2.

Lines of PGð2; qÞ intersect these blocking sets in the following way. Denote ph by
q0. Apart from tangent lines, the first one has q0 þ 1 ðq2

0 þ 1Þ-secants and q4
0 ðq0 þ 1Þ-

secants; the second one has one ðq2
0 þ q0 þ 1Þ-secant and q4

0 þ q3
0 þ q2

0 ðq0 þ 1Þ-secants.
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Theorem 2.6. Let B be a k-fold blocking set of PGð2; qÞ, k > 1.

1. (Bruen [6]) If B contains a line, then jBjd kqþ q� k þ 2.

2. (Ball [1]) If B does not contain a line, then jBjd kqþ
ffiffiffiffiffi
kq

p
þ 1.

3 Two lemmas

Lemma 3.1. Let L be a Cameron–Liebler line class with parameter x < q2 þ 1. Then
there exists a clique containing at most x lines of L.

Proof. Let l be a line not in L. By (2), there are ðqþ 1Þx lines of L meeting l. This
implies that there exists a point P on l that satisfies jstarðPÞVLjc x. r

Lemma 3.2. If L is a Cameron–Liebler line class with parameter 0 < xc q, then there

exists a clique C satisfying x < jCVLjc qþ x.

Proof. Suppose that L is a Cameron–Liebler line class with parameter 0 < xc q

and that there exists no clique C satisfying x < jCVLjc qþ x.
Suppose that C ¼ starðPÞ is a clique satisfying 0 < jCVLjc x. Then there

exists a plane p through P containing exactly one line of CVL. By (1), qþ 1c
jlineðpÞVLj < qþ x, a contradiction. Dually, there exists no plane p satisfying 0 <
jlineðpÞVLjc x.

Suppose that C ¼ starðPÞ is a clique satisfying jCVLj ¼ 0. Then every plane p

through P satisfies jpenðP; pÞVLj ¼ 0. By (1), jlineðpÞVLj ¼ x, a contradiction
with the preceding paragraph.

The previous observations show that there exist no cliques containing at most x

lines of L, a contradiction by Lemma 3.1. r

4 The general case

In this section, assume that L is a Cameron–Liebler line class in PGð3; qÞ, q > 2,
with parameter xc q, and that no Cameron–Liebler line classes with parameter
x� 1 exist. Recall that Penttila [12] proves that for q > 2, no Cameron–Liebler line
classes with parameter 3 exist. Let qþ 1 þ e denote the size of the smallest nontrivial
blocking sets in PGð2; qÞ.

Lemma 4.1. There exists no clique C satisfying x < jCVLjc qþ minðx; eÞ.

Proof. Immediate from Lemma 2.1 and the definition of e. r

Corollary 4.2 (see also Drudge [10]). There exist no Cameron–Liebler line classes with

parameter 2 < xc e.

Proof. In this case Lemma 4.1 contradicts Lemma 3.2. r

For the rest of this section, assume that x > e.
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Lemma 4.3. There exists no clique C satisfying x� e < jCVLj < qþ 1.

Proof. If C ¼ starðPÞ were a clique satisfying x� e < jCVLj < qþ 1, then there
would exist a plane p through P for which jpenðP; pÞVLj ¼ 1. By (1), this plane
satisfies x < jlineðpÞVLjc qþ e, a contradiction with Lemma 4.1. r

Lemma 4.4. There exists no clique C satisfying 0c jCVLj < e.

Proof. If C ¼ starðPÞ were a clique satisfying 0c jCVLj < e, then there would
exist a plane p through P for which jpenðP; pÞVLj ¼ 0. By (1), this plane satisfies
x� e < jlineðpÞVLjc x, a contradiction with Lemma 4.3. r

Theorem 4.5. In PGð3; qÞ, q > 2, there exist no Cameron–Liebler line classes with pa-
rameter 2 < x < 2e, where qþ 1 þ e denotes the size of the smallest nontrivial blocking

sets in PGð2; qÞ.

Proof. If x < 2e, then the intervals of Lemmas 4.3 and 4.4 partially overlap, implying
that there exists no clique containing less than qþ 1 lines of L. This is contradictory
to Lemma 3.1. r

Corollary 4.6. In PGð3; qÞ, q prime, q > 2, there exist no Cameron–Liebler line classes

with parameter 2 < xc q.

Proof. Use Theorem 2.3, Part 1. r

5 Improvements for q square

Theorem 5.1. In PGð3; qÞ, q square, there exist no Cameron–Liebler line classes with

parameter 2 < xcminðe 0; q3=4Þ, where qþ 1 þ e 0 denotes the size of the smallest non-
trivial blocking sets in PGð2; qÞ not containing a Baer subplane.

Proof. Suppose that L is a Cameron–Liebler line class with parameter 2 < xc

minðe 0; q3=4Þ, and assume that no Cameron–Liebler line classes with parameter x� 1
exist.

Suppose that C ¼ starðPÞ is a clique satisfying x < jCVLjc qþ x. By Lemma
2.1 and the restriction xc e 0, in the plane corresponding to C, CVL contains a Baer
subplane B. Since there are at most x� ffiffiffi

q
p � 1 points of CVL outside B, there exists

a ð ffiffiffi
q

p þ 1Þ-secant to CVL. Denote the corresponding plane through P by p. Since
jpenðP; pÞVLj ¼ ffiffiffi

q
p þ 1, it follows from (1) that q

ffiffiffi
q

p þ ffiffiffi
q

p þ 1c jlineðpÞVLjc
q

ffiffiffi
q

p þ x. By Lemma 2.2, lineðpÞVL is a
ffiffiffi
q

p
-fold blocking set in lineðpÞ. Comparing

the upper bound on jlineðpÞVLj with the known lower bounds for the size of mul-
tiple blocking sets from Theorem 2.6 yields a contradiction.

So, in contradiction with Lemma 3.2, there exists no clique C satisfying x <
jCVLjc qþ x. r
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Corollary 5.2. Let q be a square, q ¼ ph, p prime.

1. If q > 16 then there exist no Cameron–Liebler line classes in PGð3; qÞ with param-

eter 2 < xc cpq
2=3, where cp equals 2�1=3 when p A f2; 3g and 1 when pd 5.

2. If p > 3 and h ¼ 2, then there exist no Cameron–Liebler line classes in PGð3; qÞ
with parameter 2 < xc q3=4.

Proof. Immediate by Theorems 5.1 and 2.4. r

6 Improvements for qF p3h

Theorem 6.1. Let q ¼ p3h, pd 7 prime, hd 1 odd, and let qþ 1 þ e 00 denote the size

of the smallest nontrivial blocking sets in PGð2; qÞ containing neither a minimal block-

ing set of size qþ p2h þ 1, nor one of size qþ p2h þ ph þ 1. In PGð3; qÞ there exist no
Cameron–Liebler line classes with parameter 2 < xcminðe 00; q5=6Þ.

Proof. Suppose that L is a Cameron–Liebler line class with parameter 2 < xc

minðe 00; q5=6Þ, and assume that no Cameron–Liebler line classes with parameter x�1
exist.

Suppose that C ¼ starðPÞ is a clique satisfying x < jCVLjc qþ x. By Lemma
2.1 and the restriction xc e 00, in the plane corresponding to C, CVL contains either
a minimal blocking set of size qþ p2h þ 1 or one of size qþ p2h þ ph þ 1. In both
cases, CVL has a ðp2h þ 1 þ aÞ-secant for some 0c ac x� p2h � 1. Let p be the
plane through P defined by this secant. By (1), it satisfies ðqþ 1Þðp2h þ aÞ þ 1c
jlineðpÞVLj < xþ p2hqþ aqþ aþ 1. By Lemma 2.2, lineðpÞVL forms a ðp2h þ aÞ-
fold blocking set in lineðpÞ. However, comparing the upper bound for jlineðpÞVLj
with the known lower bounds for the size of multiple blocking sets from Theorem 2.6
yields a contradiction.

So, in contradiction with Lemma 3.2, there exists no clique C satisfying x <
jCVLjc qþ x. r

Corollary 6.2. Let q ¼ p3, pd 7 prime. There exist no Cameron–Liebler line classes in

PGð3; p3Þ with parameter 2 < xc q5=6.

Proof. In this case e 00 ¼ ðqþ 1Þ=2, see Theorem 2.5. r

Theorem 6.3. Let q ¼ p3h, pd 7 prime, h > 1 even, and let qþ 1 þ e 00 denote the size

of the smallest nontrivial blocking sets in PGð2; qÞ containing neither a Baer subplane,
nor a minimal blocking set of size qþ p2h þ 1, nor one of size qþ p2h þ ph þ 1. In
PGð3; qÞ there exist no Cameron–Liebler line classes with parameter 2 < xc

minðe 00; q3=4Þ.

Proof. A combination of the proofs of Theorems 5.1 and 6.1 yields this result. r
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For the proof of the following corollary, a few more definitions are needed. A
blocking set B in PGð2; qÞ is called small when it consists of less than 3ðqþ1Þ=2 points.
If q ¼ ph, p prime, then the maximal integer e for which every line intersects B in 1
(mod pe) points is called the exponent of B. It follows from results of Szőnyi [16] that
a small minimal nontrivial blocking set B in PGð2; qÞ, q ¼ ph, p prime, pd 7, has ex-
ponent 1c ech=2, and that the size of B must lie in certain intervals depending on e.

Corollary 6.4. Let q ¼ p6, pd 7 prime. There exist no Cameron–Liebler line classes in

PGð3; qÞ with parameter 2 < xc q3=4.

Proof. By Theorem 6.3, it su‰ces to show that e 00 d q3=4. Suppose that this is not the
case, i.e., suppose that there exists a minimal nontrivial blocking set di¤erent from
the three enumerated in Theorem 6.3 of size smaller than qþ 1 þ q3=4. A result of
Polverino and Storme [15] says that the exponent e of this blocking set must be 1. But
a small minimal blocking set with exponent e ¼ 1 has size at least qþ 1 þ pðq=pþ 1Þ=
ðpþ 1Þ, see Polverino [13] and Szőnyi [16]. This number is larger than qþ 1 þ q3=4, a
contradiction. r
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