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Abstract. In recent work with Baranov, it was explained how to view the classical Grunsky
inequalities in terms of an operator identity, involving a transferred Beurling operator induced by
the conformal mapping. The main property used is the fact that the Beurling operator is unitary
on L2(C). As the Beurling operator is also bounded on Lp(C) for 1 < p < +∞ (with so far
unknown norm), an analogous operator identity was found which produces a generalization of the
Grunsky inequalities to the Lp setting. Here, we consider weighted Hilbert spaces L2

θ(C) with
weight |z|2θ, for 0 ≤ θ ≤ 1, and find that the Beurling operator perturbed by adding a Cauchy-
type operator acts unitarily on L2

θ(C). After transferring to the unit disk D with the conformal
mapping, we find a generalization of the Grunsky inequalities in the setting of the space L2

θ(D);
this generalization seems to be essentially known, but the formulation is new. As a special case,
the generalization of the Grunsky inequalities contains the Prawitz theorem used in a recent paper
with Shimorin. We also mention an application to quasiconformal maps.

1. Introduction

Beurling and Fourier transforms. In this note, we shall study a perturbation
of the Beurling transform in the complex plane C. The Fourier transform of an
appropriately area-integrable function f is

F[f ](ξ) =

∫

C

e−2iRe[zξ̄] f(z) dA(z), ξ ∈ C,

while the Beurling transform is the singular integral operator

BC[f ](z) = pv
∫

C

f(w)

(w − z)2
dA(w), z ∈ C;

here “pv” stands for “principal value”, and

dA(z) =
dxdy

π
, z = x + iy,
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is normalized area measure. The two transforms are connected via

FBC[f ](ξ) = − ξ̄

ξ
F[f ](ξ), ξ ∈ C.

By the Plancherel identity, F is a unitary transformation on L2(C), which is supplied
with the standard norm

‖f‖2
L2(C) =

∫

C

|f(z)|2 dA(z).

It is clear from this and the above relationship that BC is unitary on L2(C) as
well. We recall that an operator T acting on a complex Hilbert space H is unitary
if T ∗T = TT ∗ = id, where T ∗ is the adjoint and “id” is the identity operator.
Expressed differently, that T is unitary means that T is a surjective isometry.

The Cauchy transform. The Cauchy transform CC is the integral transform

CC[f ](z) =

∫

C

f(w)

w − z
dA(w),

defined for appropriately integrable functions. It is related to Beurling transform
BC via

BC[f ](z) = ∂zCC[f ](z),

where both sides are understood in the sense of distribution theory. Here, we use
the notation

∂z =
1

2

(
∂

∂x
− i

∂

∂y

)
, ∂̄z =

1

2

(
∂

∂x
+ i

∂

∂y

)
.

The perturbed Beurling transform. For real θ, let L2
θ(C) denote the Hilbert

space of square integrable functions on C with norm

‖f‖2
L2

θ(C) =

∫

D

|f(z)|2|z|2θdA(z) < +∞.

Moreover, let TC denote the operator

TC[h](z) =
1

z
CC[h](z),

for suitably integrable functions h. It turns out that it is enough to require that
h ∈ L2

θ(C) for some positive θ for TC[h] to be well-defined. We also need the
operator T′C, as defined by

T′C[h](z) = CC

[
h

z

]
(z).

We introduce, for 0 ≤ θ ≤ 1, the perturbed Beurling transform
(1.1) Bθ

C = BC + θ TC,

while for −1 ≤ θ ≤ 0, we instead write
(1.2) Bθ

C = BC + θ T′C.

Theorem 1.1. For −1 ≤ θ ≤ 1, the operator Bθ
C acts unitarily on L2

θ(C).
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The proof of this theorem is supplied in the next section.

Acknowledgement. The author thanks Lennart Carleson for suggesting the ap-
plication to quasiconformal maps.

2. The perturbed Beurling transform

For N = 1, 2, 3, . . ., let AN denote the N -th roots of unity, that is, the collection
of all α ∈ C with αN = 1. For n = 1, . . . , N , we consider the closed subspace
L2

n,N(C) of L2(C) consisting of functions f having the invariance property

(2.1) f(αz) = αnf(z), z ∈ C, α ∈ AN .

It is easy to see that f ∈ L2
n,N(C) if and only if f ∈ L2(C) is of the form

(2.2) f(z) = zn g(zN), z ∈ C,

where g some other complex-valued function.
We shall now study the Beurling transform on the subspaces L2

n,N(C).

The Beurling transform and root-of-unity invariance. Fix an N =
1, 2, 3, . . . and an n = 1, . . . , N . We suppose f ∈ L2

n,N(C). Then, by the change of
variables formula,

BC[f ](z) = pv
∫

C

f(w)

(w − z)2
dA(w) = pv

∫

C

αn

(αw − z)2
f(w) dA(w)

= αn−2 BC[f ](ᾱz), z ∈ C,

for α ∈ AN . Taking the average over AN , we get the identity

BC[f ](z) =
1

N
pv

∫

C

∑

α∈AN

αn

(αw − z)2
f(w) dA(w), z ∈ C.

A symmetric sum. Next, we study the sum

F (z) =
1

N

∑

α∈AN

αn

1− αz
.

This sum has the symmetry property

F (βz) = β̄n F (z), β ∈ AN ,

which means that F has the form

F (z) = zN−n G(zN).

The function G then has a simple pole at 1, and is analytic everywhere else in the
complex plane. Moreover, F vanishes at infinity, so G vanishes there, too. This
leaves us but one possibility, that G has the form

G(z) =
C

1− z
,
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where C is a constant. It is easily established that C = 1. It follows that

(2.3) F (z) =
1

N

∑

α∈AN

αn

1− αz
=

zN−n

1− zN
, z ∈ C.

As a consequence, we get that

H(z) = F (z) + zF ′(z) = [zF (z)]′ =
1

N

∑

α∈AN

αn

(1− αz)2

= zN−n

{
N

(1− zN)2
− n− 1

1− zN

}
,

where the left hand side identity is used to define the function H(z). This allows
us to compute the sum we need:

1

N

∑

α∈AN

αn

(αw − z)2
=

1

z2
H

(
w

z

)
= zn−2wN−n

{
NzN

(zN − wN)2
− n− 1

zN − wN

}
.

For f ∈ L2
n,N(C), we thus get the representation

BC[f ](z) = zn−2 pv
∫

C

{
NzN

(zN − wN)2
− n− 1

zN − wN

}
wN−n f(w) dA(w), z ∈ C.

Let f and g be connected via (2.2), and implement this relationship into the above
formula:

(2.4) BC[f ](z) = zn−2 pv
∫

C

{
NzN

(zN − wN)2
− n− 1

zN − wN

}
wN g(wN) dA(w), z ∈ C.

A similar expression may be found for the Cauchy transform as well:

(2.5) CC[f ](z) = zn−N−1

∫

C

wN

wN − zN
g(wN) dA(w), z ∈ C.

It is easy to check that with

h(z) =
z g(z)

|z|2−2/N
,

where g is connected to f via (2.2), we have

BC[f ](z) = zN+n−2 B
(n−1)/N
C [h](zN), z ∈ C.

The fact that BC is an isometry becomes the norm identity

(2.6)
∫

C

|h(z)|2 |z|2θ dA(z) =

∫

C

∣∣Bθ
C[h](z)

∣∣2 |z|2θ dA(z),

where we suppose that θ = (n − 1)/N . However, fractions of this type are dense
in the interval [0, 1], so that (2.6) extends to all θ with 0 ≤ θ ≤ 1. In other words,
for 0 ≤ θ ≤ 1, the operator Bθ

C is unitary on the space L2
θ(C), which was defined

earlier. But then, considering that

Bθ
C = MzB

θ+1
C M−1

z , −1 ≤ θ ≤ 0,
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which follows immediately from the fact that
1

(w − z)2
+

θ

w(w − z)
=

z

w

{
1

(w − z)2
+

θ + 1

z(w − z)

}
,

we conclude that Bθ
C is unitary on L2

θ(C) for −1 ≤ θ ≤ 0 as well.
This completes the proof of Theorem 1.1.

Remark 2.1. It is known [8] that BC is a bounded operator on L2
θ(C) for

−1 < θ < 1 (but not for θ = ±1). This means that for −1 < θ < 1, both terms in
(1.1) are bounded operators on Lθ(C). We suspect that the second term in (1.1),
the operator TC, is compact on L2

θ(C) with small spectrum for 0 < θ < 1. The
analogous statement for T′C is essentially equivalent.

Extension to real θ. We first note that Mz, multiplication by the independent
variable, is an isometric isomorphism L2

θ+1(C) → L2
θ(C) for all real θ. Therefore,

for integers k and 0 ≤ θ ≤ 1, the operator

Bθ+k
C = M−k

z Bθ
CMk

z

is unitary on L2
θ+k(C). It supplies an extension of Bθ

C to all real θ which coincides
with the previously defined notion for −1 ≤ θ ≤ 1.

3. Applications of Beurling transforms to conformal mapping

Grunsky identity and inequalities. It was shown in [1] that if ϕ : D → Ω
is a conformal mapping where Ω = ϕ(D) ⊂ C, then

Bϕ[f ](z) = pv
∫

D

ϕ′(z)ϕ′(w)

(ϕ(w)− ϕ(z))2
f(w) dA(w), z ∈ D,

is a contraction on L2(D); as a matter of fact, this follows from the fact that BC is
unitary on L2(C). Moreover, it was shown that if e denotes the function e(z) = z,
so that

Be[f ](z) = pv
∫

D

1

(w − z)2
f(w) dA(w), z ∈ D,

we have the Grunsky identity

(3.1) Bϕ −Be = PBϕ = BϕP̄ = PBϕP̄,

where P and P̄ are the associated Bergman projections

P[f ](z) =

∫

D

f(w)

(1− zw̄)2
dA(w), z ∈ D,

and

P̄[f ](z) =

∫

D

f(w)

(1− z̄w)2
dA(w), z ∈ D.

As P and P̄ are contractions on L2(D), we find that

(3.2)
∥∥(Bϕ −Be)[f ]

∥∥
L2(D)

≤ ‖f‖L2(D), f ∈ L2(D).
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In [1], it is explained how (3.2) expresses the Grunsky inequalities in a compact
manner.

We shall now try to carry out the same considerations in the weighted situation.

Transfer to the unit disk. We need to introduce some general notation. Let
MF denote the operator of multiplication by the function F . We also need the
Hilbert space L2

θ(X) with the norm

‖h‖2
L2

θ(X) =

∫

X

|h(z)|2 |z|2θ dA(z),

where X is some Borel measurable subset of C with positive area. In the sequel,
we restrict θ to the interval 0 ≤ θ ≤ 1. Fix a simply connected domain Ω in C,
which contains the origin and is not the whole plane, and let ϕ : D → Ω denote
the conformal mapping with ϕ(0) = 0 and ϕ′(0) > 0. Let f ∈ L2(Ω), and extend
it to the whole complex plane so that it vanishes on C \ Ω. Let BΩ[f ] denote the
restriction to Ω of BC[f ], and do likewise to define the operators CΩ, TΩ, T′Ω, Bθ

Ω,
as well as B−θ

Ω . We introduce transferred operators on spaces over the unit disk in
the following fashion. First, we suppose f ∈ L2

θ(Ω). Then the associated function

(3.3) g(z) = ϕ̄′(z)

[
ϕ(z)

z

]θ

f ◦ ϕ(z), z ∈ D,

belongs to L2
θ(D), with equality of norms:

‖g‖L2
θ(D) = ‖f‖L2

θ(Ω).

The transferred Cauchy transform is defined as follows:

(3.4) Cθ
ϕ[g](z) =

[
ϕ(z)

z

]θ

CΩ[f ] ◦ ϕ(z) =

∫

D

[
w ϕ(z)

z ϕ(w)

]θ
ϕ′(w)

ϕ(w)− ϕ(z)
g(w) dA(w).

The transferred perturbed Beurling transform is defined analogously:

Bθ
ϕ[g](z) = ϕ′(z)

[
ϕ(z)

z

]θ

Bθ
Ω[f ] ◦ ϕ(z)

= ϕ′(z)

[
ϕ(z)

z

]θ{
BΩ[f ] ◦ ϕ(z) +

θ

ϕ(z)
CΩ[f ] ◦ ϕ(z)

}

= Bθ,0
ϕ [g](z) + θ

ϕ′(z)

ϕ(z)
Cθ

ϕ[g](z),

where

Bθ,0
ϕ [g](z) = pv

∫

D

[
w ϕ(z)

z ϕ(w)

]θ
ϕ′(z)ϕ′(w)

(ϕ(w)− ϕ(z))2
g(w) dA(w).

It is clear that Bθ
ϕ is a norm contraction on L2

θ(D). Let Pθ be the integral operator

Pθ[f ](z) =

∫

D

[
1

(1− zw̄)2
+

θ

1− zw̄

]
f(w) |w|2θdA(w);
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it is the orthogonal projection to the subspace of analytic functions in L2
θ(D). As

both Bθ
ϕ and Pθ are contractions on L2

θ(D), so is their product PθB
θ
ϕ. It remains

to represent the operator PθB
θ
ϕ in a reasonable fashion. The main observation is

that [
w ϕ(z)

z ϕ(w)

]θ
ϕ′(z)ϕ′(w)

(ϕ(w)− ϕ(z))2
=

1

(w − z)2
− θ

[
ϕ′(z)

ϕ(z)
− 1

z

]
1

w − z
+ O(1)

near the diagonal z = w, so that
[
w ϕ(z)

z ϕ(w)

]θ
ϕ′(z)ϕ′(w)

(ϕ(w)− ϕ(z))2
+ θ

ϕ′(z)

ϕ(z)

[
w ϕ(z)

z ϕ(w)

]θ
ϕ′(w)

ϕ(w)− ϕ(z)

=
1

(w − z)2
+

θ

z(w − z)
+ O(1),

(3.5)

again near the diagonal. We observe that in view of (3.5), we get the Grunsky-type
identity

(3.6) PθB
θ
ϕ = Bθ

ϕ −BD + PθBD + θPθTD − θTD.

To make the involved operators PθBD and PθTD appearing in the right hand side
of (3.6) more concrete, it is helpful to know that for λ ∈ D,

Pθ[fλ](z) = λ̄|λ|2θ

∫ 1

0

[
1

(1− tλ̄z)2
+

θ

1− tλ̄z

]
tθdt, fλ(z) =

1

λ− z
,

while

Pθ[gλ](z) = −θ λ̄2|λ|2θ−2

∫ 1

0

[
1

(1− tλ̄z)2
+

θ

1− tλ̄z

]
tθdt, gλ(z) =

1

(λ− z)2
.

In view of these relations, we quickly verify that

PθBD + θPθTD = 0.

The Grunsky-type identity (3.6) thus simplifies a bit:

(3.7) PθB
θ
ϕ = Bθ

ϕ −BD − θTD = Bθ
ϕ −Bθ

D.

The corresponding Grunsky-type inequality reads

(3.8)
∥∥(

Bθ
ϕ −Bθ

D

)
[f ]

∥∥
L2

θ(D)
≤ ‖f‖L2

θ(D), f ∈ L2
θ(D).

To get a concrete example of how the Grunsky-type inequality works, we pick

fλ(z) = |z|−2θ

(
1

(1− z̄λ)2
− θ

1− z̄λ

)
, z ∈ D,

and compute
(
Bθ

ϕ −Bθ
D

)
[f ](z) =

[
λϕ(z)

z ϕ(λ)

]θ
ϕ′(z)ϕ′(λ)

(ϕ(λ)− ϕ(z))2
− 1

(λ− z)2

+ θ
ϕ′(z)

ϕ(z)

[
λϕ(z)

z ϕ(λ)

]θ
ϕ′(λ)

ϕ(λ)− ϕ(z)
− θ

z(λ− z)
.
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We see that (3.8) in this case assumes the form (0 ≤ θ ≤ 1)
∫

D

∣∣∣∣
[
λ ϕ(z)

z ϕ(λ)

]θ
ϕ′(z)ϕ′(λ)

(ϕ(λ)− ϕ(z))2
− 1

(λ− z)2

+ θ
ϕ′(z)

ϕ(z)

[
λϕ(z)

z ϕ(λ)

]θ
ϕ′(λ)

ϕ(λ)− ϕ(z)
− θ

z(λ− z)

∣∣∣∣
2

|z|2θdA(z)

≤
∫

D

|fλ(z)|2|z|2θdA(z) =

∫

D

∣∣∣∣
1

(1− z̄λ)2
− θ

1− z̄λ

∣∣∣∣
2

|z|−2θdA(z)

=
1

(1− |λ|2)2
− θ

1− |λ|2 .

(3.9)

The special case λ = 0 gives us the inequality of Prawitz (see [6] and [7]; we assume
ϕ′(0) = 1): ∫

D

∣∣∣∣ϕ′(z)

[
ϕ(z)

z

]θ−2

− 1

∣∣∣∣
2

|z|2θdA(z) ≤ 1

1− θ
.

A dual version. We carry out the corresponding calculations on the basis of
the fact that B−θ

C is unitary on L2
−θ(C) for 0 ≤ θ ≤ 1. In analogy with the above

treatment, we connect two functions f, g via

(3.10) g(z) = ϕ̄′(z)

[
ϕ(z)

z

]−θ

f ◦ ϕ(z), z ∈ D.

Then f ∈ L2
−θ(Ω) if and only if g ∈ L2

−θ(D), with equality of norms:

‖g‖L2
θ(D) = ‖f‖L2

θ(Ω).

The corresponding transferred Beurling transform assumes the form

B−θ
ϕ [g](z) = ϕ′(z)

[
ϕ(z)

z

]−θ

B−θ
Ω [f ] ◦ ϕ(z)

= ϕ′(z)

[
ϕ(z)

z

]−θ{
BΩ[f ] ◦ ϕ(z)− θ CΩ

[
f

z

]
◦ ϕ(z)

}

= B−θ,0
ϕ [g](z)− θ ϕ′(z) C−θ

ϕ

[
g

ϕ

]
(z),

where B−θ,0
ϕ and C−θ

ϕ are as before (just plug in −θ in place of θ in the corresponding
formulæ). It is clear that B−θ

ϕ is a contraction on L2
−θ(D).

To cut a long story short, the Grunsky-type identity analogous to (3.7) reads

(3.11) P−θB
−θ
ϕ = B−θ

ϕ −B−θ
D .

Let P̄∗
−θ be the operator

P̄∗
−θ[g](z) = |z|−2θ

∫

D

(
1

(1− wz̄)2
− θ

1− wz̄

)
g(w) dA(w);



Planar Beurling transform and Grunsky inequalities 593

it is a contraction on L2
θ(D), which can be written

P̄∗
−θ = M|z|−2θP̄−θM|z|2θ ,

where P̄−θ denotes the orthogonal projection onto the antiholomorphic functions in
L2
−θ(D). By forming adjoints, we find that (3.11) states that

(3.12) Bθ
ϕP̄∗

−θ = Bθ
ϕ −Bθ

D.

We now combine (3.7) with (3.12), and arrive at the following.

Theorem 3.1. (0 ≤ θ ≤ 1) We have the Grunsky identity

(3.13) Bθ
ϕ −Bθ

D = PθB
θ
ϕ = Bθ

ϕP̄∗
−θ = PθB

θ
ϕP̄∗

−θ.

Moreover, we also have the Grunsky-type inequality
∥∥(

Bθ
ϕ −Bθ

D

)
[f ]

∥∥
L2

θ(D)
≤ ‖f‖L2

θ(D), f ∈ L2
θ(D),

with equality if and only if ϕ is a full mapping and f(z) is of the form |z|−2θ times
an antianalytic function.

Remark 3.2. (a) It follows that (3.9) is an equality for full mappings.
(b) The above Grunsky-type inequality probably follows from the estimate men-

tioned by de Branges [2] as his point of departure for obtaining the more general
results that led to the solution of the Bieberbach conjecture.

(c) It is possible to consider weighted Lp spaces of the type Lp
θ(C), and ob-

tain norm estimates of perturbed Beurling transforms on such spaces from well-
known estimates of the Beurling operator on Lp(C). This then leads to appropriate
Grunsky-type identities and inequalities in the weighted Lp setting.

4. Applications to quasiconformal maps

Quasiconformal maps. Here, we suppose that ϕ : D → Ω is quasiconformal,
which means that it is a homoeomorphism which is one-to-one and onto, with

(4.1) ∂̄zϕ(z) = µ(z) ∂zϕ(z), z ∈ D,

where µ is an Borel measurable function on D with

‖µ‖L∞(C) = ess sup
{|µ(z)| : z ∈ D

}
< 1.

As before, Ω is a simply connected domain in C other than C itself, which contains
the origin. We assume that ϕ(0) = 0 and that µ vanishes on a (small) neighborhood
of the origin. The function ϕ is then analytic near the origin. In the sequel, we shall
think of the Beltrami coefficient µ as fixed. We plan to derive some information
regarding the mapping ϕ.

The mapping φ = φµ. We extend µ to all of C by declaring it to be

µ(z) = µ̄

(
1

z̄

)
, z ∈ De,
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where
De =

{
z ∈ C : 1 < |z| < +∞}

is the (punctured) exterior disk, and by declaring it to vanish on the unit circle T.
Clearly, the extended µ has compact support.

The material mentioned here is largely a condensed version of Section 1.7 of [3];
we refer to that book for details. Let F = Fµ : C → C solve the equation

(id + BCMµ)[F ] = BC[µ];

A solution F exists and is unique, and it belongs to Lp(C) for p in some open
interval containing the point 2. We define

Φ(z) = z + C̄C[F ](z)− C̄C[F ](0),

and obtain a quasiconformal map Φ = Φµ : C → C which solves the Beltrami
equation

∂̄zΦ(z) = µ(z) ∂zΦ(z), z ∈ C.

Here, C̄C is the conjugate Cauchy transform

C̄C[f ](z) =

∫

C

f(w)

w̄ − z̄
dA(w), z ∈ C.

A calculation shows that the related mapping

Ψ(z) =
1

Φ̄
(

1
z̄

) , z ∈ C \ {0},

solves the same Beltrami equation

∂̄zΨ(z) = µ(z) ∂zΨ(z), z ∈ C.

As Ψ—like Φ—fixes the points 0 and ∞, it follows that

Ψ(z) = λ Φ(z), z ∈ C,

for some complex parameter λ. Since we must have

Φ(z)

Ψ(z)
= |Φ(z)|2 =

1

λ
, z ∈ T,

it follows that 0 < λ < +∞. As a consequence, we have that

φ(z) = φµ(z) =
√

λ Φ(z), z ∈ D,

maps D onto itself, and preserves the origin. Moreover, φ solves the same Beltrami
equation (4.1) as does ϕ.

The induced transform. The parameter θ is assumed to be confined to the
interval 0 ≤ θ ≤ 1. It is easy to see that it is possible to define a single-valued
logarithm

log
ϕ(z)

z
, z ∈ D.
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One just checks that the associated differential is exact. This allows us to define
real (and complex) powers of the function ϕ(z)/z. Next, we suppose f ∈ L2

θ(Ω),
and associate to it the function g:

g(z) = (1− |µ(z)|2)1/2 ∂̄zϕ̄(z)

[
ϕ(z)

z

]θ

f ◦ ϕ(z), z ∈ D.

It is a consequence of the change-of-variables formula

(4.2)
∫

Ω

|F (z)|2 dA(z) =

∫

D

|F ◦ ϕ(z)|2 (
1− |µ(z)|2) |∂zϕ(z)|2 dA(z)

that
‖g‖L2

θ(D) = ‖f‖L2
θ(Ω).

We define the transferred Beurling transform to be

Bθ,µ
ϕ [g](z) = (1− |µ(z)|2)1/2 ∂zϕ(z)

[
ϕ(z)

z

]θ

Bθ
Ω[f ] ◦ ϕ(z), z ∈ D,

so that Bθ,µ
ϕ acts contractively on L2

θ(D). In case θ = 0, the formula simplifies
pleasantly:

B0,µ
ϕ [g](z) = (1− |µ(z)|2)1/2 ∂z

∫

D

(1− |µ(w)|2)1/2∂wϕ(w)

ϕ(w)− ϕ(z)
g(w) dA(w), z ∈ D.

The differentiation is in the sense of distribution theory.

The Grunsky-type identity and inequality. Since ϕ and φ have the same
Beltrami coefficient µ, there is a conformal mapping ψ : D → Ω fixing the origin
such that ϕ = ψ ◦ φ. Next, we connect h and f via

h(z) = ψ̄′(z)

[
ψ(z)

z

]θ

f ◦ ψ(z), z ∈ D,

so that
‖h‖L2

θ(D) = ‖f‖L2
θ(Ω) = ‖g‖L2

θ(D)

and

g(z) = (1− |µ(z)|2)1/2 ∂̄zφ̄(z)

[
φ(z)

z

]θ

h ◦ φ(z), z ∈ D,

while

Bθ,µ
ϕ [g](z) = (1− |µ(z)|2)1/2 ∂zφ(z)

[
φ(z)

z

]θ

Bθ
ψ[h] ◦ φ(z), z ∈ D.

To simplify the notation, let Uθ,µ denote the unitary transformation on L2
θ(D) given

by

Uθ,µ[g](z) = (1− |µ(z)|2)1/2 ∂zφ(z)

[
φ(z)

z

]θ

g ◦ φ(z), z ∈ D.
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so that Bθ,µ
ϕ = Uθ,µBθ

ψ. Next, let the orthogonal projection Pθ,µ on L2
θ(D) be

defined by
Pθ,µ = Uθ,µ Pθ

(
Uθ,µ

)−1
.

It now follows from the results of the previous section that

(4.3) Pθ,µB
θ,µ
ϕ = Bθ,µ

ϕ −Bθ,µ
φ ,

and since the left hand side is a contraction, we conclude that

(4.4)
∥∥(

Bθ,µ
ϕ −Bθ,µ

φ

)
[g]

∥∥
L2

θ(D)
≤ ‖g‖L2

θ(D), g ∈ L2
θ(D).
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