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Abstract. The Banach space E has the weakly compact approximation property (W.A.P.)
if there is C < ∞ so that the identity map IE can be uniformly approximated on any weakly
compact subset D ⊂ E by weakly compact operators V on E satisfying ‖V ‖ ≤ C. We show that
the spaces N(`p, `q) of nuclear operators `p → `q have the W.A.P. for 1 < q ≤ p < ∞, but that
the Hardy space H1 does not have the W.A.P.

0. Introduction

The Banach space E has the weakly compact approximation property (abbrevi-
ated W.A.P.) if there is C < ∞ so that for any weakly compact set D ⊂ E and
ε > 0 one finds a weakly compact operator V ∈ W (E) satisfying

(0.1) sup
x∈D

‖x− V x‖ < ε and ‖V ‖ ≤ C.

Here V ∈ W (E) if the image V BE of the closed unit ball BE of E is relatively
weakly compact. This concept of weakly compact approximation is natural, but
the resulting property differs completely from the classical bounded approximation
properties defined in terms of finite rank or compact operators (for more about these
properties see e.g. [C]). The W.A.P. was introduced in [AT], and some applications
can be found in [AT] and [T2]. It was later more systematically studied in [OT]
from the perspective of Banach space theory. The W.A.P. remains fairly rare and
elusive for non-reflexive spaces (obviously any reflexive space has it). The following
list reviews some of the known results.

(0.2) If E is a L 1- or L∞-space, then E has the W.A.P. if and only if E has the
Schur property, see [AT, Cor. 3]. Thus `1 has the W.A.P., while c0, C(0, 1)
and L1(0, 1) fail to have it.

(0.3) The direct sums `1(`p) and `p(`1) have the W.A.P. for 1 < p < ∞, [OT,
Prop. 5.3].
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(0.4) The quasi-reflexive James’ space J , as well as its dual J∗, have the W.A.P.,
[OT, Thm. 2.2 and 3.3]. On the other hand, there is [ArT, Prop. 14.11]
a quasi-reflexive hereditarily indecomposable space X that fails to have the
W.A.P. Moreover, the related James’ tree space JT fails to have the W.A.P.,
[OT, Thm. 6.5].

As the first result of this note we show that the spaces N(`p, `q) consisting of
nuclear operators have the W.A.P. for 1 < q ≤ p < ∞ (note that N(`p, `q) is reflex-
ive if q > p). This result, which was motivated by timely questions of Zacharias
and Defant, includes the Schatten trace class space C1 for p = q = 2. Secondly, we
show that the Hardy space H1 does not have the W.A.P., which solves a question
from [AT, p. 370] in the negative.

In order to determine whether a given space E has the W.A.P. or not one is
often forced to rely on very specific properties of E, and there still remains fairly
concrete Banach spaces for which this property is not decided (see e.g. the Problems
in Section 2 as well as [OT]).

1. The spaces N(`p, `q) of nuclear operators have the W.A.P.

Let E and F be Banach spaces. Recall that T : E → F is a nuclear operator,
denoted T ∈ N(E,F ), if there are sequences (x∗j) ⊂ E∗ and (yj) ⊂ F so that∑∞

j=1 ‖x∗j‖ ‖yj‖ < ∞ and T =
∑∞

j=1 x∗j ⊗ yj. Here x∗j ⊗ yj denotes the rank-1
operator x 7→ x∗j(x)yj. Then (N(E, F ), ‖ · ‖N) is a Banach space, where the nuclear
norm of T ∈ N(E,F ) is

‖T‖N = inf

{ ∞∑
j=1

‖x∗j‖ ‖yj‖ : T =
∞∑

j=1

x∗j ⊗ yj

}
.

Recall that ‖ASB‖N ≤ ‖A‖ ‖B‖ ‖S‖N whenever S ∈ N(E,F ) and A,B are com-
patible bounded operators. One may isometrically identify N(`2) = C1, where C1

is the Schatten trace class space, see e.g. [P, Sect. 0.b] or [Pi, Sect. 2.11].
Theorem 1 below is the main result of this section. Observe that in its statement

the spaces N(`p, `q) are actually reflexive for 1 < p < q < ∞, so that only the cases
1 < q ≤ p < ∞ contain non-trivial information. In fact, N(`p, `q) = K(`q, `p)∗ in
the trace-duality

〈U, V 〉 = tr(V U), U ∈ N(`p, `q), V ∈ K(`q, `p),

where the space K(`q, `p) of compact operators `q → `p is reflexive once 1 < p < q <
∞, see e.g. [R, Cor. 2.6] or [K, Sect. 2, Cor. 2]. Theorem 1 can also be rephrased
in the terms of the projective tensor products `p⊗̂π`q, see the Remarks following
Lemma 2.

Theorem 1. N(`p, `q) has the W.A.P. whenever 1 < p, q < ∞.

The proof of Theorem 1 is based on Lemma 2 below, which contains a basic
characterization of the relatively weakly compact subsets of the non-reflexive spaces
N(`p, `q) for 1 < q ≤ p < ∞. Let (ej) be the unit vector basis of `p for 1 < p < ∞.
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We denote the natural basis projection of `p onto [e1, . . . , en] by Pn, and set Qn =
I−Pn for n ∈ N. For m < n we also put P(m,n] = Pn−Pm = PnQm = QmPn, which
is the natural projection of `p onto [em+1, . . . , en]. We denote the corresponding basis
projections on `q by P̃n, Q̃n and P̃(m,n], respectively. We will frequently use the facts
that ‖S − P̃nSPn‖N → 0 and ‖Q̃nSQn‖N → 0 as n →∞ for any S ∈ N(`p, `q).

Lemma 2. Suppose that 1 < q ≤ p < ∞ and let D ⊂ N(`p, `q) be a bounded
subset. Then D is relatively weakly compact in N(`p, `q) if and only if

(1.1) lim
n→∞

sup
S∈D

‖Q̃nSQn‖N = 0.

We first complete the proof of Theorem 1 with the help of (1.1) before estab-
lishing the more technical Lemma 2.

Proof of Theorem 1. We may assume that 1 < q ≤ p < ∞ since N(`p, `q) is
reflexive for 1 < p < q < ∞, see the comment preceding Theorem 1. Suppose that
D ⊂ N(`p, `q) is a weakly compact subset and let ε > 0 be given. Write

(1.2) S =
(
P̃nSPn + P̃nSQn + Q̃nSPn

)
+ Q̃nSQn ≡ ψn(S) + Q̃nSQn

for S ∈ N(`p, `q) and n ∈ N. Here ψn : N(`p, `q) → N(`p, `q) for n ∈ N are the
bounded linear maps defined by ψn(S) = P̃nSPn+P̃nSQn+Q̃nSPn for S ∈ N(`p, `q).
Clearly ‖ψn‖ ≤ 3 for any n. It follows from (1.1) and (1.2) that

sup
S∈D

‖S − ψn(S)‖N = sup
S∈D

‖Q̃nSQn‖N → 0 as n →∞,

so that supS∈D ‖S − ψn(S)‖N < ε once n is large enough.
Consequently it will be enough to verify that

(1.3) ψn ∈ W (N(`p, `q)), n ∈ N.

This fact can be deduced from a suitable combination of general results, see the
proofs of [LS, Prop. 2.2 and 2.3] or the survey [ST, p. 262], but we sketch a direct
argument for completeness. Note first that the maps

ϕy,y∗(S) = (y∗ ⊗ y)S = S∗y∗ ⊗ y; φx,x∗(S) = S(x∗ ⊗ x) = x∗ ⊗ Sx

are weakly compact on N(`p, `q) for any y∗ ∈ `q′ , y ∈ `q, x ∈ `p and x∗ ∈ `p′ , where p′

and q′ are the respective dual exponents. In fact, ϕy,y∗(BN(`p,`q)) ⊂ ‖y∗‖ ‖y‖(B`p′ ⊗
y), since ‖S∗y∗ ⊗ y‖N ≤ ‖y∗‖ ‖y‖ for S ∈ BN(`p,`q). Clearly the set B`p′ ⊗ y is
relatively weakly compact in N(`p, `q), since z∗ 7→ z∗⊗ y embeds `p′ isomorphically
into N(`p, `q) for y 6= 0. The case of φx,x∗ is analogous.

Finally, (1.3) follows since the individual operators defining ψn, such as S 7→
P̃nSQn, are sums of weakly compact ones composed with bounded ones. The proof
of Theorem 1 will be complete once Lemma 2 has been established. ¤

Proof of Lemma 2. Suppose first that (1.1) holds. According to (1.2) we get
that

(1.4) D ⊂ ψn(D) + δnBN(`p,`q), n ∈ N,
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where δn ≡ supS∈D ‖Q̃nSQn‖N → 0 as n → ∞. Here ψn(D) is a relatively weakly
compact subset of N(`p, `q) for all n by (1.3). It is a standard fact that (1.4) then
implies that D is a relatively weakly compact subset of N(`p, `q).

Assume towards the converse implication that (1.1) fails to hold for the bounded
subset D ⊂ N(`p, `q). Put ∆ = D − D. The strategy is to exhibit a sequence
(Sk) ⊂ ∆, which is equivalent to the unit vector basis in `1. In this event (Sk) does
not have any weakly convergent subsequences, so that ∆ (as well as D) is not a
relatively weakly compact set.

Observe first that by our assumption

(1.5) c = inf
n∈N

sup
S∈D

‖Q̃nSQn‖N > 0,

since supS∈D ‖Q̃nSQn‖N is clearly non-increasing in n. We proceed to construct by
induction a sequence (Sk)k≥1 ⊂ ∆ and intertwining sequences 1 = n1 < m1 < n2 <
m2 < . . . of natural numbers so that the following conditions are satisfied for all
r ∈ N = {1, 2, . . .}:

‖P̃(nr,mr]SrP(nr,mr]‖N >
c

2
,(1.6)

‖P̃(nj ,mj ]SkP(nj ,mj ]‖N <
c

2j+k+4
for 1 ≤ j, k ≤ r and j 6= k.(1.7)

First pick n1 = 1 and S1 ∈ D so that ‖Q̃n1S1Qn1‖N > c
2
, and by truncation

m1 > n1 so that (1.6) holds for r = 1. Assume next that we have already chosen
S1, . . . , Sr ∈ ∆ and 1 = n1 < m1 < . . . < nr < mr so that (1.6) and (1.7) holds
until r. We pick by truncation nr+1 > mr such that

(1.8) ‖Q̃nr+1SjQnr+1‖N <
c

22r+5
for j = 1, . . . , r.

Note that (1.8) guarantees (1.7) for j = r + 1 and 1 ≤ k ≤ r regardless of our
subsequent choice of mr+1 > nr+1.

We next choose inductively an auxiliary sequence (Ts)s≥1 ⊂ D and increasing
indices nr+1 = l1 < l2 < . . . in such a way that

‖Q̃lsTsQls‖N >
2c

3
, s ∈ N,(1.9)

‖Q̃ls+1TsQls+1‖N <
c

6
, s ∈ N.(1.10)

This is possible by (1.5) and the fact that QtTsQt → 0 in N(`p, `q) as t → ∞.
Use finite-dimensionality and the boundedness of D to find a subsequence of (Ts)

such that (P̃(nj ,mj ]TsP(nj ,mj ])s≥1 converges in the nuclear norm for all j = 1, . . . , r
as s → ∞ along this subsequence. Hence there are s1 < s2 for which the choice
Sr+1 = Ts2 − Ts1 satisfies

‖P̃(nj ,mj ]Sr+1P(nj ,mj ]‖N <
c

22r+5
for j = 1, . . . , r.

This yields (1.7) for k = r + 1 and 1 ≤ j ≤ r.
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It remains to find mr+1 > nr+1 and to verify (1.6) for r + 1. For this observe
that by (1.9), (1.10) and the fact ls2 > nr+1 one has

‖Q̃nr+1Sr+1Qnr+1‖N ≥ ‖Q̃ls2
Sr+1Qls2

‖N ≥ ‖Q̃ls2
Ts2Qls2

‖N − ‖Q̃ls2
Ts1Qls2

‖N

>
2c

3
− ‖Q̃ls1+1Ts1Qls1+1‖N >

c

2
.

By truncation we may then pick mr+1 > nr+1 so that (1.6) holds for r + 1. This
completes the induction step.

Let (ck) ∈ `1, (ck) 6= 0, be an arbitrary sequence. Define Ek = [enk+1, . . . , emk
] ⊂

`p and Fk = [fnk+1, . . . , fmk
] ⊂ `q for k ∈ N. By finite-dimensional trace-duality

and the fact that Ek, Fk are 1-complemented subspaces there is Uk ∈ L(Fk, Ek) =
N(Ek, Fk)

∗ so that ‖Uk‖ = 1 and

〈Uk, P̃(nk,mk]SkP(nk,mk]〉 =
|ck|
ck

‖P̃(nk,mk]SkP(nk,mk]‖N , k ∈ N.

We may choose Uk = 0 in case ck = 0. Then U =
∑∞

k=1 Uk defines a bounded
operator `q → `p satisfying ‖U‖ = supk ‖Uk‖ = 1 since q ≤ p by assumption.

Clearly ‖∑∞
k=1 ckSk‖N ≤ M

∑∞
k=1 |ck|, where M = supS∈∆ ‖S‖N . Towards the

converse estimate we first observe that

〈Uk, P̃(nr,mr]SrP(nr,mr]〉 = tr(P̃(nr,mr]SrP(nr,mr]Uk) = 0

for k 6= r in the trace-duality L(`q, `p) = N(`p, `q)∗. Hence it follows from (1.6)
that ∥∥∥∥∥

∞∑

k=1

ckP̃(nk,mk]SkP(nk,mk]

∥∥∥∥∥
N

≥ 〈U,

∞∑

k=1

ckP̃(nk,mk]SkP(nk,mk]〉

=
∞∑

k=1

|ck| · ‖P̃(nk,mk]SkP(nk,mk]‖N ≥ c

2

∞∑

k=1

|ck|.
(1.11)

We also need the general fact that

(1.12)

∥∥∥∥∥
∞∑

r=1

P̃(nr,mr]SP(nr,mr]

∥∥∥∥∥
N

≤ ‖S‖N , S ∈ N(`p, `q).

The block diagonalization estimate (1.12) is proved for the nuclear norm ‖ · ‖N

exactly as in the case of the operator norm in [LT, pp. 20–21]. By combining (1.12),
(1.11) and (1.7) we get that
∥∥∥∥∥
∞∑

k=1

ckSk

∥∥∥∥∥
N

≥
∥∥∥∥∥
∞∑

r=1

P̃(nr,mr]

( ∞∑

k=1

ckSk

)
P(nr,mr]

∥∥∥∥∥
N

≥ c

2

∞∑

k=1

|ck| −
∞∑

r=1

(∑

k<r

|ck| · ‖P̃(nr,mr]SkP(nr,mr]‖N +
∑

k>r

|ck| · ‖P̃(nr,mr]SkP(nr,mr]‖N

)
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≥
(

c

2
− c ·

∞∑

r,k=1

2−(r+k+4)

) ∞∑
s=1

|cs| ≥ 3c

8

∞∑

k=1

|ck|.

Hence the sequence (Sk) ⊂ ∆ is equivalent to the unit vector basis in `1. This
completes the proof of Lemma 2 as noted above. ¤

Actually, there is a somewhat simpler proof for Lemma 2. The alternative
argument constructs a sequence (Sk) ⊂ D and a related block-diagonal operator
U ∈ L(`q, `p) so that |〈Sk, U〉| > c

2
for k ∈ N, whence one may deduce that (Sk) has

no weakly convergent subsequences in N(`p, `q). However, the argument in Lemma 2
establishes a stronger fact, which is an analogue of a result of Kadec and Pełczyński
for non-weakly compact subsets of L1(0, 1), see [W, III.C.12].

Corollary 3. If 1 < q ≤ p < ∞ and D ⊂ N(`p, `q) is a bounded subset which
is not relatively weakly compact, then the difference set D−D contains a sequence
(Sk) equivalent to the unit vector basis in `1.

Remarks. (1) Clearly Lemma 2 does not hold for 1 < p < q < ∞, since in this
case N(`p, `q) is reflexive, but D = {e∗n ⊗ fn : n ∈ N} does not satisfy (1.1). Here
(e∗n) ⊂ `p′ is the biorthogonal basis.

(2) Theorem 1 can be restated as follows by using the known (partial) correspon-
dence between spaces of nuclear operators and projective tensor products: `p⊗̂π`q

has the W.A.P. whenever 1 < p, q < ∞. This follows from the isometric identifi-
cation `p⊗̂π`q = N(`p′ , `q), but one may also translate the argument of Theorem 1
into the setting of tensor products. We refer to [DF] for the requisite background.

The scope of Theorem 1 within the class of spaces N(E, F ) of nuclear operators
(or the related projective tensor products) remains unclear. For instance, it follows
from Theorem 1 that N(`p⊕`q) has the W.A.P. for 1 < p < q < ∞, since N(`p⊕`q) is
linearly isomorphic to N(`p)⊕N(`q)⊕N(`p, `q)⊕N(`q, `p). The following questions
appear natural.

Problems. (1) If N(E,F ) has the W.A.P., then E∗ and F must also have this
property, since E∗ ⊂ N(E,F ) and F ⊂ N(E, F ) as complemented subspaces. Are
there E and F so that E∗ and F have the W.A.P., but N(E,F ) fails to have the
W.A.P.?

(2) Let E and F be reflexive Banach spaces having unconditional Schauder
bases. Does N(E, F ) always have the W.A.P.? As an important special case, does
N(Lp(0, 1)) have the W.A.P. for 1 < p < ∞ and p 6= 2?

(3) Recall that Y has the Schur property if ‖yn‖ → 0 as n →∞ for any weak-
null sequence (yn) ⊂ Y . By applying the construction in [BP] to `1 one obtains
a separable L∞-space X so that `1 ⊂ X isometrically and X/`1 has the Schur
property. It is then easy to check that X has the Schur property, so that X has the
W.A.P. by (0.2). Does X⊗̂πX have the W.A.P.?
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The Banach space E has the inner weakly compact approximation property (inner
W.A.P.) if there is C < ∞ so that for any weakly compact operator U ∈ W (E, Z),
where Z is an arbitrary Banach space, and ε > 0 there is V ∈ W (E) satisfying

(1.13) ‖U − UV ‖ < ε and ‖V ‖ ≤ C.

This property, first considered in [T1] and [T2], is less intuitive than the W.A.P. It
is a (pre)dual property to W.A.P. in the following sense: If X has the inner W.A.P.,
then X∗ has the W.A.P., see [T1, Prop. 3.4]. The converse does not hold: the
Johnson–Lindenstrauss space JL fails to have the inner W.A.P., but JL∗ has the
W.A.P., see [T2, Thm. 1.4].

The argument of Theorem 1 yields that the spaces K(`p, `q) of compact operators
(alternatively, the ε-tensor products `p⊗̂ε`

q = K(`p′ , `q)) have the inner W.A.P. for
1 < p, q < ∞.

Corollary 4. The spaces K(`p, `q) have the inner W.A.P. whenever 1 < p, q <
∞.

Proof. It is again enough to consider the case 1 < p ≤ q < ∞. To check (1.13)
suppose that U : K(`p, `q) → Z is a weakly compact operator, where Z is a Banach
space. Consider the operators φn defined on K(`p, `q) by

φn(S) = P̃nSPn + P̃nSQn + Q̃nSPn, S ∈ K(`p, `q),

for n ∈ N. It is not difficult to verify that φ∗n = ψn ∈ L(N(`q, `p)) in trace duality,
where ψn(S) = PnSP̃n +PnSQ̃n +QnSP̃n for S ∈ N(`q, `p). Here ψn ∈ W (N(`q, `p))
for n ∈ N by (1.3). Moreover, the argument of Theorem 1 applied to the relatively
weakly compact subset U∗(BZ∗) ⊂ N(`q, `p) yields that

‖U − Uφn‖ = ‖U∗ − ψnU
∗‖ → 0 as n →∞.

Hence K(`p, `q) has the inner W.A.P. ¤

2. H1 does not have the W.A.P.

Let D be the unit disk in the complex plane. The Hardy space H1 consists of
the analytic maps f : D → C for which

‖f‖ = sup
0<r<1

∫ 2π

0

|f(reit)| dm(t) < ∞,

where m is normalized Lebesgue measure on [0, 2π] (identified with T = ∂D). It
is a classical fact that H1 is isometrically isomorphic via a.e. radial limits to the
closed subspace

H1(T) =
{

f ∈ L1(T) : f̂(n) =

∫ 2π

0

e−intf(eit) dm(t) = 0, n < 0
}

of L1(T). Recall that L1(T) does not have the W.A.P. by (0.2). This observation
uses the fact that L1(T) has the Dunford–Pettis property (DPP), that is, any weakly
compact U ∈ W (L1(T)) maps weak-null sequences to norm-null ones. By contrast
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H1 = H1(T) does not have the DPP, and W (H1) is a larger class (e.g. as it contains
the Paley projections onto the Hilbertian subspaces spanned by lacunary sequences).
Thus the known results about the W.A.P. do not resolve the natural question [AT,
p. 370] whether H1 has the W.A.P. In this section we settle this problem in the
negative.

Theorem 5. H1 does not have the W.A.P.

Proof. Let gn(z) = zn for z ∈ C and n = 0, 1, 2, . . .. Consider

H = {gn : n ∈ N} ⊂ H1.

Then H is relatively weakly compact in H1, since (gn) is a weak-null sequence. It
will be enough to establish the following claim.

Claim. There is no weakly compact operator U : H1 → H1 so that

(2.1) sup
h∈H

‖h− Uh‖ < 1/2.

Proof of the Claim. Suppose to the contrary that there is an operator U ∈
W (H1) satisfying (2.1). We next modify U by applying the averaging technique
of Rudin [Ru1]. Let τs be the isometric translation operator on H1(T) defined by
τsf(eiu) = f(ei(u+s)) for s, u ∈ [0, 2π]. Then the H1-valued average

Ũf =

∫ 2π

0

(τ−sUτs)f dm(s), f ∈ H1,

yields a bounded linear operator H1 → H1. Moreover, Ũ ∈ W (H1) according to
the Dunford–Pettis characterization of the relatively weakly subsets of L1(T) as the
uniformly integrable ones. Note that

‖gn − Ũgn‖ =

∥∥∥∥
∫ 2π

0

(τ−sτsgn − τ−sUτsgn) dm(s)

∥∥∥∥

≤
∫ 2π

0

‖gn − U(gn)‖ dm(s) < 1/2

(2.2)

for all n ∈ N by (2.1) and the identity τsgn = einsgn.
The construction in [Ru1] (alternatively, see [Ru2, 5.19]) guarantees that there

is a bounded complex sequence (λn)n≥0 so that

(2.3) Ũgn = λngn, n ∈ N ∪ {0}.
In other words, Ũ is a weakly compact Fourier multiplier operator on H1 which is
determined by (λn)n≥0.

Consequently ‖gn−Ũgn‖ = |1−λn| < 1/2 for n ∈ N by (2.2) and (2.3). However,
this estimate contradicts the fact, isolated below in Lemma 6, that infn≥1

1
n
|∑n

k=1 λk|
= 0 holds for any such weakly compact Fourier multiplier on H1. This yields
the Claim, and the proof of Theorem 5 will be complete once Lemma 6 has been
established below. ¤
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Let Λ = (λk)k≥0 be a bounded sequence of complex numbers, and define the
corresponding formal Fourier multiplier TΛ by TΛ(gk) = λkgk for k ≥ 0.

Lemma 6. Let Λ = (λk)k≥0 ∈ `∞ be a complex sequence for which the corre-
sponding Fourier multiplier operator TΛ ∈ W (H1). Then

(2.4) inf
n≥1

1

n

∣∣∣∣
n∑

k=1

λk

∣∣∣∣ = 0.

Proof. Let A be the closure of TΛ(BH1) in H1, and put

G := abco {gf : f ∈ A , ‖g‖L∞ ≤ 1},
where the absolutely convex closure is taken in L1 ≡ L1(T). The uniform integra-
bility criterion implies that G is a weakly compact subset of L1.

Assume contrary to (2.4) that there is c > 0 so that |an| ≥ c for all n ≥ 1, where
an := 1

n

∑n
k=1 λk for n ≥ 1. Note that |an| ≤ ‖Λ‖∞ for n ≥ 1. Consider for each

fixed j ≥ 1 the shifted sequence Λj := (λk+j)k≥0 ∈ `∞ as well as the averages

Λ̃n :=
1

nan

n∑
j=1

Λj ∈ `∞

for n ≥ 1. Observe that the sequence Λ̃n converges coordinatewise to (1, 1, . . .) as
n →∞. In fact, by our counterassumption the k:th coordinate b

(n)
k = 1

nan
·∑n

j=1 λj+k

of Λ̃n satisfies

|b(n)
k − 1| = 1

n|an|

∣∣∣∣
n∑

j=1

λj+k −
n∑

j=1

λj

∣∣∣∣ ≤
2k

cn
‖Λ‖∞ → 0, n →∞.

On the other hand, the inclusion

(2.5) TΛ̃n
(BH1) ⊂ c−1G, n ≥ 0,

follows from the identity TΛ̃n
= 1

nan

∑n
j=1 TΛj

, where it is not difficult to check
that TΛj

(f) ∈ gj ·TΛ(BH1) ⊂ G for f ∈ BH1 . The coordinatewise convergence of Λ̃n

combined with (2.5) imply by approximation that BH1 ⊂ c−1G, which is impossible.
¤

Remarks. (1) By removing the uniform bound C < ∞ in (0.1) one obtains a
strictly weaker approximation property, see [OT, Example 6.8]. The argument in
Theorem 5 shows that H1 even fails to have this weaker property.

(2) Note that the related quotient space L1/H1
0 , where H1

0 = {f ∈ H1 : f(0) =
0}, also fails to have the W.A.P. This observation can be deduced from the facts
that L1/H1

0 has the DPP (see e.g. [Pe, Cor. 8.1.(b)]), but not the Schur property.

Let V MOA be the closed subspace of BMOA consisting of the analytic func-
tions f : D → C having vanishing mean oscillation on the boundary T. Fefferman’s
duality theorem implies that V MOA∗ ≈ H1 (up to linear isomorphism). We refer
e.g. to the survey [G, Sect. 7] for an exposition and for more information about the
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space BMOA. Theorem 5 and the duality result [T1, Prop. 3.4] has the following
consequence.

Corollary 7. V MOA does not have the inner W.A.P.
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