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Abstract. We study the p(·)-fine continuity in the variable exponent Sobolev spaces under
the standard assumptions that p : Ω → R is log-Hölder continuous and 1 < p− ≤ p+ < ∞.
As a by-product we obtain improvements in the variational exponent capacity theory and in the
non-linear potential theory based on p(·)-Laplacian.

1. Introduction

Quasicontinuity is a central notion in the Sobolev function theory and in poten-
tial theory. This is so since many crucial ideas in the theory of pde’s require the use
of quasicontinuous representatives of Sobolev functions. For the pointwise study of
quasicontinuous functions the Euclidean topology is not relevant in general, instead
one can use the fine topology, which dates back to Cartan [6] in the linear case.
Nowadays it is well-known that, for any constant 1 < p < ∞, the function u is
p-quasicontinuous if and only if u is p-finely continuous outside a set of p-capacity
zero. This result is deep, the implication from left to right requires sharp energy
estimates for supersolutions of p-Laplace equation. The converse implication which
is related to Choquet’s property is even deeper, it was first established for general
p in [24], Theorem 3; see also [12] and [2]. Another proof based on the pointwise
estimates of p-supersolutions of [30] can be found in [32], p. 145.

The goal of this paper is to introduce the fine topology in the variable ex-
ponent case and show that quasicontinuity implies fine continuity outside a set
of capacity zero even in this setting (Theorem 6.5). In particular we show that
each p(·)-superharmonic function is p(·)-finely continuous and p(·)-quasicontinuous
(Theorems 5.3 and 6.7). As a by-product we obtain several improvements related to
the variational exponent capacity theory or the non-linear potential theory based on
p(·)-Laplacian. For instance we establish the existence of the capacitary extremal for
arbitrary subsets compactly contained in a given bounded open set (Theorem 6.3).
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This result extends a similar result in [5] proved for compact subsets by a different
method.

To obtain the p(·)-fine continuity for p(·)-superharmonic functions we modify
the fixed exponent argumentation from [32]. We use energy estimates and pointwise
estimates for supersolutions of the p(·)-Laplace equation proved in [5]. We make
the standard assumptions that the variable exponent p satisfies the condition 1 <
p− ≤ p+ < ∞ and is log-Hölder continuous.

Roughly speaking the effect of the variable exponent is that many crucial es-
timates include an additional term which however appears to be irrelevant from
the fine topological point of view. Typically the additional terms and difficulties
are related to the use of Hölder’s inequality, Poincaré’s inequality, or the standard
mollification procedure. It is also crucial that in the case of variable exponent
the product αu is not necessarily p(·)-superharmonic if u is p(·)-superharmonic and
α > 0 is constant. As a consequence of this fact certain potential theoretic properties
require new ideas. For instance the strict minimum principle for p(·)-superharmonic
functions seems to be an open problem. Also it is not known in general, see [20],
Corollary 4.7, whether the infinity set of a p(·)-superharmonic function is of zero
p(·)-capacity.

2. Variable exponent spaces

A measurable function p : Rn → [1,∞) is called a variable exponent. We assume
that p is bounded and denote

p+ = sup
x∈Rn

p(x), p− = inf
x∈Rn

p(x).

For each A ⊂ Rn we write

p+
A = sup

x∈A
p(x), p−A = inf

x∈A
p(x).

Let Ω be an open subset of Rn, n ≥ 2. The variable exponent Lebesgue space
Lp(·)(Ω) consists of all measurable functions u defined on Ω for which the modular

%Lp(·)(Ω)(u) :=

∫

Ω

|u(x)|p(x) dx

is finite. The Luxemburg norm on this space is defined as

‖u‖p(·) = inf
{

λ > 0 : %Lp(·)(Ω)(
u
λ
) ≤ 1

}
.

Equipped with this norm Lp(·)(Ω) is a Banach space. The variable exponent Lebesgue
space is a special case of an Orlicz–Musielak space studied in [33]. For a con-
stant function p the variable exponent Lebesgue space coincides with the standard
Lebesgue space.

The variable exponent Sobolev space W 1,p(·)(Ω) consists of functions u ∈ Lp(·)(Ω)
whose distributional gradient ∇u exists almost everywhere and belongs to Lp(·)(Ω).
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The variable exponent Sobolev space W 1,p(·)(Ω) is a Banach space with the norm

‖u‖1,p(·) = ‖u‖p(·) + ‖∇u‖p(·).

The local Sobolev space W
1,p(·)
loc (Ω) is defined in the usual way. For basic results on

variable exponent spaces we refer to [31].
An interesting feature here is that smooth functions need not to be dense in

variable exponent Sobolev spaces. This was observed by Zhikov in connection with
Lavrentiev phenomenon, see [35]. However, if the exponent p satisfies a logarithmic
Hölder continuity property, or briefly “p is log-Hölder continuous”, then the maximal
operator is locally bounded and consequently smooth functions are dense, see [7,
26, 34]. Recall that the log-Hölder condition means that there is a constant C > 0
such that

|p(x)− p(y)| ≤ C

− log(|x− y|)
for all x, y ∈ Ω with |x − y| ≤ 1/2. The exponent p is log-Hölder continuous in an
open set Ω if and only if there exists a constant C > 0 such that

(2.1) |B|p−B∩Ω−p+
B∩Ω ≤ C

for every ball B ∩ Ω 6= ∅, see [7].
When smooth functions are dense in variable exponent Sobolev spaces, there is

no confusion to define the Sobolev space with zero boundary values, W
1,p(·)
0 (Ω), as

the completion of C∞
0 (Ω) with respect to the norm ‖u‖1,p(·). For more about this

see [14].

Assumptions and conventions. Throughout we assume that p : Ω → R is
log-Hölder continuous and 1 < p− ≤ p+ < ∞. For brevity we write C = C(p) and
say that C depends only on p, if C is a constant which depends only on p+, p− and
the constant C in (2.1). Moreover, we write a ≈ b for two non-negative quantities
if there is a constant C = C(n, p) such that 1

C
a ≤ b ≤ Ca.

3. Capacities

We begin by recalling some capacities appearing in the existing literature.
Throughout this section Ω ⊂ Rn is an open set.

The Sobolev capacity was extended to variable exponent case in [18], Section 3.
For E ⊂ Rn we denote

Sp(·)(E) =
{
u ∈ W 1,p(·)(Rn) : u ≥ 1 in an open set U b Rn containing E

}

and define

Cp(·)(E) = inf
u∈Sp(·)(E)

∫

Rn

(|u|p(x) + |∇u|p(x)
)

dx.

Here we make the convention that Cp(·)(E) = ∞ if Sp(·)(E) = ∅. Recall that under
our assumption 1 < p− ≤ p+ < ∞ the Sobolev p(·)-capacity Cp(·)(·) is an outer
measure and a Choquet capacity, see [18], Corollaries 3.3 and 3.4.
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A variable exponent version of the relative p(·)-capacity of the condenser has
been used in [5], [16]. This is defined for any compact K ⊂ Ω by setting

capp(·)(K, Ω) = inf
u

∫

Ω

|∇u|p(x) dx,

where the infimum is taken over all u ∈ C∞
0 (Ω) such that u ≥ 1 in K. Further, if

U ⊂ Ω is open, define

capp(·)(U, Ω) = sup
K⊂U compact

capp(·)(K, Ω),

and for an arbitrary E ⊂ Ω, define

capp(·)(E, Ω) = sup
E⊂U⊂Ω open

capp(·)(K, Ω),

If p is bounded, then the relative p(·)-capacity is a Choquet capacity. If 1 <
p− ≤ p+ and if smooth functions are dense in the Sobolev space, then for E ⊂ Ω
holds that Cp(·)(E) = 0 if and only if capp(·)(E, Ω) = 0. For the proof see [16].

3.1. Remark. In [5], the definition of relative p(·)-capacity slightly differs from
the one above. However, the resulting capacities are equivalent, and hence for our
purposes the difference is irrelevant.

Next we present another version of the relative p(·)-capacity. For every E ⊂ Ω
we define

Cp(·)(E, Ω) = inf

∫

Ω

|∇u(x)|p(x) dx,

where the infimum is taken over all u ∈ W
1,p(·)
0 (Ω) which are at least one in a

neighborhood of E.
For the sake of clarity we first prove a lemma which connects the relative ca-

pacities Cp(·) and capp(·). In what follows, we don’t need this but we feel that the
result has some independent interest.

3.2. Lemma. Let Ω ⊂ Rn be bounded. Then for every compact K ⊂ Ω, we
have

Cp(·)(K, Ω) = capp(·)(K, Ω).

Proof. For the proof we modify the argumentation in [32], p. 65. Note that the
convolution approximation requires somewhat involved estimates in the variable
exponent case.

Let K ⊂ Ω be compact. Then the inequality

Cp(·)(K, Ω) ≤ capp(·)(K, Ω)

is easy, since for all u ∈ C∞
0 (Ω) satisfying u ≥ 1 in K, and for all α > 1, the function

αu satisfies u ≥ 1 in an open neighborhood of K.
To prove the converse inequality, let u ∈ W

1,p(·)
0 (Ω) be non-negative such that

u ≥ 1 in an open neighborhood U ⊂ Ω of K. Choose η ∈ C∞
0 (Ω) so that 0 ≤ η ≤ 1

and η = 1 on K. By definition smooth functions are dense in W
1,p(·)
0 (Ω) and hence
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we may choose a sequence (vj) of functions in C∞
0 (Ω) so that vj → u in W 1,p(·)(Ω).

Set
uj := (φεj

∗ u)η + vj(1− η),

where εj = j−1 and φεj
is the standard mollifier. We choose j large enough so that

0 < εj < min{dist(K, ∂U), dist(spt η, ∂Ω)}. Then uj ∈ C∞
0 (Ω) and uj ≥ 1 in K.

The inequality
capp(·)(K, Ω) ≤ Cp(·)(K, Ω)

follows, once we show that

(3.3) lim
j→∞

∫

Ω

|∇uj|p(x) dx =

∫

Ω

|∇u|p(x) dx.

To do this, denote uεj
:= φεj

∗ u and notice that Diuεj
= (Diu)εj

for i = 1, . . . , n.
Clearly,

|Diuj(x)|p(x) ≤ C(p)gij(x)

for x ∈ Ω, where

gij := ηp(x)|Diuεj
|p(x) + |Diη|p(x)|uεj

|p(x) + |Divj|p(x)|η|p(x) + |vj||Diη|p(x).

By [22], Lemma 4.6, we have the estimate

|(Diu)εj
(x)|p(x) ≤ C

(
%Lp(·)(Ω)(∇u) + 1 + |Ω|)p+/p−(

(φεj
∗ |Diu|p(·))(x) + 1

)

for all x ∈ Ω. Integrating this gives∫

Ω

|(Diu)εj
|p(x) dx ≤ M

(∫

Ω

φεj
∗ |Diu|p(·) dx + |Ω|

)

≤ M

(∫

Ω

|Diu|p(x) dx + |Ω|
)

for M := C(%Lp(·)(Ω)(∇u) + 1 + |Ω|)p+/p− since the mollification does not increase
the L1-norm. The same reasoning works for uεj

, and hence we obtain that gij is
integrable over Ω. Since vj → u in W 1,p(Ω), we may pick a subsequence still denoted
by (vj) such that vj → u a.e. in Ω and |∇vj| → |∇u| a.e. in Ω. Since |Diuεj

| → |Diu|
a.e. in Ω and |uεj

| → |u| a.e. in Ω and uεj
→ u in W 1,p(·)(Ω), see for example the proof

of Theorem 2.6 in [10], as j → ∞, we infer by a variant of dominated convergence
theorem (see [8], p. 21) that (3.3) holds for a subsequence. ¤

The relative capacity Cp(·)(E, Ω) has the advantage that the extremal function
can be directly studied for all subsets of Ω, not only for compact subsets. In Section 6
below, we characterize Cp(·)(E, Ω) by means of p(·)-quasicontinuous representatives.
This gives the most natural version of capacity in the study of p(·)-fine topology.

Quasicontinuity. Recall that a property holds p(·)-quasieverywhere if it holds
outside a set of zero Sobolev p(·)-capacity. Recall also that u : Ω → [−∞,∞] is
p(·)-quasicontinuous if for every ε > 0 there exists a set E, with Cp(·)(E) ≤ ε, so
that u is continuous when restricted to Ω \ E. Since Cp(·) is an outer capacity, we
can assume that E is open.
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3.4. Remark. Under our assumptions u belongs to W
1,p(·)
0 (Ω) if and only if

there is a p(·)-quasicontinuous function ũ ∈ W 1,p(·)(Rn) such that u = ũ a.e. in Ω
and ũ = 0 p(·)-q.e. in Rn \ Ω, see [19], Theorem 3.3 for the proof.

We also recall a uniqueness property [19], Lemma 2.1 for p(·)-quasicontinuous
functions. The proof of this property is based on an abstract result of [29].

3.5. Lemma. Let u and v be p(·)-quasicontinuous functions in Ω such that
u = v a.e. in Ω. Then u = v p(·)-q.e. in Ω.

We are now prepared to establish the fundamental relationships between the
two types of capacities. To do this, we need a modular version of the Poincaré
inequality.

3.6. Lemma. Let B = B(x0, r) ⊂ Ω be a ball. Then for all u ∈ W
1,p(·)
0 (B)

with
∫

B
|∇u|p(x) dx ≤ 1, there is a constant C = C(n, p) so that

∫

B

( |u|
r

)p(x)

dx ≤ C

∫

B

|∇u|p(x) + C|B|.

Proof. We have by [13], Lemma 7.14, for every u ∈ W 1,1
0 (B) and for almost all

x ∈ B

|u(x)| ≤ C

∫

B

|∇u|
|x− y|n−1

dy.

By the estimate [36], Lemma 2.8.3
∫

B

|∇u|
|x− y|n−1

dy ≤ CrM |∇u|(x),

where M is the Hardy–Littlewood maximal operator. Hence we arrive at
|u(x)|

r
≤ CM |∇u|(x).

We raise both sides of this inequality to the power p(x) and integrate over B to
obtain ∫

B

( |u|
r

)p(x)

dx ≤ C

∫

B

(
M |∇u|)p(x)

dx.

By [7], Lemma 3.3 (here %Lp(·)(B)(∇u) ≤ 1 is needed) and by the fact that M : Lp−B(B)

→ Lp−B(B) is bounded, we have
∫

B

(
M |∇u|)p(x)

dx ≤
∫

B

C
(
M

(|∇u|p(·)/p−B
)

+ 1
)p−B

dx ≤ C

∫

B

|∇u|p(x) dx + C|B|.

Combining this with the previous inequality gives the claim. ¤

3.7. Lemma. Let B = B(x0, r) ⊂ Rn be a ball with r ≤ 1 and let E ⊂ B.
Then there is a constant C = C(n, p) so that

(3.8) Cp(·)(E) ≤ (Crp(x0) + 1)Cp(·)(E, 2B) + Crn+p(x0)
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and

(3.9) Cp(·)(E, 2B) ≤
(

C2p+−1

rp(x0)
+ 2p+−1

)
Cp(·)(E).

Moreover, there is a constant C = C(n, p) such that for any x ∈ Rn and r > 0

(3.10)
1

C
rn−p(x) ≤ Cp(·)(B(x, r), B(x, 2r)) ≤ Crn−p(x)

if p(x) < n and

(3.11)
1

C
≤ Cp(·)(B(x, r), B(x, 2r)) ≤ C

if p(x) = n.

Proof. Let u be an admissible test function for Cp(·)(E, 2B). Then it is also a
test function for Cp(·)(E). By (2.1) we have r−p(x) ≈ r−p(x0) for all x ∈ 2B. Hence
by Lemma 3.6

(3.12) |E| ≤
∫

2B

|u|p(x) dx ≤ Crp(x0)

∫

2B

|∇u|p(x) dx + Crn+p(x0).

Therefore

Cp(·)(E) ≤
∫

2B

|u|p(x) dx +

∫

2B

|∇u|p(x) dx

≤ (
Crp(x0) + 1

) ∫

2B

|∇u|p(x) dx + Crn+p(x0).

Taking infimum over all admissible functions for Cp(E, 2B) yields (3.8).
Next, let u be an admissible test function for Cp(·)(E) and let η ∈ C∞

0 (2B) be
such that 0 ≤ η ≤ 1, η = 1 on B, and |∇η| ≤ C

r
. Then uη is an admissible test

function for Cp(·)(E, 2B), and hence

Cp(·)(E, 2B) ≤
∫

2B

|∇(uη)|p(x) dx ≤ C2p+−1

rp(x0)

∫

2B

|u|p(x) dx + 2p+−1

∫

2B

|∇u|p(x) dx

≤
(

C2p+−1

rp(x0)
+ 2p+−1

) ∫

2B

|u|p(x) + |∇u|p(x) dx.

The claim (3.9) follows by taking infimum over all u.
The inequalities (3.10) and (3.11) follow from [5], Proposition 5.1 and 5.2 to-

gether with basic properties of relative p(·)-capacity. ¤

3.13. Remark. (a) Let Ω ⊂ Rn be a bounded open set and let E b Ω. Then
we have Cp(·)(E) = 0 if and only if Cp(·)(E, Ω) = 0.

Assume first that Cp(·)(E) = 0. Then essentially the same argument which
proves (3.9) gives Cp(·)(E, Ω) = 0.
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Assume then that Cp(·)(E, Ω) = 0. Choose a minimizing sequence (ui) of test
functions of Cp(·)(E, Ω). Then each ui is a test function for Cp(·)(E). Thus we have

Cp(·)(E) ≤
∫

Ω

|ui|p(x) + |∇ui|p(x) dx.

We may assume that ‖∇ui‖Lp(·)(Ω) ≤ 1 for every i. Hence a norm version of the
Poincaré inequality, see [19], Theorem 4.1, implies

‖ui‖Lp(·)(Ω) ≤ C‖∇ui‖Lp(·)(Ω) ≤ C

(∫

Ω

|∇ui|p(x) dx

)1/p+
Ω

.

Here the last estimate is based on [10], Theorem 1.3, which also gives
∫

Ω

|ui|p(x) dx ≤ C

(∫

Ω

|∇ui|p(x) dx

)p−Ω/p+
Ω

.

Thus the claim Cp(·)(E) = 0 follows.
(b) Lemma 3.6 gives an easy proof for the estimates (3.10) and (3.11) in the

local sense. By choosing E = B the inequality (3.12) implies that

|B| − Crn+p(x0) ≤ Crp(x0)Cp(·)(B, 2B).

For small values r, the left hand side is comparable to Crn, and therefore

(3.14) rn−p(x0) ≤ CCp(·)(B, 2B)

for all 0 < r ≤ r0. Here r0 depends only on n, p(x0), and the constant in the
Poincaré inequality.

Conversely, let η ∈ C∞
0 (2B) be such that η = 1 on 3

2
B and |∇η| ≤ C

r
. Then η

is admissible for Cp(·)(B, 2B) and we obtain by (2.1) that

(3.15) Cp(·)(B, 2B) ≤
∫

2B

|∇η|p(x) ≤ Crn−p(x0).

The claims (3.10) and (3.11) follow for 0 < r ≤ r0 by combining (3.14) and (3.15).

4. Energy estimates for supersolutions

To obtain the main results, we need certain sharp energy estimates for super-
solutions. These are essentially included in the paper [5]. Therefore we do not give
details here but instead refer to [5]. Throughout Ω ⊂ Rn, n ≥ 2, is an open set.

We say that a function u ∈ W
1,p(·)
loc (Ω) is a (weak) p(·)-supersolution in Ω, if

(4.1)
∫

Ω

p(x)|∇u|p(x)−2∇u · ∇ϕdx ≥ 0

for every non-negative test function ϕ ∈ C∞
0 (Ω). A function u is a p(·)-subsolution

in Ω if −u is a p(·)-supersolution in Ω, and a p(·)-solution in Ω if it is both a
p(·)-super- and a p(·)-subsolution in Ω.
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The dual of Lp(·)(Ω) is the space Lp′(·)(Ω) obtained by conjugating the exponent
pointwise. This together with our definition of W

1,p(·)
0 (Ω) as the completion of

C∞
0 (Ω) implies that we can also test with functions ϕ ∈ W

1,p(·)
0 (Ω).

Existence of solutions has been discussed in [11, 19, 25]. Under our conditions on
p, every p(·)-solution has a locally Hölder continuous representative, see [1, 3, 4, 9].

We say that a function u : Ω → (−∞,∞] is p(·)-superharmonic in Ω if
(1) u is lower semicontinuous,
(2) u is finite almost everywhere and
(3) The comparison principle holds: Let D b Ω be an open set. If h is a p(·)-

solution in D, which is continuous in D, and satisfies u ≥ h on ∂D, then
u ≥ h in D.

4.2. Remark. It turns out that every p(·)-supersolution in Ω, which satisfies

u(x) = ess lim inf
y→x

u(y)

for every x ∈ Ω, is p(·)-superharmonic in Ω. On the other hand every locally
bounded p(·)-superharmonic function is a p(·)-supersolution. Moreover, min(u, λ)
is p(·)-superharmonic in Ω whenever u is p(·)-superharmonic in Ω and λ ∈ R. For
the proofs of these claims, see [17], Section 6.

We recall a Caccioppoli inequality for p(·)-supersolutions. This is obtained as in
the proof of [5], Proposition 6.1. A version of Caccioppoli inequality for unbounded
p(·)-supersolutions can be found in [20], Theorem 3.15.

4.3. Lemma. Assume that u is a bounded non-negative p(·)-supersolution in
Ω ⊂ Rn, x0 ∈ Ω, and B = B(x0, R) is a ball with radius so small that 4B ⊂ Ω. Let
γ < γ0 < 0 and η ∈ C∞

0 (4B) with 0 ≤ η ≤ 1. Then

(4.4)
∫

B

(u + R)γ−1|∇u|p(x)ηp+
4B dx ≤ C

∫

4B

(u + R)γ+p(x)−1|∇η|p(x) dx.

Here the constant C depends only on p+ and γ0.

The Caccioppoli inequality implies the weak Harnack inequality, see [5], Lemma
6.4.

4.5. Lemma. Assume that u is a bounded non-negative p(·)-supersolution in
Ω ⊂ Rn, x0 ∈ Ω, and B = B(x0, R) is a ball with radius so small that 4B ⊂ Ω.
Then, for every 0 < q < n(p(x0)− 1)/(n− 1), we have


–

∫

2B

(u + R)q dx




1/q

≤ C
(
inf
B

u + R
)

.

Here the constant C depends only on n, p, q, and M := supx∈Ω u(x).

By combining the Caccioppoli inequality and the weak Harnack estimate we
obtain the following inequality, see [5], Lemma 7.1.
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4.6. Lemma. Assume that u is a bounded non-negative p(·)-supersolution in
Ω ⊂ Rn, x0 ∈ Ω, and B = B(x0, R) is a ball with radius so small that 4B ⊂ Ω.
Then, for every 0 < q < p(x0)− 1, we have

–

∫

2B

(u + R)q−p(x0)|∇u|p(x) dx ≤ CR−p(x0)
(
inf
B

u + R
)q

.

Here the constant C depends only on n, p, q, and M := supx∈Ω u(x).

Now we are prepared to formulate our key lemma:

4.7. Lemma. Assume that u is a bounded non-negative p(·)-supersolution in
Ω ⊂ Rn, x0 ∈ Ω, and B = B(x0, R) is a ball with radius so small that 4B ⊂ Ω.
Then, for every η ∈ C∞

0 (2B) with 0 ≤ η ≤ 1 and |∇η| ≤ C
R
, we have

(4.8)
∫

2B

|∇u|p(x)η dx ≤ CRn−p(x0)
(
inf
B

u + R
)p(x0)−1

.

Here the constant C depends only on n, p, and M := supx∈Ω u(x).

Proof. By imitating the proof of [5], Lemma 7.2, we obtain

(4.9) –

∫

2B

|∇u|p(x)−1 dx ≤ CR1−p(x0)
(
inf
B

u + R
)p(x0)−1

.

Let η ∈ C∞
0 (2B) with η = 1 in B and |∇η| ≤ C(n)/R. We test u by (M − u)η

and obtain by standard argumentation that∫

2B

|∇u|p(x)η ≤ C(p)

∫

2B

|∇u|p(x)−1|∇η| dx ≤ C(n, p,M)R−1

∫

2B

|∇u|p(x)−1 dx.

The claim follows by combining this last estimate with (4.9). ¤
Notice here that the left hand side of (4.8) is usually written in terms of ηp(x)

instead of η. This slight modification is needed in the application of Lemma 4.7 in
the proof of Theorem 5.3.

5. Fine continuity

The fine topology is defined by means of thinness just the same way as in the
fixed exponent case.

5.1. Definition. The set E ⊂ Rn is called p(·)-thin at x0 ∈ Rn if
∫ 1

0

(
Cp(·)(E ∩B(x0, r), B(x0, 2r))

Cp(·)(B(x0, r), B(x0, 2r))

)1/(p(x0)−1)
dr

r
< ∞.

We say that U ⊂ Rn is p(·)-finely open if Rn \ U is p(·)-thin at x for all x ∈ U .

Hence the p(·)-thinness at x0 depends on the point x0. However, it is clear that
p(·)-finely open sets give a rise to a topology which we call p(·)-fine topology. It is
also clear that p(·)-fine topology is finer than the Euclidean topology.
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We say that a function u : U → R defined in a p(·)-finely open set U is p(·)-finely
continuous at x0 ∈ U if { x ∈ U : |u(x) − u(x0)| ≥ ε} is p(·)-thin at x0 for each
ε > 0.

5.2. Remark. The notion of p(·)-fine continuity implies the continuity with
respect to the p(·)-fine topology on U . In fact, if { x ∈ U : |u(x) − u(x0)| ≥ ε}
is p(·)-thin at x0 ∈ U for ε > 0, then {x ∈ U : |u(x) − u(x0)| < ε} is p(·)-finely
open by definition. Hence u is continuous at x0 if U is equipped with the p(·)-fine
topology. The converse implication, which is based on deep results even for constant
exponent, remains open here, see [32], Theorem 2.136.

5.3. Theorem. Let u be p(·)-superharmonic in Ω and let x0 ∈ Ω such that
p(x0) ≤ n. Then u is p(·)-finely continuous at x0.

Proof. To prove the claim we modify the argumentation in [32], Theorem 2.121.
Observe first that we are free to assume u(x0) < +∞ since u is lower semicontinuous.
Since Cp(·)(B(x0, r), B(x0, 2r)) is comparable to rn−p(x0) (Lemma 3.7), it is enough
to show that

∫ 1

0

(
Cp(·)({u ≥ l } ∩B(x0, r), B(x0, 2r))

rn−p(x0)

)1/(p(x0)−1)
dr

r
< ∞

for all l ∈ R so that u(x0) < l.
We denote El = {u ≥ l } and fix R > 0 with B(4R) := B(x0, 4R) ⊂ Ω. Choose

l so that l > u(x0) and denote ul = min(u, l). Since u is lower semicontinuous, we
have

u(x0) = lim
r→0+

m(r)

for m(r) = infB(r) ul and B(r) = B(x0, r). Let r ∈ (0, R) and denote

v := ul −m(4r).

Note that v is a bounded non-negative p(·)-supersolution on B(4r). Let η ∈
C∞

0 (B(2r)) such that 0 ≤ η ≤ 1, η = 1 in B(r), and |∇η| ≤ C/r. By lower
semicontinuity the function 2(l − u(x0))

−1vη is an admissible test function for the
capacity Cp(·)(El ∩B(r), B(2r)). We are free to choose l so close to u(x0) and r ≤ 1
so small that 0 ≤ v ≤ 1 and p+

B(4r) − p−B(4r) ≤ 1. We conclude from Lemma 4.7 that
∫

B(2r)

|∇v|p(x)ηp(x) dx ≤
∫

B(2r)

|∇v|p(x)η dx ≤ Crn−p(x0)( inf
B(r)

v + r)p(x0)−1

≤ Crn−p(x0)
(
(m(r)−m(4r))p(x0)−1 + rp(x0)−1

)
.

On the other hand we obtain∫

B(2r)

vp(x)|∇η|p(x) ≤ Cr−p(x0)

∫

B(2r)

(v + r)p(x) dx

= Cr−p(x0)

∫

B(2r)

(v + r)p(x)−p(x0)+1(v + r)p(x0)−1 dx
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≤ Crn−p(x0) –

∫

B(2r)

(v + r)p(x0)−1 dx

≤ Crn−p(x0)
(
(m(r)−m(4r))p(x0)−1 + rp(x0)−1

)
.

Here the log-Hölder continuity has been used in the first inequality, the facts that
0 ≤ v ≤ 1, 0 < r ≤ 1, and p+

B(4r) − p−B(4r) ≤ 1 in the second inequality, and
Lemma 4.5 in the third inequality.

By combining the two estimates we arrive at
∫

B(2r)

|∇(vη)|p(x) dx ≤ Crn−p(x0)
(
(m(r)−m(4r))p(x0)−1 + rp(x0)−1

)
.

Hence

ϕ(r) :=
Cp(·)(El ∩B(r), B(2r))

rn−p(x0)
≤ C

∫
B(2r)

|∇(vη)|p(x) dx

(l − u(x0))rn−p(x0)

≤ C

l − u(x0)

(
(m(r)−m(4r))p(x0)−1 + rp(x0)−1

)
.

By choosing R > 0 small enough and by assuming that 4ρ < R we obtain by a
simple change of variable on the first line that

∫ R

ρ

m(r)−m(4r)

r
dr =

(∫ R

ρ

m(t)

t
dt−

∫ 4R

4ρ

m(t)

t
dt

)

=

(∫ 4ρ

ρ

m(t)

t
dt−

∫ 4R

R

m(t)

t
dt

)

≤
(∫ 4ρ

ρ

m(ρ)

t
dt−

∫ 4R

R

m(4R)

t
dt

)

≤ (u(x0)−m(4R)) log 4.

Since the upper bound is independent of ρ, we easily infer that
∫ R

0

ϕ(r)1/(p(x0)−1)dr

r
< ∞. ¤

5.4. Remark. Theorem 5.3 clearly holds if p(x0) > n. Indeed, if p(x0) > n,
then x0 has a neighborhood U b Ω satisfying p−U > n. Since u is p(·)-superharmonic,
ul = min{u, l} is a p(·)-supersolution and hence in W 1,p(·)(U). Since W 1,p(·)(U) ⊂
W 1,p−U (U), the function ul has a continuous representative in U . By choosing l >
u(x0) we infer that u is continuous at x0.

The following comparison theorem allow us to compare the variable exponent
thinness with the constant exponent thinness.
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5.5. Theorem. Let 1 < p− ≤ p+ < ∞ and 1 < q− ≤ q+ < ∞ be log-Hölder
continuous exponents so that p ≤ q and p(x0) < q(x0) < n. If E ⊂ Rn is q(·)-thin
at x0, then E is p(·)-thin at x0.

Proof. We write B = B(x0, r), 2B = B(x0, 2r), p0 = p(x0), and q0 = q(x0).
The claim follows if we can show that

(5.6)
(

Cp(·)(E ∩B, 2B)

Cp(·)(B, 2B)

)1/(p0−1)

≤ C

(
Cq(·)(E ∩B, 2B)

Cq(·)(B, 2B)

)1/(q0−1)

for every 0 < r < R, where 0 < R ≤ 1 is chosen later.
The basic idea of the proof is the same as in [27], Lemma 3.16; we estimate

Cp(·)(E ∩B, 2B) with the aid of variable exponent Hölder’s inequality. Since

(5.7) Cq(·)(E ∩B, 2B) ≤ Cq(·)(B, 2B) ≈ rn−q0

by Lemma 3.7, we may choose R so small that Cq(·)(E ∩ B, 2B) < 1 (by the as-
sumption q0 < n). Let u ∈ W

1,q(·)
0 (2B) be such that u ≥ 1 in an open neighborhood

of E ∩B and
∫
2B
|∇u|q(x)dx ≤ 1. By Hölder’s inequality we obtain

∫

2B

|∇u|p(x)dx ≤ 3‖1‖L(q(·)/p(·))′ (2B)‖|∇u|p(·)‖Lq(·)/p(·)(2B)

≤ Cr
n(q0−p0)

q0

(∫

2B

|∇u|q(x)dx

) 1

(q/p)+
2B .

Here in the second inequality we estimate the norm of 1 by [23], Lemma 2.4, see
[10], Theorem 1.3 for the estimate concerning the modular. By taking infimum over
all admissible test functions u for the capacity Cq(·)(E ∩B, 2B) we obtain

Cp(·)(E ∩B, 2B) ≤ Crn(q0−p0)/q0
(
Cq(·)(E ∩B, 2B)

)1/(q/p)+2B .

This yields
(

Cp(·)(E ∩B, 2B)

Cp(·)(B, 2B)

)1/(p0−1)

≤
(

Crn(q0−p0)/q0Cq(·)(E ∩B, 2B)1/(q/p)+2B

rn−p0

)1/(p0−1)

≤
(
Cr

− p0
q0

(n−q0)
Cq(·)(E ∩B, 2B)1/(q/p)+2B

)1/(p0−1)

.

Let z ∈ 2B be such that (q/p)+
2B = q(z)/p(z). Since p and q are log-Hölder

continuous we obtain

r−p0/q0 = r−p0/q0+p(z)/q(z)−p(z)/q(z)

≤ r(−p0q(z)+q0p0−q0p0+p(z)q0)/q0q(z)r−p(z)/q(z)

≤ rp0(q0−q(z))/q0q(z)rq0(p(z)−p(x0))/q0q(z)r−p(z)/q(z)

≤ Cp+

Cq+

r−p(z)/q(z).
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This yields
(

Cp(·)(E ∩B, 2B)

Cp(·)(B, 2B)

)1/(p0−1)

≤ C
(
r−p(z)(n−q0)/q(z)Cq(·)(E ∩B, 2B)1/(q/p)+2B

)1/(p0−1)

≤ C

(
Cq(·)(E ∩B, 2B)

Cq(·)(B, 2B)

) p(z)
q(z)(p0−1)

.

Since Cq(·)(E ∩B, 2B)/Cq(·)(B, 2B) ≤ 1 we are done if only

p(z)

q(z)(p0 − 1)
≥ 1

q0 − 1
.

This condition holds whenever

(5.8)
(

q

p

)+

2B

=
q(z)

p(z)
≤ q0 − 1

p0 − 1
.

Since (q/p)+
2B → q0/p0 as r → 0 and q0/p0 < (q0 − 1)/(p0 − 1) (because q0 > p0),

there exists R so that (5.8) holds for 0 < r < R. Thus (5.6) holds for 0 < r < R. ¤

5.9. Remark. The assumption q(x0) < n in Theorem 5.5 is made just for
convenience. We could allow the assumption q(x0) = n and prove instead of using
(5.7) that

(5.10) Cq(·)(E ∩B, 2B) → 0

as r → 0+. The proof of this is based on the definition of thinness. Notice here
that in the proof of Theorem 5.5 the assumption q(x0) < n is used only for the
estimate Cq(·)(E ∩ B, 2B) < 1. Since we do not need the claim in the borderline
case q(x0) = n, we skip the somewhat technical proof of the fact (5.10). Notice also
that the claim is trivial if we assume q(x0) > n.

Recall that a measurable function u in Ω is called approximately continuous at
x0 ∈ Ω if there is a measurable set E with measure density 1 at x0 such that u is
continuous at x0 relative to E.

5.11. Corollary. Every p(·)-superharmonic function in Ω is approximately con-
tinuous in Ω.

Proof. Let u be p(·)-superharmonic and fix a point x0. Since u is lower semi-
continuous we have

u(x0) = lim inf
x→x0

u(x).

Therefore we may assume that u(x0) < ∞. By Remark 5.4, we are free to assume
that p(x0) ≤ n.

It is enough to show that for any ε > 0 the set Eε := {u ≥ u(x0) + ε } has the
measure density 0 at x0, see [36], p. 170. This however holds by Theorems 5.3 and
5.5 together with known results for constant exponent, see [32], p. 86. ¤
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6. Fine continuity and quasicontinuity

We finish this paper by showing that p(·)-quasicontinuous functions are p(·)-
finely continuous p(·)-quasieverywhere. As a consequence of this we also prove that
p(·)-superharmonic functions are p(·)-quasicontinuous. To obtain these results we
first show that for any E b Ω there is a unique capacitary extremal for the capacity
Cp(·)(E, Ω). This has been shown in [5], Theorem 5.2 for compact sets by using a
different method. We use the Banach–Saks theorem since the standard application
of weak lower semicontinuity does not yield the result in the variable exponent
setting.

Throughout this section, let Ω ⊂ Rn be a bounded open set and let E b Ω be
arbitrary. For convenience, we denote

S(E, Ω) = {u ∈ W
1,p(·)
0 (Ω) : u ≥ 1 in a neighborhood of E }

and

S̃(E, Ω) = {u ∈ W
1,p(·)
0 (Ω) : u is p(·)-qc. with u ≥ 1 p(·)-q.e. in E }.

Here qc. is an abbreviation for the word quasicontinuous. We define

C̃p(·)(E, Ω) = inf
u∈S̃(E,Ω)

∫

Ω

|∇u(x)|p(x) dx.

6.1. Lemma. Let E b Ω and let u ∈ S̃(E, Ω) be non-negative. Then for any
ε > 0 there is v ∈ S(E, Ω) such that ‖u− v‖1,p(·) < ε.

Proof. We choose 0 < ε < 1 and fix an open set U with E ⊂ U b Ω. Since
u is p(·)-quasicontinuous there is an open set V ⊂ U such that Cp(·)(V, Ω) < ε, u
restricted to U \ V is continuous, and u ≥ 1 on E \ V . Here a priori the Sobolev
p(·)-capacity of V can be assumed to be small: however, by Remark 3.13 we obtain
that the relative Sobolev capacity is small as well. Since Cp(·)(V, Ω) < ε, we find
w ∈ W

1,p(·)
0 (Ω) such that w ≥ 1 in an open set containing V and ‖∇w‖p(·) < ε. Now

the Poincaré inequality, [19], Theorem 4.1, implies that ‖w‖p(·) < Cε. By setting
v := (1 + ε)u + w we have v ≥ 1 on an open set containing E. Since

‖v − u‖1,p(·) ≤ ε(‖u‖1,p(·) + C)

we easily infer the claim. ¤

6.2. Lemma. For any E b Ω we have

Cp(·)(E, Ω) = C̃p(·)(E, Ω).

Proof. The inequality

Cp(·)(E, Ω) ≤ C̃p(·)(E, Ω)

follows from Lemma 6.1. The converse inequality follows since any p(·)-quasicontin-
uous representative ũ of u ∈ S(E, Ω) satisfies ũ ≥ 1 p(·)-q.e. in an open neighbor-
hood of E by Lemma 3.5. ¤
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6.3. Theorem. For every E b Ω there exists a unique capacitary extremal
u ∈ S̃(E, Ω), 0 ≤ u ≤ 1, for Cp(·)(E, Ω) = C̃p(·)(E, Ω).

Proof. Let (ui) be a minimizing sequence in S̃(E, Ω) for the capacity C̃p(·)(E, Ω),
that is ui ∈ S̃(E, Ω) and

lim
i→∞

∫

Ω

|∇ui|p(x) dx = C̃p(·)(E, Ω).

Without loss of generality we may assume that (%p(·)(∇ui)) is decreasing and 0 ≤
ui ≤ 1. Thus (ui) is bounded in W

1,p(·)
0 (Ω) and has a subsequence that converges

weakly to u ∈ W
1,p(·)
0 (Ω). Since t 7→ tp(x) is uniformly convex, we obtain that

Lp(·)(Ω) is uniformly convex, see [33], Theorem 11.6. By the Banach–Saks property
of [28] we have i−1(u1 + . . . + ui) → u in Lp(·)(Ω) and i−1(∇u1 + . . . +∇ui) → ∇u
in Lp(·)(Ω). We denote

vi = i−2(ui+1 + . . . + ui2) and ∇vi = i−2(∇ui+1 + . . . +∇ui2).

Since (∇ui) is bounded in Lp(·)(Ω), we have i−2(u1 + . . . + ui) → 0 in Lp(·)(Ω), and
therefore vi → u in Lp(·)(Ω). Similarly we have ∇vi → ∇u in Lp(·)(Ω). By passing
to a subsequence we obtain by Fatou’s lemma

∫

Ω

|∇u|p(x) dx ≤ lim inf
i→∞

∫

Ω

|∇vi|p(x) dx ≤ lim inf
i→∞

∫

Ω

i−2

i2∑
j=i+1

|∇uj|p(x) dx

≤ lim inf
i→∞

i2 − i

i2

∫

Ω

|∇ui+1|p(x) dx ≤ lim inf
i→∞

∫

Ω

|∇ui|p(x) dx.

Here the inequality
( i2∑

j=1

tj

)p(x)

≤ (i2)p(x)−1

i2∑
j=1

t
p(x)
j

with tj = 0 for 1 ≤ j ≤ i and tj = i−2|∇uj| for i + 1 ≤ j ≤ i2 has been used in the
second inequality. We have also used the assumption that (%p(·)(∇ui)) is decreasing.

Hence the existence of the minimizer is established once we show that u ∈
S̃(E, Ω). Since i−1(u1+ . . . ui) → u in W

1,p(·)
0 (Ω) and each ui is p(·)-quasicontinuous,

we infer from [19], Lemma 2.3 that u is p(·)-quasicontinuous. Moreover, there is a
subsequence so that i−1

j (u1 + . . . uij) → u p(·)-q.e. in Ω. Since i−1
j (u1 + . . . uij) = 1

p(·)-q.e. in E for each j, we conclude that u = 1 p(·)-q.e. in E. Clearly by truncation
we have 0 ≤ u ≤ 1.

The uniqueness of the minimizer follows by standard reasoning. Assume that v
is another capacitary extremal for the capacity C̃p(·)(E, Ω). By the strict convexity
of t 7→ tp(x) we obtain

∣∣∣∣
1

2
∇u +

1

2
∇v

∣∣∣∣
p(x)

≤
(

1

2
|∇u|+ 1

2
|∇v|

)p(x)

<
1

2
|∇u|p(x) +

1

2
|∇v|p(x).
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This contradicts the minimality assumption if u 6= v because 1
2
(u+v) is an admissible

test function for the capacity C̃p(·)(E, Ω). ¤
We complete Theorem 6.3 by showing that the capacity extremal is a p(·)-

supersolution.

6.4. Lemma. Let E b Ω. If u is the capacitary extremal of Cp(·)(E, Ω), then
u is a p(·)-supersolution on Ω and a p(·)-solution on Ω \ E.

Proof. Let φ ∈ C∞
0 (Ω) be non-negative and ε > 0. Then u+εφ is a test function

for C̃p(·)(E, Ω) and hence
∫

Ω

|∇u + ε∇φ|p(x) − |∇u|p(x)

ε
dx ≥ 0.

Letting ε → 0 we obtain
∫

Ω

p(x)|∇u|p(x)−2∇u · ∇φ dx ≥ 0

in the same way as in [19], Theorem 5.4.
To prove the second claim, let φ ∈ C∞

0 (Ω \ E) and ε > 0. Since u is the
capacitary extremal and u + εφ is a test function for C̃p(·)(E, Ω), we obtain that

J(ε) =

∫

Ω

|∇(u + εφ)|p(x)dx

attains its infimum for ε = 0. So we must have J ′(0) = 0. ¤

6.5. Theorem. Let u : Ω → [−∞,∞] be p(·)-quasicontinuous. Then u is p(·)-
finely continuous p(·)-quasieverywhere in Ω.

Proof. In the proof we denote by E∗ the p(·)-fine closure of E ⊂ Rn. By
subadditivity it is enough to prove the claim for u|B, where B is an open ball such
that 2B b Ω.

Let (Ei) be a sequence of open subsets of B with the positive p(·)-capacity such
that limi→∞ Cp(·)(Ei) = 0 and u is continuous when restricted to B\Ei. It is enough
to show that

(6.6) Cp(·)
( ⋂

i

E∗
i

)
= 0,

since then for any x ∈ B \⋂
i E

∗
i there is an index i such that u is continuous when

restricted to a p(·)-finely open neighborhood B \ E∗
i of x. By Theorem 6.3 and

Lemma 6.4 there is a bounded p(·)-quasicontinuous p(·)-supersolution ui in 2B so
that ui ∈ W

1,p(·)
0 (2B),

Cp(·)(Ei, 2B) =

∫

2B

|∇ui|p(x) dx,
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and ui = 1 p(·)-q.e. in Ei. We define the p(·)-superharmonic representative ũi of ui

by setting
ũi(x) = ess lim inf

y→x
ui(y)

for every x ∈ 2B, see Remark 4.2. By the proof of [20], Theorem 4.1 we have

ũi(x) = lim
r→0

1

|B(x, r)|
∫

B(x,r)

ũi(y) dy

for all x ∈ 2B. We know that the function ũi is p(·)-quasicontinuous; notice here
that [21], Theorem 2, improves [15], Theorem 4.6 by showing that our standard
assumptions are sufficient for the capacitary version of Lebesgue point theorem for
variable exponent Sobolev functions. Hence we obtain ũi = 1 p(·)-q.e. in Ei by using
Lemma 3.5.

Since ũi is p(·)-finely continuous in 2B (Theorem 5.3), we have ũi ≥ 1 in E∗
i .

In fact, if x ∈ E∗
i , Vx is a p(·)-fine neighborhood of x, and Fi ⊂ Ei is a set of p(·)-

capacity zero so that ũi ≥ 1 in Ei\Fi, then Vx\(Fi\{x}) is a p(·)-fine neighborhood
of x, and therefore Vx intersects with Ei \ Fi. By the p(·)-quasicontinuity of ũi we
conclude from Theorem 6.3 that

Cp(·)(E
∗
i , 2B) ≤ Cp(·)(Ei, 2B)

for all i = 1, 2, . . .. Since limi→∞ Cp(·)(Ei, 2B) = 0 (by Lemma 3.7), we infer that

lim
i→∞

Cp(·)(E
∗
i , 2B) = 0.

As in Remark 3.13 we obtain

lim
i→∞

Cp(·)(E
∗
i ) = 0,

and hence Cp(·)(
⋂

i E
∗
i ) = 0. ¤

6.7. Theorem. Let u be p(·)-superharmonic in Ω. Then u is p(·)-quasicontin-
uous in Ω.

Proof. By [17, Corollary 6.7], for each k ∈ N, the function uk = min{u, k}
is a p(·)-supersolution and hence belongs to W

1,p(·)
loc (Ω). This implies that uk has

a p(·)-quasicontinuous representative ũk [18, Theorem 5.2]. By Corollary 5.11 the
function uk is approximately continuous in Ω and by Theorem 6.5 the function ũk

is approximately continuous p(·)-q.e. in Ω. Since uk = ũk a.e. in Ω, we obtain that
uk = ũk p(·)-q.e. in Ω. This implies that uk is p(·)-quasicontinuous in Ω for each
k ∈ N.

Next we show that u is p(·)-quasicontinuous as well. For each ε > 0 we choose
Uk ⊂ Ω so that Cp(·)(Uk) ≤ ε/2k and the restriction of uk to Ω \ Uk is continuous.
Write U =

⋃
k Uk. Then for all k ∈ N the restriction of uk to Ω \ U is continuous

and moreover Cp(·)(Uk) ≤ ε. Let x ∈ Ω \ U and assume first that u(x) ∈ R. By
choosing k large enough we have uk = u in a neighborhood of x in Ω \ U (since
uk is continuous at x in Ω \ U). Hence u is continuous at x in Ω \ U . On the
other hand, if u(x) = +∞ and M > 0, we may choose k ∈ N large enough so that
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uk(x) = k ≥ M + 1. Since uk is continuous at x in Ω \U , we have u ≥ uk > M in a
neighborhood of x in Ω\U . Hence u is continuous at x when restricted to Ω\U . ¤
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