PLANAR BEURLING TRANSFORM AND GRUNSKY INEQUALITIES

Håkan Hedenmalm

The Royal Institute of Technology, Department of Mathematics
S-100 44 Stockholm, Sweden; haakanh@math.kth.se

Abstract

In recent work with Baranov, it was explained how to view the classical Grunsky inequalities in terms of an operator identity, involving a transferred Beurling operator induced by the conformal mapping. The main property used is the fact that the Beurling operator is unitary on $L^{2}(\mathbf{C})$. As the Beurling operator is also bounded on $L^{p}(\mathbf{C})$ for $1<p<+\infty$ (with so far unknown norm), an analogous operator identity was found which produces a generalization of the Grunsky inequalities to the L^{p} setting. Here, we consider weighted Hilbert spaces $L_{\theta}^{2}(\mathbf{C})$ with weight $|z|^{2 \theta}$, for $0 \leq \theta \leq 1$, and find that the Beurling operator perturbed by adding a Cauchytype operator acts unitarily on $L_{\theta}^{2}(\mathbf{C})$. After transferring to the unit disk \mathbf{D} with the conformal mapping, we find a generalization of the Grunsky inequalities in the setting of the space $L_{\theta}^{2}(\mathbf{D})$; this generalization seems to be essentially known, but the formulation is new. As a special case, the generalization of the Grunsky inequalities contains the Prawitz theorem used in a recent paper with Shimorin. We also mention an application to quasiconformal maps.

1. Introduction

Beurling and Fourier transforms. In this note, we shall study a perturbation of the Beurling transform in the complex plane C. The Fourier transform of an appropriately area-integrable function f is

$$
\mathfrak{F}[f](\xi)=\int_{\mathbf{C}} \mathrm{e}^{-2 \mathrm{i} \operatorname{Re}[z \bar{\xi}]} f(z) \mathrm{d} A(z), \quad \xi \in \mathbf{C},
$$

while the Beurling transform is the singular integral operator

$$
\mathfrak{B}_{\mathbf{C}}[f](z)=\operatorname{pv} \int_{\mathbf{C}} \frac{f(w)}{(w-z)^{2}} \mathrm{~d} A(w), \quad z \in \mathbf{C}
$$

here "pv" stands for "principal value", and

$$
\mathrm{d} A(z)=\frac{\mathrm{d} x \mathrm{~d} y}{\pi}, \quad z=x+\mathrm{i} y
$$

[^0]is normalized area measure. The two transforms are connected via
$$
\mathfrak{F} \mathfrak{B}_{\mathbf{C}}[f](\xi)=-\frac{\bar{\xi}}{\xi} \mathfrak{F}[f](\xi), \quad \xi \in \mathbf{C}
$$

By the Plancherel identity, \mathfrak{F} is a unitary transformation on $L^{2}(\mathbf{C})$, which is supplied with the standard norm

$$
\|f\|_{L^{2}(\mathbf{C})}^{2}=\int_{\mathbf{C}}|f(z)|^{2} \mathrm{~d} A(z) .
$$

It is clear from this and the above relationship that $\mathfrak{B}_{\mathbf{C}}$ is unitary on $L^{2}(\mathbf{C})$ as well. We recall that an operator T acting on a complex Hilbert space \mathscr{H} is unitary if $T^{*} T=T T^{*}=\mathrm{id}$, where T^{*} is the adjoint and "id" is the identity operator. Expressed differently, that T is unitary means that T is a surjective isometry.

The Cauchy transform. The Cauchy transform $\mathfrak{C}_{\mathbf{C}}$ is the integral transform

$$
\mathfrak{C}_{\mathbf{C}}[f](z)=\int_{\mathbf{C}} \frac{f(w)}{w-z} \mathrm{~d} A(w)
$$

defined for appropriately integrable functions. It is related to Beurling transform $\mathfrak{B}_{\mathrm{C}}$ via

$$
\mathfrak{B}_{\mathbf{C}}[f](z)=\partial_{z} \mathfrak{C}_{\mathbf{C}}[f](z),
$$

where both sides are understood in the sense of distribution theory. Here, we use the notation

$$
\partial_{z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-\mathrm{i} \frac{\partial}{\partial y}\right), \quad \bar{\partial}_{z}=\frac{1}{2}\left(\frac{\partial}{\partial x}+\mathrm{i} \frac{\partial}{\partial y}\right) .
$$

The perturbed Beurling transform. For real θ, let $L_{\theta}^{2}(\mathbf{C})$ denote the Hilbert space of square integrable functions on \mathbf{C} with norm

$$
\|f\|_{L_{\theta}^{2}(\mathbf{C})}^{2}=\int_{\mathbf{D}}|f(z)|^{2}|z|^{2 \theta} \mathrm{~d} A(z)<+\infty .
$$

Moreover, let $\mathfrak{T}_{\mathbf{C}}$ denote the operator

$$
\mathfrak{T}_{\mathbf{C}}[h](z)=\frac{1}{z} \mathfrak{C}_{\mathbf{C}}[h](z),
$$

for suitably integrable functions h. It turns out that it is enough to require that $h \in L_{\theta}^{2}(\mathbf{C})$ for some positive θ for $\mathfrak{T}_{\mathbf{C}}[h]$ to be well-defined. We also need the operator $\mathfrak{T}_{\mathbf{C}}^{\prime}$, as defined by

$$
\mathfrak{T}_{\mathbf{C}}^{\prime}[h](z)=\mathfrak{C}_{\mathbf{C}}\left[\frac{h}{z}\right](z)
$$

We introduce, for $0 \leq \theta \leq 1$, the perturbed Beurling transform

$$
\begin{equation*}
\mathfrak{B}_{\mathbf{C}}^{\theta}=\mathfrak{B}_{\mathbf{C}}+\theta \mathfrak{T}_{\mathbf{C}} \tag{1.1}
\end{equation*}
$$

while for $-1 \leq \theta \leq 0$, we instead write

$$
\begin{equation*}
\mathfrak{B}_{\mathrm{C}}^{\theta}=\mathfrak{B}_{\mathrm{C}}+\theta \mathfrak{T}_{\mathrm{C}}^{\prime} \tag{1.2}
\end{equation*}
$$

Theorem 1.1. For $-1 \leq \theta \leq 1$, the operator $\mathfrak{B}_{\mathrm{C}}^{\theta}$ acts unitarily on $L_{\theta}^{2}(\mathbf{C})$.

The proof of this theorem is supplied in the next section.
Acknowledgement. The author thanks Lennart Carleson for suggesting the application to quasiconformal maps.

2. The perturbed Beurling transform

For $N=1,2,3, \ldots$, let \mathscr{A}_{N} denote the N-th roots of unity, that is, the collection of all $\alpha \in \mathbf{C}$ with $\alpha^{N}=1$. For $n=1, \ldots, N$, we consider the closed subspace $L_{n, N}^{2}(\mathbf{C})$ of $L^{2}(\mathbf{C})$ consisting of functions f having the invariance property

$$
\begin{equation*}
f(\alpha z)=\alpha^{n} f(z), \quad z \in \mathbf{C}, \alpha \in \mathscr{A}_{N} . \tag{2.1}
\end{equation*}
$$

It is easy to see that $f \in L_{n, N}^{2}(\mathbf{C})$ if and only if $f \in L^{2}(\mathbf{C})$ is of the form

$$
\begin{equation*}
f(z)=z^{n} g\left(z^{N}\right), \quad z \in \mathbf{C}, \tag{2.2}
\end{equation*}
$$

where g some other complex-valued function.
We shall now study the Beurling transform on the subspaces $L_{n, N}^{2}(\mathbf{C})$.
The Beurling transform and root-of-unity invariance. Fix an $N=$ $1,2,3, \ldots$ and an $n=1, \ldots, N$. We suppose $f \in L_{n, N}^{2}(\mathbf{C})$. Then, by the change of variables formula,

$$
\begin{aligned}
\mathfrak{B}_{\mathbf{C}}[f](z) & =\operatorname{pv} \int_{\mathbf{C}} \frac{f(w)}{(w-z)^{2}} \mathrm{~d} A(w)=\mathrm{pv} \int_{\mathbf{C}} \frac{\alpha^{n}}{(\alpha w-z)^{2}} f(w) \mathrm{d} A(w) \\
& =\alpha^{n-2} \mathfrak{B}_{\mathbf{C}}[f](\bar{\alpha} z), \quad z \in \mathbf{C},
\end{aligned}
$$

for $\alpha \in \mathscr{A}_{N}$. Taking the average over \mathscr{A}_{N}, we get the identity

$$
\mathfrak{B}_{\mathbf{C}}[f](z)=\frac{1}{N} \operatorname{pv} \int_{\mathbf{C}} \sum_{\alpha \in \mathscr{A}_{N}} \frac{\alpha^{n}}{(\alpha w-z)^{2}} f(w) \mathrm{d} A(w), \quad z \in \mathbf{C} .
$$

A symmetric sum. Next, we study the sum

$$
F(z)=\frac{1}{N} \sum_{\alpha \in \mathscr{A}_{N}} \frac{\alpha^{n}}{1-\alpha z}
$$

This sum has the symmetry property

$$
F(\beta z)=\bar{\beta}^{n} F(z), \quad \beta \in \mathscr{A}_{N},
$$

which means that F has the form

$$
F(z)=z^{N-n} G\left(z^{N}\right) .
$$

The function G then has a simple pole at 1 , and is analytic everywhere else in the complex plane. Moreover, F vanishes at infinity, so G vanishes there, too. This leaves us but one possibility, that G has the form

$$
G(z)=\frac{C}{1-z},
$$

where C is a constant. It is easily established that $C=1$. It follows that

$$
\begin{equation*}
F(z)=\frac{1}{N} \sum_{\alpha \in \mathscr{A}_{N}} \frac{\alpha^{n}}{1-\alpha z}=\frac{z^{N-n}}{1-z^{N}}, \quad z \in \mathbf{C} . \tag{2.3}
\end{equation*}
$$

As a consequence, we get that

$$
\begin{aligned}
H(z) & =F(z)+z F^{\prime}(z)=[z F(z)]^{\prime}=\frac{1}{N} \sum_{\alpha \in \mathscr{A}_{N}} \frac{\alpha^{n}}{(1-\alpha z)^{2}} \\
& =z^{N-n}\left\{\frac{N}{\left(1-z^{N}\right)^{2}}-\frac{n-1}{1-z^{N}}\right\}
\end{aligned}
$$

where the left hand side identity is used to define the function $H(z)$. This allows us to compute the sum we need:

$$
\frac{1}{N} \sum_{\alpha \in \mathscr{A}_{N}} \frac{\alpha^{n}}{(\alpha w-z)^{2}}=\frac{1}{z^{2}} H\left(\frac{w}{z}\right)=z^{n-2} w^{N-n}\left\{\frac{N z^{N}}{\left(z^{N}-w^{N}\right)^{2}}-\frac{n-1}{z^{N}-w^{N}}\right\}
$$

For $f \in L_{n, N}^{2}(\mathbf{C})$, we thus get the representation

$$
\mathfrak{B}_{\mathbf{C}}[f](z)=z^{n-2} \operatorname{pv} \int_{\mathbf{C}}\left\{\frac{N z^{N}}{\left(z^{N}-w^{N}\right)^{2}}-\frac{n-1}{z^{N}-w^{N}}\right\} w^{N-n} f(w) \mathrm{d} A(w), \quad z \in \mathbf{C} .
$$

Let f and g be connected via (2.2), and implement this relationship into the above formula:

$$
\begin{equation*}
\mathfrak{B}_{\mathbf{C}}[f](z)=z^{n-2} \operatorname{pv} \int_{\mathbf{C}}\left\{\frac{N z^{N}}{\left(z^{N}-w^{N}\right)^{2}}-\frac{n-1}{z^{N}-w^{N}}\right\} w^{N} g\left(w^{N}\right) \mathrm{d} A(w), z \in \mathbf{C} . \tag{2.4}
\end{equation*}
$$

A similar expression may be found for the Cauchy transform as well:

$$
\begin{equation*}
\mathfrak{C}_{\mathbf{C}}[f](z)=z^{n-N-1} \int_{\mathbf{C}} \frac{w^{N}}{w^{N}-z^{N}} g\left(w^{N}\right) \mathrm{d} A(w), \quad z \in \mathbf{C} . \tag{2.5}
\end{equation*}
$$

It is easy to check that with

$$
h(z)=\frac{z g(z)}{|z|^{2-2 / N}}
$$

where g is connected to f via (2.2), we have

$$
\mathfrak{B}_{\mathbf{C}}[f](z)=z^{N+n-2} \mathfrak{B}_{\mathbf{C}}^{(n-1) / N}[h]\left(z^{N}\right), \quad z \in \mathbf{C}
$$

The fact that $\mathfrak{B}_{\mathrm{C}}$ is an isometry becomes the norm identity

$$
\begin{equation*}
\int_{\mathbf{C}}|h(z)|^{2}|z|^{2 \theta} \mathrm{~d} A(z)=\int_{\mathbf{C}}\left|\mathfrak{B}_{\mathbf{C}}^{\theta}[h](z)\right|^{2}|z|^{2 \theta} \mathrm{~d} A(z) \tag{2.6}
\end{equation*}
$$

where we suppose that $\theta=(n-1) / N$. However, fractions of this type are dense in the interval $[0,1]$, so that (2.6) extends to all θ with $0 \leq \theta \leq 1$. In other words, for $0 \leq \theta \leq 1$, the operator $\mathfrak{B}_{\mathrm{C}}^{\theta}$ is unitary on the space $L_{\theta}^{2}(\mathbf{C})$, which was defined earlier. But then, considering that

$$
\mathfrak{B}_{\mathrm{C}}^{\theta}=\mathfrak{M}_{z} \mathfrak{B}_{\mathrm{C}}^{\theta+1} \mathfrak{M}_{z}^{-1}, \quad-1 \leq \theta \leq 0
$$

which follows immediately from the fact that

$$
\frac{1}{(w-z)^{2}}+\frac{\theta}{w(w-z)}=\frac{z}{w}\left\{\frac{1}{(w-z)^{2}}+\frac{\theta+1}{z(w-z)}\right\}
$$

we conclude that $\mathfrak{B}_{\mathbf{C}}^{\theta}$ is unitary on $L_{\theta}^{2}(\mathbf{C})$ for $-1 \leq \theta \leq 0$ as well.
This completes the proof of Theorem 1.1.
Remark 2.1. It is known [8] that $\mathfrak{B}_{\mathbf{C}}$ is a bounded operator on $L_{\theta}^{2}(\mathbf{C})$ for $-1<\theta<1$ (but not for $\theta= \pm 1$). This means that for $-1<\theta<1$, both terms in (1.1) are bounded operators on $L_{\theta}(\mathbf{C})$. We suspect that the second term in (1.1), the operator $\mathfrak{T}_{\mathbf{C}}$, is compact on $L_{\theta}^{2}(\mathbf{C})$ with small spectrum for $0<\theta<1$. The analogous statement for $\mathfrak{T}_{\mathbf{C}}^{\prime}$ is essentially equivalent.

Extension to real θ. We first note that \mathfrak{M}_{z}, multiplication by the independent variable, is an isometric isomorphism $L_{\theta+1}^{2}(\mathbf{C}) \rightarrow L_{\theta}^{2}(\mathbf{C})$ for all real θ. Therefore, for integers k and $0 \leq \theta \leq 1$, the operator

$$
\mathfrak{B}_{\mathrm{C}}^{\theta+k}=\mathfrak{M}_{z}^{-k} \mathfrak{B}_{\mathrm{C}}^{\theta} \mathfrak{M}_{z}^{k}
$$

is unitary on $L_{\theta+k}^{2}(\mathbf{C})$. It supplies an extension of $\mathfrak{B}_{\mathbf{C}}^{\theta}$ to all real θ which coincides with the previously defined notion for $-1 \leq \theta \leq 1$.

3. Applications of Beurling transforms to conformal mapping

Grunsky identity and inequalities. It was shown in [1] that if $\varphi: \mathbf{D} \rightarrow \Omega$ is a conformal mapping where $\Omega=\varphi(\mathbf{D}) \subset \mathbf{C}$, then

$$
\mathfrak{B}_{\varphi}[f](z)=\operatorname{pv} \int_{\mathbf{D}} \frac{\varphi^{\prime}(z) \varphi^{\prime}(w)}{(\varphi(w)-\varphi(z))^{2}} f(w) \mathrm{d} A(w), \quad z \in \mathbf{D}
$$

is a contraction on $L^{2}(\mathbf{D})$; as a matter of fact, this follows from the fact that $\mathfrak{B}_{\mathbf{C}}$ is unitary on $L^{2}(\mathbf{C})$. Moreover, it was shown that if e denotes the function $e(z)=z$, so that

$$
\mathfrak{B}_{e}[f](z)=\operatorname{pv} \int_{\mathbf{D}} \frac{1}{(w-z)^{2}} f(w) \mathrm{d} A(w), \quad z \in \mathbf{D}
$$

we have the Grunsky identity

$$
\begin{equation*}
\mathfrak{B}_{\varphi}-\mathfrak{B}_{e}=\mathfrak{P} \mathfrak{B}_{\varphi}=\mathfrak{B}_{\varphi} \overline{\mathfrak{P}}=\mathfrak{P} \mathfrak{B}_{\varphi} \overline{\mathfrak{P}}, \tag{3.1}
\end{equation*}
$$

where \mathfrak{P} and $\overline{\mathfrak{P}}$ are the associated Bergman projections

$$
\mathfrak{P}[f](z)=\int_{\mathbf{D}} \frac{f(w)}{(1-z \bar{w})^{2}} \mathrm{~d} A(w), \quad z \in \mathbf{D}
$$

and

$$
\overline{\mathfrak{P}}[f](z)=\int_{\mathbf{D}} \frac{f(w)}{(1-\bar{z} w)^{2}} \mathrm{~d} A(w), \quad z \in \mathbf{D}
$$

As \mathfrak{P} and $\overline{\mathfrak{P}}$ are contractions on $L^{2}(\mathbf{D})$, we find that

$$
\begin{equation*}
\left\|\left(\mathfrak{B}_{\varphi}-\mathfrak{B}_{e}\right)[f]\right\|_{L^{2}(\mathbf{D})} \leq\|f\|_{L^{2}(\mathbf{D})}, \quad f \in L^{2}(\mathbf{D}) \tag{3.2}
\end{equation*}
$$

In [1], it is explained how (3.2) expresses the Grunsky inequalities in a compact manner.

We shall now try to carry out the same considerations in the weighted situation.
Transfer to the unit disk. We need to introduce some general notation. Let \mathfrak{M}_{F} denote the operator of multiplication by the function F. We also need the Hilbert space $L_{\theta}^{2}(X)$ with the norm

$$
\|h\|_{L_{\theta}^{2}(X)}^{2}=\int_{X}|h(z)|^{2}|z|^{2 \theta} \mathrm{~d} A(z)
$$

where X is some Borel measurable subset of \mathbf{C} with positive area. In the sequel, we restrict θ to the interval $0 \leq \theta \leq 1$. Fix a simply connected domain Ω in \mathbf{C}, which contains the origin and is not the whole plane, and let $\varphi: \mathbf{D} \rightarrow \Omega$ denote the conformal mapping with $\varphi(0)=0$ and $\varphi^{\prime}(0)>0$. Let $f \in L^{2}(\Omega)$, and extend it to the whole complex plane so that it vanishes on $\mathbf{C} \backslash \Omega$. Let $\mathfrak{B}_{\Omega}[f]$ denote the restriction to Ω of $\mathfrak{B}_{\mathbf{C}}[f]$, and do likewise to define the operators $\mathfrak{C}_{\Omega}, \mathfrak{T}_{\Omega}, \mathfrak{T}_{\Omega}^{\prime}, \mathfrak{B}_{\Omega}^{\theta}$, as well as $\mathfrak{B}_{\Omega}^{-\theta}$. We introduce transferred operators on spaces over the unit disk in the following fashion. First, we suppose $f \in L_{\theta}^{2}(\Omega)$. Then the associated function

$$
\begin{equation*}
g(z)=\bar{\varphi}^{\prime}(z)\left[\frac{\varphi(z)}{z}\right]^{\theta} f \circ \varphi(z), \quad z \in \mathbf{D} \tag{3.3}
\end{equation*}
$$

belongs to $L_{\theta}^{2}(\mathbf{D})$, with equality of norms:

$$
\|g\|_{L_{\theta}^{2}(\mathbf{D})}=\|f\|_{L_{\theta}^{2}(\Omega)} .
$$

The transferred Cauchy transform is defined as follows:

$$
\begin{equation*}
\mathfrak{C}_{\varphi}^{\theta}[g](z)=\left[\frac{\varphi(z)}{z}\right]^{\theta} \mathfrak{C}_{\Omega}[f] \circ \varphi(z)=\int_{\mathbf{D}}\left[\frac{w \varphi(z)}{z \varphi(w)}\right]^{\theta} \frac{\varphi^{\prime}(w)}{\varphi(w)-\varphi(z)} g(w) \mathrm{d} A(w) . \tag{3.4}
\end{equation*}
$$

The transferred perturbed Beurling transform is defined analogously:

$$
\begin{aligned}
\mathfrak{B}_{\varphi}^{\theta}[g](z) & =\varphi^{\prime}(z)\left[\frac{\varphi(z)}{z}\right]^{\theta} \mathfrak{B}_{\Omega}^{\theta}[f] \circ \varphi(z) \\
& =\varphi^{\prime}(z)\left[\frac{\varphi(z)}{z}\right]^{\theta}\left\{\mathfrak{B}_{\Omega}[f] \circ \varphi(z)+\frac{\theta}{\varphi(z)} \mathfrak{C}_{\Omega}[f] \circ \varphi(z)\right\} \\
& =\mathfrak{B}_{\varphi}^{\theta, 0}[g](z)+\theta \frac{\varphi^{\prime}(z)}{\varphi(z)} \mathfrak{C}_{\varphi}^{\theta}[g](z),
\end{aligned}
$$

where

$$
\mathfrak{B}_{\varphi}^{\theta, 0}[g](z)=\operatorname{pv} \int_{\mathbf{D}}\left[\frac{w \varphi(z)}{z \varphi(w)}\right]^{\theta} \frac{\varphi^{\prime}(z) \varphi^{\prime}(w)}{(\varphi(w)-\varphi(z))^{2}} g(w) \mathrm{d} A(w)
$$

It is clear that $\mathfrak{B}_{\varphi}^{\theta}$ is a norm contraction on $L_{\theta}^{2}(\mathbf{D})$. Let \mathfrak{P}_{θ} be the integral operator

$$
\mathfrak{P}_{\theta}[f](z)=\int_{\mathbf{D}}\left[\frac{1}{(1-z \bar{w})^{2}}+\frac{\theta}{1-z \bar{w}}\right] f(w)|w|^{2 \theta} \mathrm{~d} A(w) ;
$$

it is the orthogonal projection to the subspace of analytic functions in $L_{\theta}^{2}(\mathbf{D})$. As both $\mathfrak{B}_{\varphi}^{\theta}$ and \mathfrak{P}_{θ} are contractions on $L_{\theta}^{2}(\mathbf{D})$, so is their product $\mathfrak{P}_{\theta} \mathfrak{B}_{\varphi}^{\theta}$. It remains to represent the operator $\mathfrak{P}_{\theta} \mathfrak{B}_{\varphi}^{\theta}$ in a reasonable fashion. The main observation is that

$$
\left[\frac{w \varphi(z)}{z \varphi(w)}\right]^{\theta} \frac{\varphi^{\prime}(z) \varphi^{\prime}(w)}{(\varphi(w)-\varphi(z))^{2}}=\frac{1}{(w-z)^{2}}-\theta\left[\frac{\varphi^{\prime}(z)}{\varphi(z)}-\frac{1}{z}\right] \frac{1}{w-z}+O(1)
$$

near the diagonal $z=w$, so that

$$
\begin{align*}
& {\left[\frac{w \varphi(z)}{z \varphi(w)}\right]^{\theta} \frac{\varphi^{\prime}(z) \varphi^{\prime}(w)}{(\varphi(w)-\varphi(z))^{2}}+\theta \frac{\varphi^{\prime}(z)}{\varphi(z)}\left[\frac{w \varphi(z)}{z \varphi(w)}\right]^{\theta} \frac{\varphi^{\prime}(w)}{\varphi(w)-\varphi(z)}} \tag{3.5}\\
& =\frac{1}{(w-z)^{2}}+\frac{\theta}{z(w-z)}+O(1)
\end{align*}
$$

again near the diagonal. We observe that in view of (3.5), we get the Grunsky-type identity

$$
\begin{equation*}
\mathfrak{P}_{\theta} \mathfrak{B}_{\varphi}^{\theta}=\mathfrak{B}_{\varphi}^{\theta}-\mathfrak{B}_{\mathbf{D}}+\mathfrak{P}_{\theta} \mathfrak{B}_{\mathbf{D}}+\theta \mathfrak{P}_{\theta} \mathfrak{T}_{\mathbf{D}}-\theta \mathfrak{T}_{\mathbf{D}} \tag{3.6}
\end{equation*}
$$

To make the involved operators $\mathfrak{P}_{\theta} \mathfrak{B}_{\mathrm{D}}$ and $\mathfrak{P}_{\theta} \mathfrak{T}_{\mathrm{D}}$ appearing in the right hand side of (3.6) more concrete, it is helpful to know that for $\lambda \in \mathbf{D}$,

$$
\mathfrak{P}_{\theta}\left[f_{\lambda}\right](z)=\bar{\lambda}|\lambda|^{2 \theta} \int_{0}^{1}\left[\frac{1}{(1-t \bar{\lambda} z)^{2}}+\frac{\theta}{1-t \bar{\lambda} z}\right] t^{\theta} \mathrm{d} t, \quad f_{\lambda}(z)=\frac{1}{\lambda-z},
$$

while

$$
\mathfrak{P}_{\theta}\left[g_{\lambda}\right](z)=-\theta \bar{\lambda}^{2}|\lambda|^{2 \theta-2} \int_{0}^{1}\left[\frac{1}{(1-t \bar{\lambda} z)^{2}}+\frac{\theta}{1-t \bar{\lambda} z}\right] t^{\theta} \mathrm{d} t, \quad g_{\lambda}(z)=\frac{1}{(\lambda-z)^{2}}
$$

In view of these relations, we quickly verify that

$$
\mathfrak{P}_{\theta} \mathfrak{B}_{\mathbf{D}}+\theta \mathfrak{P}_{\theta} \mathfrak{T}_{\mathbf{D}}=0
$$

The Grunsky-type identity (3.6) thus simplifies a bit:

$$
\begin{equation*}
\mathfrak{P}_{\theta} \mathfrak{B}_{\varphi}^{\theta}=\mathfrak{B}_{\varphi}^{\theta}-\mathfrak{B}_{\mathbf{D}}-\theta \mathfrak{T}_{\mathbf{D}}=\mathfrak{B}_{\varphi}^{\theta}-\mathfrak{B}_{\mathbf{D}}^{\theta} \tag{3.7}
\end{equation*}
$$

The corresponding Grunsky-type inequality reads

$$
\begin{equation*}
\left\|\left(\mathfrak{B}_{\varphi}^{\theta}-\mathfrak{B}_{\mathbf{D}}^{\theta}\right)[f]\right\|_{L_{\theta}^{2}(\mathbf{D})} \leq\|f\|_{L_{\theta}^{2}(\mathbf{D})}, \quad f \in L_{\theta}^{2}(\mathbf{D}) \tag{3.8}
\end{equation*}
$$

To get a concrete example of how the Grunsky-type inequality works, we pick

$$
f_{\lambda}(z)=|z|^{-2 \theta}\left(\frac{1}{(1-\bar{z} \lambda)^{2}}-\frac{\theta}{1-\bar{z} \lambda}\right), \quad z \in \mathbf{D}
$$

and compute

$$
\begin{aligned}
\left(\mathfrak{B}_{\varphi}^{\theta}-\mathfrak{B}_{\mathbf{D}}^{\theta}\right)[f](z)= & {\left[\frac{\lambda \varphi(z)}{z \varphi(\lambda)}\right]^{\theta} \frac{\varphi^{\prime}(z) \varphi^{\prime}(\lambda)}{(\varphi(\lambda)-\varphi(z))^{2}}-\frac{1}{(\lambda-z)^{2}} } \\
& +\theta \frac{\varphi^{\prime}(z)}{\varphi(z)}\left[\frac{\lambda \varphi(z)}{z \varphi(\lambda)}\right]^{\theta} \frac{\varphi^{\prime}(\lambda)}{\varphi(\lambda)-\varphi(z)}-\frac{\theta}{z(\lambda-z)}
\end{aligned}
$$

We see that (3.8) in this case assumes the form $(0 \leq \theta \leq 1)$

$$
\begin{align*}
& \int_{\mathbf{D}} \left\lvert\,\left[\frac{\lambda \varphi(z)}{z \varphi(\lambda)}\right]^{\theta} \frac{\varphi^{\prime}(z) \varphi^{\prime}(\lambda)}{(\varphi(\lambda)-\varphi(z))^{2}}-\frac{1}{(\lambda-z)^{2}}\right. \\
& \quad+\theta \frac{\varphi^{\prime}(z)}{\varphi(z)}\left[\frac{\lambda \varphi(z)}{z \varphi(\lambda)}\right]^{\theta} \frac{\varphi^{\prime}(\lambda)}{\varphi(\lambda)-\varphi(z)}-\left.\frac{\theta}{z(\lambda-z)}\right|^{2}|z|^{2 \theta} \mathrm{~d} A(z) \tag{3.9}\\
& \leq \int_{\mathbf{D}}\left|f_{\lambda}(z)\right|^{2}|z|^{2 \theta} \mathrm{~d} A(z)=\int_{\mathbf{D}}\left|\frac{1}{(1-\bar{z} \lambda)^{2}}-\frac{\theta}{1-\bar{z} \lambda}\right|^{2}|z|^{-2 \theta} \mathrm{~d} A(z) \\
& =\frac{1}{\left(1-|\lambda|^{2}\right)^{2}}-\frac{\theta}{1-|\lambda|^{2}} .
\end{align*}
$$

The special case $\lambda=0$ gives us the inequality of Prawitz (see [6] and [7]; we assume $\left.\varphi^{\prime}(0)=1\right)$:

$$
\int_{\mathbf{D}}\left|\varphi^{\prime}(z)\left[\frac{\varphi(z)}{z}\right]^{\theta-2}-1\right|^{2}|z|^{2 \theta} \mathrm{~d} A(z) \leq \frac{1}{1-\theta}
$$

A dual version. We carry out the corresponding calculations on the basis of the fact that $\mathfrak{B}_{\mathbf{C}}^{-\theta}$ is unitary on $L_{-\theta}^{2}(\mathbf{C})$ for $0 \leq \theta \leq 1$. In analogy with the above treatment, we connect two functions f, g via

$$
\begin{equation*}
g(z)=\bar{\varphi}^{\prime}(z)\left[\frac{\varphi(z)}{z}\right]^{-\theta} f \circ \varphi(z), \quad z \in \mathbf{D} \tag{3.10}
\end{equation*}
$$

Then $f \in L_{-\theta}^{2}(\Omega)$ if and only if $g \in L_{-\theta}^{2}(\mathbf{D})$, with equality of norms:

$$
\|g\|_{L_{\theta}^{2}(\mathbf{D})}=\|f\|_{L_{\theta}^{2}(\Omega)} .
$$

The corresponding transferred Beurling transform assumes the form

$$
\begin{aligned}
\mathfrak{B}_{\varphi}^{-\theta}[g](z) & =\varphi^{\prime}(z)\left[\frac{\varphi(z)}{z}\right]^{-\theta} \mathfrak{B}_{\Omega}^{-\theta}[f] \circ \varphi(z) \\
& =\varphi^{\prime}(z)\left[\frac{\varphi(z)}{z}\right]^{-\theta}\left\{\mathfrak{B}_{\Omega}[f] \circ \varphi(z)-\theta \mathfrak{C}_{\Omega}\left[\frac{f}{z}\right] \circ \varphi(z)\right\} \\
& =\mathfrak{B}_{\varphi}^{-\theta, 0}[g](z)-\theta \varphi^{\prime}(z) \mathfrak{C}_{\varphi}^{-\theta}\left[\frac{g}{\varphi}\right](z),
\end{aligned}
$$

where $\mathfrak{B}_{\varphi}^{-\theta, 0}$ and $\mathfrak{C}_{\varphi}^{-\theta}$ are as before (just plug in $-\theta$ in place of θ in the corresponding formulæ). It is clear that $\mathfrak{B}_{\varphi}^{-\theta}$ is a contraction on $L_{-\theta}^{2}(\mathbf{D})$.

To cut a long story short, the Grunsky-type identity analogous to (3.7) reads

$$
\begin{equation*}
\mathfrak{P}_{-\theta} \mathfrak{B}_{\varphi}^{-\theta}=\mathfrak{B}_{\varphi}^{-\theta}-\mathfrak{B}_{\mathbf{D}}^{-\theta} \tag{3.11}
\end{equation*}
$$

Let $\overline{\mathfrak{P}}_{-\theta}^{*}$ be the operator

$$
\overline{\mathfrak{P}}_{-\theta}^{*}[g](z)=|z|^{-2 \theta} \int_{\mathbf{D}}\left(\frac{1}{(1-w \bar{z})^{2}}-\frac{\theta}{1-w \bar{z}}\right) g(w) \mathrm{d} A(w) ;
$$

it is a contraction on $L_{\theta}^{2}(\mathbf{D})$, which can be written

$$
\overline{\mathfrak{P}}_{-\theta}^{*}=\mathfrak{M}_{|z|-2 \theta} \overline{\mathfrak{P}}_{-\theta} \mathfrak{M}_{|z|^{2 \theta}}
$$

where $\overline{\mathfrak{P}}_{-\theta}$ denotes the orthogonal projection onto the antiholomorphic functions in $L_{-\theta}^{2}(\mathbf{D})$. By forming adjoints, we find that (3.11) states that

$$
\begin{equation*}
\mathfrak{B}_{\varphi}^{\theta} \overline{\mathfrak{P}}_{-\theta}^{*}=\mathfrak{B}_{\varphi}^{\theta}-\mathfrak{B}_{\mathbf{D}}^{\theta} \tag{3.12}
\end{equation*}
$$

We now combine (3.7) with (3.12), and arrive at the following.
Theorem 3.1. $(0 \leq \theta \leq 1)$ We have the Grunsky identity

$$
\begin{equation*}
\mathfrak{B}_{\varphi}^{\theta}-\mathfrak{B}_{\mathbf{D}}^{\theta}=\mathfrak{P}_{\theta} \mathfrak{B}_{\varphi}^{\theta}=\mathfrak{B}_{\varphi}^{\theta} \overline{\mathfrak{P}}_{-\theta}^{*}=\mathfrak{P}_{\theta} \mathfrak{B}_{\varphi}^{\theta} \overline{\mathfrak{P}}_{-\theta}^{*} \tag{3.13}
\end{equation*}
$$

Moreover, we also have the Grunsky-type inequality

$$
\left\|\left(\mathfrak{B}_{\varphi}^{\theta}-\mathfrak{B}_{\mathbf{D}}^{\theta}\right)[f]\right\|_{L_{\theta}^{2}(\mathbf{D})} \leq\|f\|_{L_{\theta}^{2}(\mathbf{D})}, \quad f \in L_{\theta}^{2}(\mathbf{D})
$$

with equality if and only if φ is a full mapping and $f(z)$ is of the form $|z|^{-2 \theta}$ times an antianalytic function.

Remark 3.2. (a) It follows that (3.9) is an equality for full mappings.
(b) The above Grunsky-type inequality probably follows from the estimate mentioned by de Branges [2] as his point of departure for obtaining the more general results that led to the solution of the Bieberbach conjecture.
(c) It is possible to consider weighted L^{p} spaces of the type $L_{\theta}^{p}(\mathbf{C})$, and obtain norm estimates of perturbed Beurling transforms on such spaces from wellknown estimates of the Beurling operator on $L^{p}(\mathbf{C})$. This then leads to appropriate Grunsky-type identities and inequalities in the weighted L^{p} setting.

4. Applications to quasiconformal maps

Quasiconformal maps. Here, we suppose that $\varphi: \mathbf{D} \rightarrow \Omega$ is quasiconformal, which means that it is a homoeomorphism which is one-to-one and onto, with

$$
\begin{equation*}
\bar{\partial}_{z} \varphi(z)=\mu(z) \partial_{z} \varphi(z), \quad z \in \mathbf{D} \tag{4.1}
\end{equation*}
$$

where μ is an Borel measurable function on \mathbf{D} with

$$
\|\mu\|_{L^{\infty}(\mathbf{C})}=\operatorname{ess} \sup \{|\mu(z)|: z \in \mathbf{D}\}<1
$$

As before, Ω is a simply connected domain in \mathbf{C} other than \mathbf{C} itself, which contains the origin. We assume that $\varphi(0)=0$ and that μ vanishes on a (small) neighborhood of the origin. The function φ is then analytic near the origin. In the sequel, we shall think of the Beltrami coefficient μ as fixed. We plan to derive some information regarding the mapping φ.

The mapping $\phi=\phi_{\mu}$. We extend μ to all of \mathbf{C} by declaring it to be

$$
\mu(z)=\bar{\mu}\left(\frac{1}{\bar{z}}\right), \quad z \in \mathbf{D}_{e}
$$

where

$$
\mathbf{D}_{e}=\{z \in \mathbf{C}: 1<|z|<+\infty\}
$$

is the (punctured) exterior disk, and by declaring it to vanish on the unit circle \mathbf{T}. Clearly, the extended μ has compact support.

The material mentioned here is largely a condensed version of Section 1.7 of [3]; we refer to that book for details. Let $F=F_{\mu}: \mathbf{C} \rightarrow \mathbf{C}$ solve the equation

$$
\left(\mathrm{id}+\mathfrak{B}_{\mathbf{C}} \mathfrak{M}_{\mu}\right)[F]=\mathfrak{B}_{\mathbf{C}}[\mu] ;
$$

A solution F exists and is unique, and it belongs to $L^{p}(\mathbf{C})$ for p in some open interval containing the point 2 . We define

$$
\Phi(z)=z+\overline{\mathfrak{C}}_{\mathbf{C}}[F](z)-\overline{\mathfrak{C}}_{\mathbf{C}}[F](0),
$$

and obtain a quasiconformal map $\Phi=\Phi_{\mu}: \mathbf{C} \rightarrow \mathbf{C}$ which solves the Beltrami equation

$$
\bar{\partial}_{z} \Phi(z)=\mu(z) \partial_{z} \Phi(z), \quad z \in \mathbf{C}
$$

Here, $\overline{\mathfrak{C}}_{\mathbf{C}}$ is the conjugate Cauchy transform

$$
\overline{\mathfrak{C}}_{\mathbf{C}}[f](z)=\int_{\mathbf{C}} \frac{f(w)}{\bar{w}-\bar{z}} \mathrm{~d} A(w), \quad z \in \mathbf{C} .
$$

A calculation shows that the related mapping

$$
\Psi(z)=\frac{1}{\bar{\Phi}\left(\frac{1}{\bar{z}}\right)}, \quad z \in \mathbf{C} \backslash\{0\},
$$

solves the same Beltrami equation

$$
\bar{\partial}_{z} \Psi(z)=\mu(z) \partial_{z} \Psi(z), \quad z \in \mathbf{C} .
$$

As Ψ-like Φ-fixes the points 0 and ∞, it follows that

$$
\Psi(z)=\lambda \Phi(z), \quad z \in \mathbf{C}
$$

for some complex parameter λ. Since we must have

$$
\frac{\Phi(z)}{\Psi(z)}=|\Phi(z)|^{2}=\frac{1}{\lambda}, \quad z \in \mathbf{T}
$$

it follows that $0<\lambda<+\infty$. As a consequence, we have that

$$
\phi(z)=\phi_{\mu}(z)=\sqrt{\lambda} \Phi(z), \quad z \in \mathbf{D}
$$

maps \mathbf{D} onto itself, and preserves the origin. Moreover, ϕ solves the same Beltrami equation (4.1) as does φ.

The induced transform. The parameter θ is assumed to be confined to the interval $0 \leq \theta \leq 1$. It is easy to see that it is possible to define a single-valued logarithm

$$
\log \frac{\varphi(z)}{z}, \quad z \in \mathbf{D}
$$

One just checks that the associated differential is exact. This allows us to define real (and complex) powers of the function $\varphi(z) / z$. Next, we suppose $f \in L_{\theta}^{2}(\Omega)$, and associate to it the function g :

$$
g(z)=\left(1-|\mu(z)|^{2}\right)^{1 / 2} \bar{\partial}_{z} \bar{\varphi}(z)\left[\frac{\varphi(z)}{z}\right]^{\theta} f \circ \varphi(z), \quad z \in \mathbf{D} .
$$

It is a consequence of the change-of-variables formula

$$
\begin{equation*}
\int_{\Omega}|F(z)|^{2} \mathrm{~d} A(z)=\int_{\mathbf{D}}|F \circ \varphi(z)|^{2}\left(1-|\mu(z)|^{2}\right)\left|\partial_{z} \varphi(z)\right|^{2} \mathrm{~d} A(z) \tag{4.2}
\end{equation*}
$$

that

$$
\|g\|_{L_{\theta}^{2}(\mathbf{D})}=\|f\|_{L_{\theta}^{2}(\Omega)} .
$$

We define the transferred Beurling transform to be

$$
\mathfrak{B}_{\varphi}^{\theta, \mu}[g](z)=\left(1-|\mu(z)|^{2}\right)^{1 / 2} \partial_{z} \varphi(z)\left[\frac{\varphi(z)}{z}\right]^{\theta} \mathfrak{B}_{\Omega}^{\theta}[f] \circ \varphi(z), \quad z \in \mathbf{D}
$$

so that $\mathfrak{B}_{\varphi}^{\theta, \mu}$ acts contractively on $L_{\theta}^{2}(\mathbf{D})$. In case $\theta=0$, the formula simplifies pleasantly:

$$
\mathfrak{B}_{\varphi}^{0, \mu}[g](z)=\left(1-|\mu(z)|^{2}\right)^{1 / 2} \partial_{z} \int_{\mathbf{D}} \frac{\left(1-|\mu(w)|^{2}\right)^{1 / 2} \partial_{w} \varphi(w)}{\varphi(w)-\varphi(z)} g(w) \mathrm{d} A(w), \quad z \in \mathbf{D}
$$

The differentiation is in the sense of distribution theory.
The Grunsky-type identity and inequality. Since φ and ϕ have the same Beltrami coefficient μ, there is a conformal mapping $\psi: \mathbf{D} \rightarrow \Omega$ fixing the origin such that $\varphi=\psi \circ \phi$. Next, we connect h and f via

$$
h(z)=\bar{\psi}^{\prime}(z)\left[\frac{\psi(z)}{z}\right]^{\theta} f \circ \psi(z), \quad z \in \mathbf{D}
$$

so that

$$
\|h\|_{L_{\theta}^{2}(\mathbf{D})}=\|f\|_{L_{\theta}^{2}(\Omega)}=\|g\|_{L_{\theta}^{2}(\mathbf{D})}
$$

and

$$
g(z)=\left(1-|\mu(z)|^{2}\right)^{1 / 2} \bar{\partial}_{z} \bar{\phi}(z)\left[\frac{\phi(z)}{z}\right]^{\theta} h \circ \phi(z), \quad z \in \mathbf{D},
$$

while

$$
\mathfrak{B}_{\varphi}^{\theta, \mu}[g](z)=\left(1-|\mu(z)|^{2}\right)^{1 / 2} \partial_{z} \phi(z)\left[\frac{\phi(z)}{z}\right]^{\theta} \mathfrak{B}_{\psi}^{\theta}[h] \circ \phi(z), \quad z \in \mathbf{D} .
$$

To simplify the notation, let $\mathfrak{U}^{\theta, \mu}$ denote the unitary transformation on $L_{\theta}^{2}(\mathbf{D})$ given by

$$
\mathfrak{U}^{\theta, \mu}[g](z)=\left(1-|\mu(z)|^{2}\right)^{1 / 2} \partial_{z} \phi(z)\left[\frac{\phi(z)}{z}\right]^{\theta} g \circ \phi(z), \quad z \in \mathbf{D} .
$$

so that $\mathfrak{B}_{\varphi}^{\theta, \mu}=\mathfrak{U}^{\theta, \mu} \mathfrak{B}_{\psi}^{\theta}$. Next, let the orthogonal projection $\mathfrak{P}_{\theta, \mu}$ on $L_{\theta}^{2}(\mathbf{D})$ be defined by

$$
\mathfrak{P}_{\theta, \mu}=\mathfrak{U}^{\theta, \mu} \mathfrak{P}_{\theta}\left(\mathfrak{U}^{\theta, \mu}\right)^{-1}
$$

It now follows from the results of the previous section that

$$
\begin{equation*}
\mathfrak{P}_{\theta, \mu} \mathfrak{B}_{\varphi}^{\theta, \mu}=\mathfrak{B}_{\varphi}^{\theta, \mu}-\mathfrak{B}_{\phi}^{\theta, \mu} \tag{4.3}
\end{equation*}
$$

and since the left hand side is a contraction, we conclude that

$$
\begin{equation*}
\left\|\left(\mathfrak{B}_{\varphi}^{\theta, \mu}-\mathfrak{B}_{\phi}^{\theta, \mu}\right)[g]\right\|_{L_{\theta}^{2}(\mathbf{D})} \leq\|g\|_{L_{\theta}^{2}(\mathbf{D})}, \quad g \in L_{\theta}^{2}(\mathbf{D}) \tag{4.4}
\end{equation*}
$$

References

[1] Baranov, A., and H. Hedenmalm: Boundary properties of Green functions in the plane. Duke Math. J. (to appear).
[2] de Branges, L.: Underlying concepts in the proof of the Bieberbach conjecture. - In: Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, 1987, 25-42.
[3] Carleson, L., and T. W. Gamelin: Complex dynamics. - Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993.
[4] Gradshteyn, I. S., and I. M. Ryzhyk: Table of integrals, series, and products. Corrected and enlarged edition edited by Alan Jeffrey. Incorporating the fourth edition edited by Yu. V. Geronimus. - Academic Press [Harcourt Brace Jovanovich, Publishers], New York-LondonToronto, Ont., 1980.
[5] Hedenmalm, H., B. Korenblum, and K. Zhu: Theory of Bergman spaces. - Grad. Texts in Math. 199, Springer-Verlag, New York, 2000.
[6] Hedenmalm, H., and S. Shimorin: Weighted Bergman spaces and the integral means spectrum of conformal mappings. - Duke Math. J. 127, 2005, 341-393.
[7] Milin, I. M.: Univalent functions and orthonormal systems. - Transl. Math. Monogr. 49, translated from the Russian, American Mathematical Society, Providence, R. I., 1977.
[8] Petermichl, S., and A.L. Volberg: Heating of the Ahlfors-Beurling operator: weakly quasiregular maps on the plane are quasiregular. - Duke Math. J. 112, 2002, 281-305.

Received 12 March 2007

[^0]: 2000 Mathematics Subject Classification: Primary 30C55, 30C60; Secondary 42B10, 42B20, 46E22.

 Key words: Beurling transform, Grunsky inequalities.
 Research supported by the Göran Gustafsson Foundation.

