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Abstract. We show that sets of weighted (−p + α(p − 1))-Hausdorff measure zero are re-
movable for α-Hölder continuous Cheeger p-harmonic functions. The result is optimal for small α.
Moreover, we obtain the optimal Hölder continuity of p-supersolutions in terms of the associated
Riesz measures.

1. Introduction

Recently, there has been progress in the analysis on general metric measure
spaces. The assumptions on the metric measure space are that it is equipped with a
doubling measure and it supports a Poincaré inequality, see section 2. Under these
assumptions, many important tools of the first-order calculus are available. We can
conduct deep analysis of such a space in a wide range of topics. We can study, for
example, Sobolev-type spaces, nonlinear potential theory and p-harmonic functions
in metric space setting, see [BMS], [BBS1], [Ch], [HaK], [KM2], [Sh1] and [Sh2].

In this note, we study p-harmonic functions on complete metric spaces. We
assume that the space is equipped with a doubling measure, see (5), and support-
ing a weak (1, p)-Poincaré inequality, see (8). To control the integrability of the
derivative in metric space setting, we need a substitute for Sobolev space, which
in this note is Newtonian space due to Shanmugalingam in [Sh1], denoted by N1,p,
see Definition 2.3. For the definition of p-harmonicity, we need a deep theorem due
to Cheeger in [Ch]. Cheeger showed that under the assumptions above the metric
space has a differentiable structure, with a fixed collection of coordinate functions,
with which Lipschitz functions can be differentiated almost everywhere. This leads
to the definition of p-harmonic functions with the Euler equation as follows.

We study the following equation for a function u in a domain Ω:

(1)
∫

Ω

|Du|p−2Du ·Dϕdµ = 0,
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where 1 < p < ∞ is a number and D denotes the derivation operation, see The-
orem 3.1. A continuous function u is (Cheeger) p-harmonic in a domain Ω if
u ∈ N1,p

loc (Ω) and (1) holds for all Lipschitz testing functions ϕ with compact sup-
port in Ω. A function v ∈ N1,p

loc (Ω) is a p-supersolution in Ω if for every nonnegative
Lipschitz functions ϕ with compact support in Ω, the inequality “≥” holds in (1).
For exact definitions, see section 3.

Many results for p-harmonic functions in Euclidean setting remain true, when
moving into metric space setting. As an example, in [KS] it is shown that p-harmonic
functions satisfy Harnack’s inequality and are locally Hölder continuous. In the
proof of Theorem 5.2 in [KS], it is shown that there exists 0 < κ ≤ 1 such that for
every p-harmonic function h in Ω we have the local Hölder continuity estimate

(2) osc(h,B(x, r)) ≤ C
( r

R

)κ

osc(h,B(x,R)),

where 0 < r < R, B(x, 2R) ⊂⊂ Ω, and C and κ are independent of r, R and h. In
this paper, we study the removable sets for Hölder continuous p-harmonic functions.

We say that a compact set E is removable for α-Hölder continuous p-harmonic
functions, if every α-Hölder continuous function u : Ω → R, p-harmonic in Ω \E, is
actually p-harmonic in Ω.

We state the main removability result in this paper. Weighted Hausdorff mea-
sure is defined in Definition 2.5.

Theorem 1.1. Let X be a complete metric measure space with a doubling
measure µ supporting a weak (1, p)-Poincaré inequality. Let Ω ⊂ X be open and
bounded, and let 0 < α < κ, where κ is from (2). A closed set E ⊂ Ω is removable
for α-Hölder continuous p-harmonic functions if and only if E is of weighted (−p +
α(p− 1))-Hausdorff measure zero.

When the measure is (Ahlfors) Q-regular, that is, there exist an exponent Q > 0
and a constant C > 0 such that C−1rQ ≤ µ(B(x, r)) ≤ CrQ, for all balls B(x, r) ⊂
X, we get the following corollary.

Corollary 1.2. Suppose that the assumptions in Theorem 1.1 hold, and in ad-
dition that µ is Q-regular. A closed set E ⊂ Ω is removable for α-Hölder continuous
p-harmonic functions if and only if E is of (Q − p + α(p − 1))-Hausdorff measure
zero.

It was shown in [BMS] that there is one to one correspondence between p-
supersolutions u ∈ N1,p

0 (Ω) and Radon measures ν in the dual N1,p
0 (Ω)∗ given by

(3)
∫

Ω

|Du|p−2Du ·Dϕ dµ =

∫

Ω

ϕdν,

whenever ϕ ∈ N1,p
0 (Ω).

To prove Theorem 1.1, we study the Riesz measure of a p-supersolution. In the
following theorem, we obtain the optimal Hölder continuity of p-supersolutions in
terms of the associated Riesz measure. It has interest of its own.
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Theorem 1.3. Let Ω ⊂ X be open and bounded, and 0 < α < κ, where κ is
as in (2). Assume that u is a p-supersolution in Ω and ν ∈ N1,p

0 (Ω)∗ is a Radon
measure such that (3) holds. Then u ∈ C0,α

loc (Ω) if and only if there is a constant
M > 0 such that

(4)
ν(B(x, r))

µ(B(x, r))
≤ Mr−p+α(p−1),

for all balls B(x, 4r) ⊂ Ω.

In Euclidean spaces Carleson [Ca] proved Theorem 1.1 for harmonic functions.
For A -harmonic functions in Rn, where A is of p-Laplacian type, see [HKM, Chap-
ter 3], the main results in this paper are proven in [KiZ].

In metric space setting, the necessary part in Theorem 1.3, that is, that u ∈
C0,α
loc (Ω) implies (4), was obtained in [BMS]. In this paper, we prove that the growth

condition (4) is sufficient. Removable singularities for bounded p-harmonic functions
on metric spaces are studied in [B2].

Most of the theory of p-harmonic functions on metric spaces has been done for
p-harmonic functions defined via upper gradient, referred to as p-minimizers, see
e.g. [Sh2] and [KM2]. All those proofs go through for Cheeger p-harmonic functions
as well. On the other hand, certain results for Cheeger p-harmonic functions do not
apply for p-harmonic functions defined using the upper gradients. Major advantage
of using Cheeger derivatives is that the differential equation (1) is available. Theory
for Cheeger p-harmonic functions is studied, for example, in [BMS] and [BBS1].

This paper is organized as follows. In section 2, we discuss the necessary back-
ground such as the basic assumptions on the metric measure space, the definitions
of Sobolev spaces on metric spaces and weighted Hausdorff measure. Also a few gen-
eral theorems are introduced there. We study the theory of p-harmonic functions
on metric spaces in section 3. Also a balayage in metric spaces is introduced there.
In section 4, we show the connection between the Hölder continuous p-supersolution
and the corresponding Radon measure and prove Theorem 1.3. Finally, in section
5 we study the removable sets for p-harmonic functions and prove Theorem 1.1.

2. Preliminaries

Throughout the paper we denote by C > 0 a constant, whose value may vary
between each usage, even in the same line.

The triple (X, d, µ) denotes a complete metric measure space X and µ is assumed
to be a Radon measure, which means that it is Borel regular and every compact set
is of finite measure. We also assume that the measure of every nonempty open set
is positive.

The ball with center x ∈ X and radius r > 0 is denoted by

B(x, r) = {y ∈ X : d(y, x) < r}.
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We write

uA =
1

µ(A)

∫

A

u dµ = −
∫

A

u dµ,

for a measurable A ⊂ X and a measurable function u : X → [−∞,∞]. The norm
of v in Lp(X, µ) = Lp(X) is denoted by

‖v‖p =

(∫

X

|v|pdµ

)1/p

.

We denote the characteristic function of the set E ⊂ X as χE.
Let α ∈ (0, 1]. A function u : X → R is said to be locally α-Hölder continuous,

that is, u ∈ C0,α
loc (X), if for some constant C > 0,

|u(x)− u(y)| ≤ Cd(x, y)α

whenever x, y ∈ X are such that d(x, y) < 1. The function u is Lipschitz continuous,
u ∈ Lip(X), if u ∈ C0,1(X). We also use the notation u ∈ Lip0(X) when the function
u has compact support.

We make the following assumptions on the metric measure space (X, d, µ). First,
we assume that the equipped measure µ is doubling, that is, there exists a constant
Cd ≥ 1 such that for all balls B(x, r) in X,

(5) µ(B(x, 2r)) ≤ Cdµ(B(x, r)).

If the measure µ is doubling, then there exist constants c, s > 0 that depend
only on the doubling constant of µ, such that

(6)
µ(B(y, r))

µ(B(x,R))
≥ c

( r

R

)s

,

whenever r < R, x ∈ X and y ∈ B(x,R), see [He, pp. 103–104]. Usually we refer
s to be the natural dimension of the space X and in this note we always assume
s > 1.

The second assumption is a geometric condition on the space, which requires the
space to be sufficiently regular. We assume that the metric measure space admits
a Poincaré inequality. To define a Poincaré inequality, we need a notion, upper
gradient, which is a substitute of Sobolev gradient in the setting of metric space.

Definition 2.1. Let u : X → [−∞,∞] be a function. A nonnegative measur-
able function g : X → [0,∞] is said to be an upper gradient of u if for all compact
rectifiable paths γ joining points x and y in X we have

(7) |u(x)− u(y)| ≤
∫

γ

g ds.

If u(x) = u(y) = ∞ or u(x) = u(y) = −∞, we define the left side of (7) to be ∞.
See [HeK], [Ch] or [Sh1] for discussion on the upper gradients.
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Definition 2.2. Let 1 ≤ p < ∞. A metric measure space (X, d, µ) is said
to admit a weak (1, p)-Poincaré (or p-Poincaré) inequality if there are constants
Cp > 0 and τ ≥ 1 such that

(8) −
∫

B(x0,r)

|u− uB(x0,r)| dµ ≤ Cpr

(
−
∫

B(x0,τr)

gp dµ

)1/p

for all balls B(x0, r) ⊂ X, for all integrable functions u in B(x0, r) and for all upper
gradients g of u.

The above definition is due to Heinonen and Koskela [HeK]. There are various
formulation for a Poincaré inequality on a metric measure space. When the space
is complete and is equipped with a doubling Borel regular measure, many different
definitions coincide.

The following Sobolev type spaces on metric spaces were introduced by Shan-
mugalingam in [Sh1].

Definition 2.3. Let

‖u‖N1,p(X) =

(∫

X

|u|p dµ

)1/p

+ inf
g

(∫

X

gp dµ

)1/p

,

where infimum is taken over all upper gradients of u. The quotient space

N1,p(X) = {u : ‖u‖N1,p(X) < ∞}/ ∼,

is the Newtonian space on X, where u ∼ v if and only if ‖u− v‖N1,p(X) = 0.

For properties of the Newtonian spaces, we refer to [Sh1].

Definition 2.4. (i) The p-capacity of a set E ⊂ X with respect to the space
N1,p(X) is defined by

Capp(E) = inf
u
‖u‖p

N1,p(X),

where the infimum is taken over all of functions u in N1,p(X), whose restriction
to E is bounded below by 1. We say that a property regarding points in X holds
p-quasieverywhere, denoted as p-q.e., if the set of points for which the property does
not hold has p-capacity zero.

(ii) We define “Newtonian space with zero boundary values” N1,p
0 (Ω) for domain

Ω ⊂ X, to be the class of those Newtonian functions u for which uχX\Ω = 0
p-quasieverywhere.

(iii) Let Ω ⊂ X be a domain. We say that f ∈ N1,p
loc (Ω) if for every compactly

contained subdomain Ω′ ⊂⊂ Ω, and for every cut-off function η ∈ Lip0(Ω) such
that η = 1 in Ω′, ηf ∈ N1,p(X). Furthermore, fj → f in N1,p

loc (Ω) if ηfj → ηf in
N1,p(X), as j →∞, for every Ω′ and every η ∈ Lip0(Ω).

(iv) The dual space of N1,p
0 (Ω) is denoted by N1,p

0 (Ω)∗.

The space N1,p(X) is a Banach space [Sh1]. If X admits the (1, p)-Poincaré
inequality and the measure is doubling, Lipschitz functions are dense in N1,p(X)
[Sh1]. Moreover, if X is complete, the space Lip0(Ω) is dense in N1,p

0 (Ω). Here
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we defined Newtonian spaces as in Shanmugalingam [Sh1]. Cheeger [Ch] defines
Sobolev spaces with upper gradients in a different way, yet his spaces coincide with
corresponding Newtonian spaces when p > 1. This is proven in [Sh1]. The Sobolev
type spaces introduced by Hajłasz [Ha] also coincide with these spaces under our
assumptions.

Here we define a version of the weighted Hausdorff measure on the metric mea-
sure space, see e.g. [Mat].

Definition 2.5. Let (X, d, µ) be a metric measure space. Let α ∈ R, 0 < δ ≤
∞. For any function f : X → [0,∞] we set

H α,δ
µ (f) = inf

∑
j

cjr
α
j µ(Bj),

where infimum is taken over all families {(Bj, cj)}, where 0 < cj < ∞, Bj =
B(xj, rj) ⊂ X are balls such that rj ≤ δ and

f ≤
∑

j

cjχBj
.

Then
H α

µ (f) = sup
δ>0

H α,δ
µ (f).

For E ⊂ X we define the weighted (α, δ)-content of E as H α,δ
µ (E) = H α,δ

µ (χE),
and the weighted α-dimensional Hausdorff measure of E as H α

µ (E) = H α
µ (χE).

We need the following weighted version of Frostman’s lemma. The proof is
similar to that of Theorem 8.17 in [Mat].

Theorem 2.6. Assume that µ is a doubling measure on X. Let α ∈ R and
K ⊂ X be a compact set such that H α

µ (K) > 0. Then there exist δ > 0 and a
Radon measure ν in X such that ν is supported on K, ν(K) > 0 and

ν(B(x, r)) ≤ Crαµ(B(x, r))

for all balls B(x, r) ⊂ X with 0 < r ≤ δ. Here the constant C depends only on the
doubling constant of µ.

Proof. Choose δ > 0 such that H α,δ
µ (K) > 0. Define a function p on C(K) by

p(f) = inf
∑

i

cir
α
i µ(Bi),

where infimum is taken over all families {(Bi, ci)}, where 0 < ci < ∞, Bi =
B(xi, ri) ⊂ X are balls such that ri ≤ δ and

f ≤
∑

i

ciχBi
.

For nonnegative f ∈ C(K) we have p(f) = H α,δ
µ (f). Moreover, p(tf) = tp(f) and

p(f +g) ≤ p(f)+p(g), for all f, g ∈ C(X) and t ≥ 0. By the Hahn–Banach theorem
[Rud, Theorem 3.2], we can extend the linear functional c 7→ cp(1), c ∈ R, from
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the subspace of constant functions to a linear functional L : C(K) → R satisfying
L(1) = p(1) = H α,δ

µ (K) and −p(−f) ≤ L(f) ≤ p(f) for f ∈ C(K). When f ≥ 0,
then p(−f) = 0 and therefore L(f) ≥ 0. By Riesz representation theorem, there
exists a Radon measure ν on K such that L(f) =

∫
K

f dν for f ∈ C(K).
The measure ν is the desired measure in Theorem 2.6. Indeed, let x be a point

in K and r < δ. Choose a sequence of continuous functions fi such that 0 ≤ fi ≤ 1,
fi = 1 on B(x, r) and sptfi ⊂ B(x, r + 1

i
). Then

ν(B(x, r)) ≤ lim
i→∞

∫

X

fi dν ≤ lim
i→∞

H α,δ
µ (B(x, r + 1

i
))

≤ lim
i→∞

(r + 1
i
)αµ(B(x, r + 1

i
)) ≤ Cd lim

i→∞
(r + 1

i
)αµ(B(x, r))

= Cdr
αµ(B(x, r)),

where we used the doubling property of µ. ¤
The following lemma is a generalized version of Lemma 2.1 in [Gia], which is

due to Campanato. It involves an additional weight function ω.

Lemma 2.7. Let φ(t) and ω(t) be nonnegative and nondecreasing functions on
(0, R). Assume that there are constants cω > 0 and s > 0 such that

(9)
ω(λr)

ω(r)
≥ cωλs,

for every r > 0 and 0 < λ ≤ 1. Suppose that

φ(ρ) ≤ A1

[
ω(ρ)

ω(r)

(ρ

r

)β+δ

+ ε

]
φ(r) + A2ω(r)rβ

for all 0 < ρ ≤ r ≤ R and ε > 0, where A1 and A2 = A2(ε) are nonnegative
constants, β ∈ R and δ > 0. Here A1, β and δ do not depend on ε. Then we have

φ(ρ) ≤ c

[
ω(ρ)

ω(r)

(ρ

r

)β

φ(r) + A2ω(ρ)ρβ

]

for all 0 < ρ ≤ r ≤ R, where c = c(β, δ, A1, s, cω) > 0.

Proof. For λ ∈ (0, 1) and r < R, we have

φ(λr) ≤ A1λ
β+δ

[
ω(λr)

ω(r)
+ ελ−(β+δ)

]
φ(r) + A2ω(r)rβ.

We may assume A1 > 1. Choose λ < 1 such that 2A1λ
δ/2 = 1, and ε = cωλs+β+δ,

when we have by (9) that

ε0λ
−(β+δ) ≤ ω(λr)

ω(r)
.
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Therefore, we have

φ(λr) ≤ λβ+δ/2ω(λr)

ω(r)
φ(r) + A2ω(r)rβ

≤ λβ+δ/2ω(λr)

ω(r)
φ(r) + A2c

−1
ω λ−sω(λr)rβ,

where we used (9). Thus, for all integers k > 0

φ(λk+1r) ≤ λβ+δ/2ω(λk+1r)

ω(λkr)
φ(λkr) + A2c

−1
ω λ−sω(λk+1r)λkβrβ

≤ λ(k+1)(β+δ/2)ω(λk+1r)

ω(r)
φ(r) + A2c

−1
ω λ−srβλkβω(λk+1r)

k∑
j=0

(λδ/2)j

≤ λ(k+1)(β+δ/2)ω(λk+1r)

ω(r)
φ(r) +

A2c
−1
ω λkβ−srβω(λk+1r)

1− λδ/2
.

Next we choose k so that λk+2r < ρ ≤ λk+1r. Then Lemma 2.7 follows from the
last inequality and (9). ¤

The key tool for our proofs is the following Adams inequality in the setting of
metric spaces. This is proven in [Mäk]. For the Adams inequality in Euclidean
spaces, see e.g. [AH], [Ma], [Tu] and [Zi].

Theorem 2.8. Let (X, d, µ) be a complete metric measure space such that it
admits a weak (1, t)-Poincaré inequality for some 1 ≤ t < p, and µ is a doubling
Radon measure. Suppose that ν is a Radon measure on X satisfying

ν(B(x, r))

µ(B(x, r))
≤ Mrα0 with α0 =

sq

p
− s− q

t
,

for all balls B(x, r) ⊂ X of radius r < diam X, where 1 < p < q < ∞, p/t < s
and M is a positive constant. Here s is from (6). If u ∈ Lip0(B0) for some ball
B0 = B(x0, r0) ⊂ X, for which r0 < diam X/10, we have

(∫

B0

|u|q dν

)1/q

≤ Cµ(B0)
1/q−1/p r

t−1
t

+ s
p
− s

q

0 M1/q

(∫

B0

(Lip u)p dµ

)1/p

,

where C = C(p, q, s, t, Cd, Cp, τ) > 0.

The assumption, that the space admits a (1, t)-Poincaré inequality for some
t < p, follows from the (1, p)-Poincaré inequality by the result in [KeZ]. Since we
need t explicitly in the formulas, we make this assumption in the theorem above.
Notice also that by the Hölder inequality, we may choose t such that p/t < s if
necessary, since we assume s > 1.

Throughout this paper we assume that the metric measure space (X, d, µ) is
complete, doubling and it admits a weak p-Poincaré inequality. We also assume
that Ω ⊂ X is a nonempty bounded open set in X such that Capp(X \ Ω) > 0,
which is immediately true if X is unbounded.
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3. p-harmonic functions

Cheeger [Ch] proved that a metric measure space which admits a Poincaré in-
equality with a doubling measure has a “differentiable structure” under which Lip-
schitz functions have derivatives almost everywhere, see Theorem 4.38 in [Ch].

Theorem 3.1. Let (X, d, µ) be a metric measure space and µ a doubling Borel
regular measure. Assume that X admits a weak (1, p)-Poincaré inequality for some
1 < p < ∞. Then there exists a countable collection (Uα, Xα) of measurable sets Uα

and Lipschitz “coordinate” functions Xα = (Xα
1 , . . . , Xα

k(α)) : X → Rk(α) such that
µ(X \⋃

α Uα) = 0 and for all α, the following holds:
The functions Xα

1 , . . . , Xα
k(α) are linearly independent on Uα and 1 ≤ k(α) ≤ N ,

where N is a constant depending only on the doubling constant and the constants in
the Poincaré inequality. If f : X → R is Lipschitz, then there exist unique bounded
vector-valued functions dαf : Uα → Rk(α) such that for µ-a.e. x0 ∈ Uα,

lim
r→0+

sup
x∈B(x0,r)

|f(x)− f(x0)− dαf(x0) · (Xα(x)−Xα(x0))|
r

= 0.

We can assume that the sets Uα are pairwise disjoint and extend dαf by zero
outside Uα. We get a linear differential mapping D : f 7→ Df if we regard dαf(x)
as vectors in RN and let Df =

∑
α dαf . It is shown in [Ch] that for all Lipschitz

functions and µ-a.e. x ∈ X,

(10) |Df(x)| ≈ gf (x) = inf
g

lim sup
r→0+

−
∫

B(x,r)

g dµ,

where gf is the minimal p-weak upper gradient of f and the infimum is taken over
all upper gradients g of f . Cheeger also proved that the differential operator can
be extended to all functions of the associated Sobolev space. In particular, this
holds for Newtonian space N1,p(X), which coincides with the space considered by
Cheeger, as mentioned before. One easily verifies that the “gradient” Du satisfies
the product and chain rules, see [Ch]. Moreover, if ui is a sequence in N1,p(X), then
ui → u in N1,p(X) if and only if ui → u in Lp(X, µ) and Dui → Du in Lp(X,µ;Rn).

Now we can define p-harmonic functions by using the Cheeger gradient defined
above.

Definition 3.2. A continuous function u is (Cheeger) p-harmonic in Ω if u ∈
N1,p

loc (Ω) and it satisfies

(11)
∫

Ω

|Du|p−2Du ·Dϕdµ = 0,

for all ϕ ∈ Lip0(Ω).

In addition, since u ∈ N1,p
loc (Ω), the identity (11) holds for all ϕ ∈ N1,p

0 (Ω), due
to the density of Lip0(Ω) in N1,p

0 (Ω).
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A function u ∈ N1,p
loc (Ω) satisfies (11) if and only if

(12)
∫

Ω′
|Du|p dµ ≤

∫

Ω′
|D(u + ϕ)|p dµ

for all Ω′ ⊂⊂ Ω and all ϕ ∈ N1,p
0 (Ω′). Therefore it is a quasiminimizer in the sense

of Kinnunen-Shanmugalingam [KS] and the results of [KS] apply to p-harmonic
functions as well.

Note that in many papers p-harmonic functions are defined as continuous p-
minimizers, and p-harmonic functions defined above are called Cheeger p-harmonic
functions. In this paper we discuss only Cheeger p-harmonic functions, which from
now on are called p-harmonic functions. Other results for p-harmonic functions
defined here are studied e.g. in [BMS], [BBS1], [B3] and also in [KS2].

Definition 3.3. A function u ∈ N1,p
loc (Ω) is a p-supersolution in Ω if for every

0 ≤ ϕ ∈ N1,p
0 (Ω) there holds

∫

Ω

|Du|p−2Du ·Dϕ dµ ≥ 0,

or equivalently, ∫

Ω

|Du|pdµ ≤
∫

Ω

|D(u + ϕ)|p dµ.

A function v ∈ N1,p
loc (Ω) is a p-subsolution if −v is p-supersolution.

From [BMS, Prop. 3.5, Remark 3.6] we recall that for every p-supersolution u
in Ω, there exists a Radon measure ν ∈ N1,p

0 (Ω)∗ such that

(13)
∫

Ω

|Du|p−2Du ·Dϕ dµ =

∫

Ω

ϕdν,

for all ϕ ∈ N1,p
0 (Ω). We call the measure ν the Riesz measure associated with u

in Ω. Moreover, it is shown in [BMS, Prop. 3.9] that if Ω ⊂ X is bounded and
ν ∈ N1,p

0 (Ω)∗ is a Radon measure on Ω, there exists a unique u ∈ N1,p
0 (Ω) satisfying

(13) for all ϕ ∈ N1,p
0 (Ω). Moreover, u is a p-supersolution in Ω.

Definition 3.4. A function u : Ω → (−∞,∞] is p-superharmonic in Ω if
(i) u is lower semicontinuous and is not identically infinite on any component

of Ω, and
(ii) for all nonempty open set V ⊂⊂ Ω with V 6= Ω and all functions v ∈ C(V )

such that v is p-harmonic in V and v ≤ u on ∂V , we have v ≤ u in V .
A function v is p-subharmonic in Ω, if −v is p-superharmonic in Ω.

We define p-superharmonic functions as in [B1, 4.1(iii.g)]. For other equivalent
definitions of p-superharmonic functions, see Theorem 6.1 in [B1]. In [KM2], it is
proven, that for every p-supersolution u in Ω there is a p-superharmonic function v
such that u = v µ-a.e. in Ω.

Next we introduce some basic properties for p-harmonic functions.
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We need the weak Harnack inequality from Remark 4.4 (2) in [KS]: For any
p-harmonic function u in a domain Ω ⊂ X, we have for all balls B(x0, ρ) ⊂⊂
B(x0, R) ⊂⊂ Ω and every q > 0, that

(14) sup
B(x0,ρ)

|u| ≤ C

(1− ρ/R)s/q

(
−
∫

B(x0,R)

|u|q dµ

)1/q

,

where C > 0 is a constant independent of the ball and of the function u. Here s is
as in (6).

Lemma 3.5. Let B(x0, R) ⊂⊂ Ω. There exists a number 0 < κ ≤ 1 such that

−
∫

B(x0,r)

|Du|p dµ ≤ C
( r

R

)pκ−p

−
∫

B(x0,R)

|Du|p dµ,

for each 0 < r < R and for any p-harmonic function u in Ω.

Proof. We have the De Giorgi inequality: There exists C = C(p) > 0 such that

(15)
∫

B(x,r)

|Du(y)|p dµ(y) ≤ C

(R− r)p

∫

B(x,R)

|u(y)− uB(x,R)|p dµ(y),

whenever B(x, r) ⊂⊂ B(x,R) ⊂⊂ Ω, see [KS, (3.2)].
Next the Lemma follows from the De Giorgi inequality (15), oscillation inequal-

ity (2) and weak Harnack inequality (14). ¤
We will need Morrey’s Dirichlet growth theorem.

Theorem 3.6. Let u ∈ N1,p
loc (Ω) and α ∈ (0, 1). If

(16) −
∫

B(x,r)

|Du|p dµ ≤ Crpα−p,

for all balls B(x, r) ⊂ Ω, then u ∈ C0,α
loc (Ω).

Proof. For a.e. x, y ∈ Ω such that B(x, 4τd(x, y)) ∪ B(y, 4τd(x, y)) ⊂ Ω, we
have

|u(x)− u(y)| ≤ Cd(x, y)α
(
u]

α,4d(x,y)(x) + u]
α,4d(x,y)(y)

)
,

where
u]

α,R(z) = sup
0<r<R

r−α −
∫

B(z,r)

|u− uB(z,r)| dµ

is a fractional sharp maximal function and C = C(α,Cd) > 0, see Lemma 3.6 in
[HKi]. By the Poincaré inequality and (16), we have u]

α,R(z) ≤ Cp. Hence

|u(x)− u(y)| ≤ Cd(x, y)α.

Thus we can choose a representative ũ ∈ N1,p
loc (Ω) ∩ C0,α

loc (Ω) such that ũ = u p-q.e.
in Ω, see Corollary 3.3 in [Sh1]. ¤

Lemma 3.7. If u is non-negative, continuous function on Ω, I ⊂ Ω is a closed
set such that u = 0 on I and u is a p-subsolution in Ω \ I, then u is a p-subsolution
in Ω.



616 Tero Mäkäläinen

Proof. Let ϕ ∈ N1,p
0 (Ω) be non-negative. Let U be the support of ϕ; then U is

relatively compact subset of Ω. We need to show that
∫

U

|Du|p dµ ≤
∫

U

|D(u− ϕ)|p dµ.

Since u ≥ 0 on Ω and u = 0 on I, it follows that (u − ϕ)+ ≤ u on Ω with
u − (u − ϕ)+ having support in U and that (u − ϕ)+ = 0 on I. Observe that∫

U
|D(u− ϕ)|p dµ ≥ ∫

U
|D(u− ϕ)+|p dµ. Since u is a p-subsolution in Ω \ I and by

the above statement, (u− ϕ)+ has support in U \ I, it follows that
∫

U

|Du|p dµ ≤
∫

U

|D(u− ϕ)+|p dµ ≤
∫

U

|D(u− ϕ)|p dµ. ¤

The rest of the section is devoted to the theory of balayage. Balayage in metric
measure spaces is studied in [BBMP] and the following theorems are proven there.

First, we recall that the liminf-regularization û of any function u : Ω → [−∞,∞]
is defined by

û(x) = lim inf
y→x

u(y).

Then û ≤ u. Moreover, if u is locally bounded below, then û is lower semicontinuous.

Definition 3.8. Let ψ : Ω → (−∞,∞] be a function that is locally bounded
below, and let

Φψ = Φψ(Ω) = {u : u is p-superharmonic in Ω and u ≥ ψ in Ω}.
Then we define

Rψ(x) = Rψ(Ω)(x) = inf{u(x) : u ∈ Φψ}.
The liminf-regularization R̂ψ(x) = lim infy→x Rψ(y) is called the balayage of ψ in Ω.
To obtain a meaningful function R̂ψ, we need to assume the set Φψ to be non-empty.

Notice that we can analogously define R̂
ψ
. Indeed, we let Φψ be a set of all

p-subharmonic functions, which are below ψ. In this case ψ is assumed to be
locally bounded above. Then R̂

ψ
is defined by taking the upper semicontinuous

regularization of supremum of Φψ.

Theorem 3.9. The balayage R̂ψ(Ω) is p-superharmonic in Ω.

The following theorem is a metric space version of Theorem 8.14 in [HKM], see
[BBMP].

Theorem 3.10. If ψ is a continuous and bounded above in Ω, then R̂ψ is
continuous p-supersolution with R̂ψ ≥ ψ. Moreover, R̂ψ is p-harmonic in the open
set {R̂ψ > ψ}.

In metric spaces regular boundary points can be defined using Perron solution,
as usually done in Euclidean setting. Equivalent definitions, e.g. in terms of barrier,
are also available, see [BB1]. We say that a set is regular if every boundary point
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is regular. The property of regular sets used in this paper is that every nonempty
open set Ω ⊂ X, Ω 6= X, can be exhausted by a sequence of regular sets.

We need a version of Theorem 9.26 in [HKM] in metric spaces, which is proven
in [BBMP] as well.

Theorem 3.11. Let ψ be continuous in a regular set D and u = R̂ψ. Then

lim
y→x

u(y) = ψ(x)

for all x ∈ ∂D.

4. Hölder continuous supersolutions and Radon measures,
Proof of Theorem 1.3

First, we prove the sufficient part of Theorem 1.3.

Theorem 4.1. Let κ be the number given by (2). Suppose that u ∈ N1,p
loc (Ω)

is a solution of ∫

Ω

|Du|p−2Du ·Dϕ dµ =

∫

Ω

ϕdν,

for all ϕ ∈ N1,p
0 (Ω), where ν ∈ N1,p

0 (Ω)∗ is a Radon measure such that there are
constants M > 0 and 0 < α < κ with

ν(B(x, r))

µ(B(x, r))
≤ Mr−p+α(p−1),

whenever B(x, 2r) ⊂ Ω. Then u ∈ C0,α
loc (Ω).

To prove Theorem 4.1, we need the following Lemma.

Lemma 4.2. Let u ∈ N1,p
loc (Ω) be a solution of

∫

Ω

|Du|p−2Du ·Dϕ dµ =

∫

Ω

ϕdν,

for all ϕ ∈ N1,p
0 (Ω), where ν ∈ N1,p

0 (Ω)∗ is a Radon measure. Let B(x0, 2R) ⊂ Ω
such that R < diam X/10. Assume that there are constants C0 > 0 and 0 < α < κ
such that

(17)
ν(B(x0, r))

µ(B(x0, r))
≤ C0r

−p+α(p−1),

for all 0 < r ≤ R. Then for each 0 < r < R and ε > 0 we have
∫

B(x0,r)

|Du|p dµ ≤ C1

(
µ(B(x0, r))

µ(B(x0, R))

( r

R

)−p+pκ

+ ε

) ∫

B(x0,R)

|Du|p dµ

+ C2µ(B(x0, R))R−p+pα,

where C1 = C1(p) > 0 and C2 = C2(p, α, C0, ε) > 0 are constants.
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Proof. Without loss of generality we may assume that r < R/2. We denote
Br̂ = B(x0, r̂). Let h be the p-harmonic function in BR such that u−h ∈ N1,p

0 (BR).
Then

∫

Br

|Du|p dµ =

∫

Br

[|Du|p−2Du− |Dh|p−2Dh
] · (Du−Dh) dµ

+

∫

Br

|Du|p−2Du ·Dh dµ +

∫

Br

|Dh|p−2Dh · (Du−Dh) dµ

≤
∫

BR

[|Du|p−2Du− |Dh|p−2Dh
] · (Du−Dh) dµ

+

∫

Br

|Du|p−1|Dh| dµ,

(18)

where we used (11) for h. Since u− h ∈ N1,p
0 (BR), using it as a testing function for

the equations for u and h, we obtain

(19)
∫

BR

[|Du|p−2Du− |Dh|p−2Dh
] · (Du−Dh) dµ =

∫

BR

(u− h) dν

We will estimate the right hand side of the above identity by Adams inequality,
Theorem 2.8, which is formulated for Lipschitz functions. In our case u − h ∈
N1,p

0 (BR). Thus we need the following approximation argument. By [Sh2, Theorem
4.8] Lip0(BR) is dense in N1,p

0 (BR) and hence for u − h ∈ N1,p
0 (BR) there exist

ϕk ∈ Lip0(BR) converging to u − h both in N1,p
0 (BR) and p-q.e. in BR, see [Sh1,

Corollary 3.9]. Identity (13) yields that the functions ϕk form a Cauchy sequence in
L1(BR, ν). Hence a subsequence of {ϕk} converges to ϕ ν-a.e. in BR, and by [BMS,
Lemma 3.8] ϕ = u−h ν-a.e. Thus in this case, Adams inequality, Theorem 2.8, can
be applied as follows.

First, we need the result in [KeZ], that our space X admits a weak (1, t)-Poincaré
inequality for some 1 ≤ t < p. Now we choose

q =
(s− p + α(p− 1))tp

st− p
.

Then we get by Hölder inequality, (17) and Theorem 2.8, that

∫

BR

(u− h) dν ≤ C[R−p+α(p−1)µ(BR)]
q−1

q

(∫

BR

|u− h|q dν

)1/q

≤ Cµ(BR)1−1/pR[−p+α(p−1)] q−1
q

+ t−1
t

+ s
p
− s

q

(∫

BR

|D(u− h)|p dµ

)1/p

≤ Cµ(BR)1−1/pR(−p+αp)(1−1/p)

((∫

BR

|Du|p dµ

)1/p

+

(∫

BR

|Dh|p dµ

)1/p
)
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Thus by Young’s inequality and the minimizing property of h, we obtain

(20)
∫

BR

(u− h) dν ≤ Cµ(BR)R−p+αp + ε

∫

BR

|Du|p dµ.

Next we estimate the last term in (18) by Young’s inequality and Lemma 3.5
∫

Br

|Du|p−1|Dh| dµ ≤ 1

2

∫

Br

|Du|p dµ + C

∫

Br

|Dh|p dµ

≤ 1

2

∫

Br

|Du|p dµ + C
µ(Br)

µ(BR)

( r

R

)pκ−p
∫

BR

|Dh|p dµ

≤ 1

2

∫

Br

|Du|p dµ + C
µ(Br)

µ(BR)

( r

R

)pκ−p
∫

BR

|Du|p dµ.

Now plugging the previous estimate, (19) and (20) into (18), we obtain
∫

Br

|Du|p dµ ≤ C1

(
µ(Br)

µ(BR)

( r

R

)−p+pκ

+ ε

) ∫

BR

|Du|p dµ + C2µ(BR)R−p+pα,

which proves the lemma. ¤
Proof of Theorem 4.1. Fix B(x0, 2R) ⊂ Ω such that R < diam X/10. For any

0 < r < R and ε > 0, we have by Lemma 4.2, that
∫

B(x0,r)

|Du|p dµ ≤ C

(
µ(B(x0, r))

µ(B(x0, R))

( r

R

)−p+pκ

+ ε

) ∫

B(x0,R)

|Du|p dµ

+ Cµ(B(x0, R))R−p+pα.

Now we can choose ε small enough. Lemma 2.7 gives us∫

B(x0,r)

|Du|p dµ ≤ Cµ(B(x0, r))r
−p+pα,

where C is independent of u and r. Thus by Morrey’s Dirichlet growth theorem,
Theorem 3.6, u ∈ C0,α

loc (Ω). ¤
The necessary part of Theorem 1.3 is proved in [BMS]. For the sake of com-

pleteness, we write down the proof.

Theorem 4.3. Let Ω ⊂ X and u be a p-supersolution in Ω. Assume that
ν ∈ N1,p

0 (Ω)∗ is a Radon measure such that u is a solution of
∫

Ω

|Du|p−2Du ·Dϕ dµ =

∫

Ω

ϕdν,

for all ϕ ∈ N1,p
0 (Ω). If u ∈ C0,α

loc (Ω) for some 0 < α < 1, then there is a constant
M > 0 such that

ν(B(x, r))

µ(B(x, r))
≤ Mr−p+α(p−1),

whenever B(x, 4r) ⊂ Ω.
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Proof. Fix any ball B(x, r) such that B(x, 4r) ⊂ Ω. From Lemma 4.8 in [BMS]
we get

rp ν(B(x, r))

µ(B(x, r))
≤ C( inf

B(x,r)
u− inf

B(x,2r)
u)p−1.

Since u ∈ C0,α
loc (Ω), there holds

ν(B(x, r))

µ(B(x, r))
≤ Mr−p+α(p−1).

This finishes the proof of Theorem 4.3. ¤

5. Proof of Theorem 1.1

We divide the proof of Theorem 1.1 into following lemmas.

Lemma 5.1. Let K ⊂ Ω be a non-empty compact set. Suppose ψ is continuous
with

|ψ(x)− ψ(y)| ≤ Cψd(x, y)α

for all x ∈ K and y ∈ Ω, where Cψ > 0 and α > 0. Let u = R̂ψ and ν be the Riesz
measure associated with u, see (13) and Theorem 3.10. Then

ν(B(x, r))

µ(B(x, r))
≤ Cr−p+α(p−1)

for all r < r0 = 1
360

dist(K, ∂Ω) and x ∈ K, C = C(p,M, α, Cd, Cψ) > 0.

Proof. Let I := {x ∈ Ω : ψ(x) = u(x)}. First, let x0 ∈ I. We may assume
u(x0) = 0 = ψ(x0). If r ≤ 1

20
dist(x0, X \ Ω) and γ0 := osc(ψ, B(x0, 20r)), then

(u− γ0)
+ is a subsolution by Lemma 3.7, and u + γ0 is a nonnegative supersolution

in B(x0, 20r).
Hence by [KS, Theorem 4.2 with Remark 4.4] and [BMS, Lemma 4.5]

sup
B(x0,r)

(u− γ0) ≤ C

(
−
∫

B(x0,2r)

|(u− γ0)
+|p−1 dµ

) 1
p−1

≤ C

(
−
∫

B(x0,2r)

(u + γ0)
p−1 dµ

) 1
p−1

≤ C inf
B(x0,4r)

(u + γ0) ≤ Cγ0.

Since u ≥ ψ ≥ −γ0, we have

(21) osc(u,B(x0, r)) ≤ cγ0 = c osc(ψ,B(x0, 20r)).

Let r ≤ 1
160

dist(x0, ∂Ω) and let η ∈ Lip0(B(x0, 2r)) be a nonnegative cut-off function
with η = 1 in B(x0, r) and |Dη| ≤ C/r in B(x0, 2r). Then by (13) and by the Hölder
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inequality

ν(B(x0, r)) ≤
∫

B(x0,2r)

ηp dν =

∫

B(x0,2r)

|Du|p−2Du ·Dηp dµ

≤ p

∫

B(x0,2r)

ηp−1|Du|p−1|Dη| dµ

≤ C

(∫

B(x0,2r)

|Du|pηp dµ

) p−1
p

(∫

B(x0,2r)

|Dη|p dµ

)1/p

≤ Cr−pµ(B(x0, r)) osc(u,B(x0, 4r))
p−1

≤ Cr−pµ(B(x0, r)) osc(ψ, B(x0, 80r))p−1,

where in the second last step we used the De Giorgi inequality (15), and in the last
step (21).

Now, if x0 ∈ I is such that

dist(x0, K) ≤ r ≤ 2r0,

we have

(22)
ν(B(x0, r))

µ(B(x0, r))
≤ Cr−p+α(p−1),

where C = C(p, Cψ, Cd) > 0.
For x0 ∈ K and r < r0, either B(x0, r) ∩ I = ∅ and thus ν(B(x0, r)) = 0, or

there is x ∈ B(x0, r) ∩ I. In the latter case we have by (22)
ν(B(x0, r))

µ(B(x0, r))
≤ C(Cd)

ν(B(x, 2r))

µ(B(x, 2r))
≤ Cr−p+α(p−1)

and the lemma is proven. ¤

Lemma 5.2. Let E ⊂ Ω be a closed set and β ∈ (−p,−1]. Suppose that u is
a continuous function in Ω and p-harmonic in Ω \ E such that

(23) |u(x0)− u(y)| ≤ Cd(x0, y)(β+p)/(p−1)

for all y ∈ Ω, x0 ∈ E. If E is of weighted β-Hausdorff measure zero, then u is
p-harmonic in Ω.

Proof. Fix a regular set D ⊂⊂ Ω. Let v = R̂u = R̂u(D) and let ν be a Riesz
measure associated with v, see (13) and Theorem 3.10. Let K ⊂ E∩D be a compact
set and α = (β + p)/(p− 1). Now β = −p + α(p− 1), so from (23) and Lemma 5.1
we infer

ν(B(x, r)) ≤ Crβµ(B(x, r))

for all r ≤ 1
360

dist(K, ∂Ω) and x ∈ K. Because H β
µ (K) = 0, we may cover K by

balls B(xj, rj) so that

ν(K) ≤
∑

j

ν(B(xj, rj)) ≤ C
∑

j

rβ
j µ(B(xj, rj)) < ε,
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where ε > 0 is any given number. It follows that ν(E ∩ D) = 0 and thus ν = 0.
Now v ∈ N1,p

loc (D) is continuous by Theorem 3.10 and p-harmonic in D by (13).
Next let w = R̂

u
(D). Similarly we find that w is p-harmonic in D. Since

v = u = w on ∂D by Theorem 3.11, we have by the uniqueness of p-harmonic
functions, Theorem 5.6 in [Sh2], that v = w in D. Since

w ≤ u ≤ v = w,

u is p-harmonic in D and the result follows, since any bounded open set can be
exhausted from inside by regular open sets, see [BB2]. ¤

Now we obtain the main results of this section.

Corollary 5.3. Suppose that u ∈ C0,α
loc (Ω), 0 < α ≤ 1, is p-harmonic in Ω \ E.

If E is a closed set of weighted (−p + α(p − 1))-Hausdorff measure zero, then u is
p-harmonic in Ω.

In the following theorem, we show that the Corollary 5.3 is sharp, when 0 <
α < κ.

Theorem 5.4. Let κ be as in (2) and 0 < α < κ. Suppose that E ⊂ Ω is a
closed set with positive weighted (−p + α(p− 1))-Hausdorff measure. Then there is
u ∈ C0,α

loc (Ω) which is p-harmonic in Ω\E, but does not have a p-harmonic extension
to Ω.

Proof. Let K ⊂ E be compact with

H −p+α(p−1)
µ (K) > 0.

By Frostman’s lemma, Lemma 2.6, there exist δ > 0 and a nonnegative Radon
measure ν living on K with ν(K) > 0 such that

ν(B(x, r)) ≤ Cr−p+α(p−1)µ(B(x, r)),

for all balls B(x, r) ⊂ X with 0 < r ≤ δ. Let u ∈ N1,p
loc (Ω) be a solution of

(24)
∫

Ω

|Du|p−2Du ·Dϕ dµ =

∫

Ω

ϕdν,

for all ϕ ∈ N1,p
0 (Ω). Then u ∈ C0,α

loc (Ω) by Theorem 4.1 and it is p-harmonic function
in Ω\E by (24), since ν(Ω\E) = 0. However u does not have a p-harmonic extension
to Ω, since ν(E) > 0. ¤

Proof of Theorem 1.1. Theorem 1.1 follows from Corollary 5.3 and Theorem 5.4.
¤
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