
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 33, 2008, 413–427

EQUALITY CASES IN THE SYMMETRIZATION
INEQUALITIES FOR BROWNIAN TRANSITION
FUNCTIONS AND DIRICHLET HEAT KERNELS

Dimitrios Betsakos

Aristotle University of Thessaloniki, Department of Mathematics
54124 Thessaloniki, Greece; betsakos@math.auth.gr

Abstract. We prove equality statements for the symmetrization inequalities for Brownian
transition functions and Dirichlet heat kernels. The proofs involve the equality statements for
the related polarization inequalities which we also prove. These results lead to symmetrization
inequalities for Green functions, condenser capacities, and exit times of Brownian motion.

1. Introduction

Let D be a domain in Rn, n ≥ 2 and {Xt}t≥0 be Brownian motion in D. We
denote by PD

t (x,B) the corresponding transition function; that is,

PD
t (x,B) = Px(Xt ∈ B; t < TD),

where B is a Borel subset of Rn, x is a point in D, Px is the probability measure
corresponding to Brownian motion starting at x, and TD is the exit time from D.
For fixed D and B, the function u(t, x) = PD

t (x,B), x ∈ D, t > 0, satisfies the heat
equation, the initial condition u(0, x) = χB(x), and the boundary condition

lim
x→ζ

u(t, x) = 0, t > 0,

for all points ζ ∈ ∂D which are regular for the Dirichlet problem in D.
The probability measure PD

t (x, ·) is absolutely continuous with respect to the
n-dimensional Lebesgue measure (denoted in the sequel by mn). The corresponding
density (Radon–Nikodym derivative) will be denoted by pD

t (x, y). This density can
be chosen to be a function continuous in t, x, y; it is the heat kernel for D. For more
details on transition functions and heat kernels, we refer to [10], [11], [15].

In the present article, we study the behavior of transition functions and heat
kernels under symmetrization. For the sake of concreteness we will state and prove
symmetrization results only for 1-dimensional Steiner symmetrization. We give
here the definition of 1-dimensional Steiner symmetrization. Let H be an (n − 1)-
dimensional hyperplane in Rn. We define the symmetrization SHA of an open or
closed set A ⊂ Rn by determining its intersections with every line perpendicular to
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H. Let Σ(x) be the line which is perpendicular to H and passes through the point
x ∈ H. Let rx be the 1-dimensional Lebesgue measure of the set Σ(x) ∩ A.

• If 0 < rx < ∞, let (−rx, rx) be the open linear segment on Σ(x) centered at
x with length 2rx. Let [−rx, rx] be the corresponding closed segment. Then

SHA ∩ Σ(x) :=

{
(−rx, rx), if A is open,

[−rx, rx], if A is closed.

• If rx = 0, then

SHA ∩ Σ(x) :=

{
∅, if A ∩ Σ(x) is empty,
{x}, if A ∩ Σ(x) is nonempty.

• If rx = ∞, then

SHA ∩ Σ(x) = Σ(x).

We refer to [3], [9], [14], [16], [18] and references therein for more information about
symmetrization.

DΣ

rx

µ´
¶³

B

Π

Σ

Π
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¶³

B] rx]

D]

Figure 1. An open set D, a subset B of D and their symmetrizations D] and B].

Let Π = {(x1, x2, . . . , xn) ∈ Rn : xn = 0}. Every (n−1)-dimensional hyperplane
in Rn will be simply called plane. Every plane parallel to Π will be called horizontal.
A line will be called vertical if it is perpendicular to Π. If H = Π, we write SHA = A].
If x = (x1, . . . , xn−1, xn) ∈ Rn, we denote by x] the orthogonal projection of x on
Π, x] = (x1, . . . , xn−1, 0).

The behavior of solutions of parabolic equations under symmetrization has been
studied by various authors; see [1], [3], [6], [7], [9], [18] and references therein. Let
D be a domain in Rn. Let Σ be a vertical line intersecting D. Let Φ: R → R be
a nonconstant, convex, increasing function with Φ(0) = 0. Let B be an open or
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closed subset of D. The following inequalities are known, see [1], [3], [9]:

∫

Σ

Φ(PD
t (x,B)) m1(dx) ≤

∫

Σ

Φ(PD]

t (x,B])) m1(dx),(1.1)

PD
t (x,B) ≤ PD]

t (x], B]), x ∈ D,(1.2) ∫

Σ

Φ(pD
t (x, y)) m1(dx) ≤

∫

Σ

Φ(pD]

t (x, y])) m1(dx), y ∈ D,(1.3)

pD
t (x, y) ≤ pD]

t (x], y]), x ∈ D, y ∈ D.(1.4)

The next two theorems deal with the equality cases for the inequalities (1.1)–
(1.4). Before stating them, we need to introduce some terminology and notation. For
two Borel sets A,B in Rn, the notation A ∼= B means that C2((A\B)∪(B\A)) = 0
and the notation A ∼ B means mn((A \ B) ∪ (B \ A)) = 0. Here and below C2 is
the logarithmic capacity for n = 2 or the Newtonian capacity for n ≥ 3. We say
that a set D ⊂ Rn is a striplike set if for every vertical line Σ that intersects D, we
have Σ ∩D = Σ. We say that a set D is an essentially striplike set if there exists a
striplike set G such that G ∼= D. In the sequel we always assume that the left-hand
sides of (1.1) and (1.3) are finite.

Theorem 1. Let D be a domain in Rn. Let Σ be a vertical line intersecting
D. Let Φ: R → R be a nonconstant, convex, increasing function with Φ(0) = 0.
Let B be an open or closed subset of D. Assume that mn(B) > 0.

(a) Suppose that D is an essentially striplike set, B is bounded, and Φ is linear
function (that is, of the form Φ(x) = ax). Then equality holds in (1.1) for all t > 0.

(b) Suppose that D is an essentially striplike set and Φ is not linear in any
interval. Then equality holds in (1.1) for some t > 0 if and only if there exists a
horizontal plane H such that SHB ∼ B.

(c) Suppose that D is not an essentially striplike set. Then equality holds in
(1.1) for some t > 0 if and only if there exists a horizontal plane H such that
SHD ∼= D and SHB ∼ B.

(d) Equality holds in (1.2) for some x ∈ D and some t > 0 if and only if there
exists a horizontal plane H such that x ∈ H, SHD ∼= D and SHB ∼ B.

Theorem 2. Let D be a domain in Rn. Let Σ be a vertical line intersecting
D. Let Φ: R → R be a nonconstant, convex, increasing function with Φ(0) = 0.

(a) Suppose that D is an essentially striplike set. Then equality holds in (1.3)
for all t > 0 and all y ∈ D.

(b) Suppose that D is not an essentially striplike set. Then equality holds in
(1.3) for some t > 0 and some y ∈ D if and only if there exists a horizontal plane
H such that SHD ∼= D and y ∈ H.

(c) Equality holds in (1.4) for some x ∈ D, some y ∈ D, and some t > 0 if and
only if there exists a horizontal plane H such that x ∈ H, y ∈ H, and SHD ∼= D.
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The proofs of the above symmetrization results is based on the approach to
symmetrization via polarization; for a description of this method and various ap-
plications in potential theory and partial differential equations, we refer to [3], [7],
[8], [9], [12], [17]. In Section 2 we describe polarization and we state the equality
statements for known inequalities describing the behavior of transition functions
and heat kernels under polarization. In Sections 3 and 4 we prove the polarization
results. In Section 5 we prove Theorem 1; the proof of Theorem 2 is similar and
omitted. In the rest of the present section we review some consequences of Theorems
1 and 2.

To avoid some trivial cases, in the rest of this section we assume that D is not
an essentially striplike set.

1.1. Green functions. Suppose that D a Greenian domain in Rn. Let
GD(x, y) denote the Green function for D. The classical symmetrization inequalities
for Green functions have been proved by Baernstein and Taylor (see [2], [5], [4]).
These inequalities (with notation as in Theorems 1 and 2) are:

∫

Σ

Φ(GD(x, y)) m1(dx) ≤
∫

Σ

Φ(GD]

(x, y])) m1(dx), y ∈ D,(1.5)

GD(x, y) ≤ GD]

(x], y]), x ∈ D, y ∈ D.(1.6)

They also follow easily from the inequalities (1.3), (1.4) and the following formula
relating heat kernels and Green functions [15, p. 111]:

(1.7) GD(x, y) =

∫ ∞

0

pD
t (x, y) dt, x, y ∈ D.

It follows from Theorem 2 that equality holds in (1.5) for some y ∈ D if and only
if there exists a horizontal plane H such that SHD ∼= D and y ∈ H. Also, equality
holds in (1.6) for some x ∈ D and some y ∈ D if and only if there exists a horizontal
plane H such that x ∈ H, y ∈ H, and SHD ∼= D. Such equality statements have
been proved by Solynin [17] with the additional assumption that D is regular for
the Dirichlet problem.

1.2. Condenser capacities. We continue to assume that D is a Greenian
domain. Let K be a compact subset of D with C2(K) > 0. The Green capacity of
K with respect to D (see [13, p. 174]) is

CD(K) =

[
min

∫

K

∫

K

GD(x, y) µ(dx)µ(dy)

]−1

,

where the minimum is taken over all probability Borel measures µ on K. This
quantity is equal (modulo a multiplicative constant) to the capacity of the condenser
with plates K and (Rn∪{∞})\D; see [13, p. 97]. The condenser capacity is usually
defined via the Dirichlet integral. For condenser capacities, we have the following
symmetrization inequality (see [12], [16]):

(1.8) CD(K) ≥ CD]

(K]).
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If we use the inequalities (1.5), (1.6) and the corresponding equality statements, we
find that equality holds in (1.8) if and only if there exists a horizontal plane H such
that SHK ∼= K and SHD ∼= D.

1.3. Sojourn times and lifetimes. Let B be an open subset of the Greenian
domain D. The quantity

GD(x,B) :=

∫

B

GD(x, y) mn(dy) =

∫ ∞

0

PD
t (x,B) dt, x ∈ D

represents the expected length of time that a Brownian motion starting from x
spends in B before exiting D. In particular for B = D, we obtain GD(x,D) =
Ex TD, the expected lifetime of Brownian motion in D.

Using the symmetrization results for the transition function, we find that

GD(x,B) ≤ GD]

(x], B]),

with equality if and only if there exists a horizontal plane H such that x ∈ H,
SHB ∼ B, and SHD ∼= D.

1.4. Exit times. The inequality∫

D

pD
t (x, y) mn(dy) ≤

∫

D]

pD]

t (x], y) mn(dy), x ∈ D, t > 0

comes easily from (1.3). It is equivalent to the inequality

Px(TD > t) ≤ Px]

(TD]

> t).

Equality holds for some t > 0 and some x ∈ D if and only if there exists a horizontal
plane H such that x ∈ H and SHD ∼= D.

2. Polarization inequalities

For E ⊂ Rn, we denote by Ê the reflection of E in the (n − 1)-dimensional
plane Π. Thus we have

Ê = {(x1, . . . , xn−1, xn) : (x1, . . . , xn−1,−xn) ∈ E}.
We will also use the following notation: if x = (x1, . . . , xn−1, xn), then x̂ := (x1, . . . ,
xn−1,−xn) and x∗ := (x1, . . . , xn−1, |xn|); E+ := {(x1, . . . , xn−1, xn) ∈ E : xn > 0};
Eo := E ∩ Π; E− = {(x1, . . . , xn−1, xn) ∈ E : xn < 0}.

Let E be any set in Rn. We divide E into three disjoint subsets S, U, V as
follows: The set S is the symmetric part of E: S = SE = {x ∈ E : x̂ ∈ E} = E ∩ Ê.
The set U is the upper non-symmetric part of E: U = UE = {x ∈ E : x ∈ E+, x̂ /∈
E} = E+ \ SE. The set V is the lower non-symmetric part of E: V = VE = {x ∈
E : x ∈ E−, x̂ /∈ E} = E− \ SE. Then E = S ∪ U ∪ V . The polarization E∗ of E is
the set

E∗ := S ∪ U ∪ V̂ .

Equivalently, E∗ = (E∪Ê)+ ∪ (E∩Ê)−. It is clear that the polarization of an open
set is open. The polarization of a domain D need not be a domain. The open set
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D∗ has a unique connected component intersecting Rn
+. In the sequel PD∗

t (x, B∗)
denotes the transition function for Brownian motion in this component.

D

Π

U

V

S

Figure 2. A set D and its polarization D∗ with respect to the plane Π.

Π
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U V̂
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The polarization as defined above may be called polarization with respect to
Π. In a similar way, one can define polarization with respect to any other oriented
(n − 1)-dimensional plane in Rn. Let H be such a plane. We denote by PHE the
polarization of E with respect to H. We also denote by RHE the reflection of E in
H.

The following polarization inequalities for transition functions and heat kernels
come from [7] and [9]. Let D be a domain with symmetric part S and let B be a
Borel subset of D. Then for t > 0,

PD
t (x,B) ≤ PD∗

t (x∗, B∗), x ∈ D,(2.1)

PD
t (x,B) + PD

t (x̂, B) ≤ PD∗
t (x,B∗) + PD∗

t (x̂, B∗), x ∈ S,(2.2)

pD
t (x, y) ≤ pD∗

t (x∗, y∗), x, y ∈ D,(2.3)

pD
t (x, y) + pD

t (x̂, y) ≤ pD∗
t (x, y∗) + pD∗

t (x̂, y∗), x ∈ S, y ∈ D.(2.4)

In the following theorems we determine the equality cases in the above inequal-
ities.

Theorem 3. Let D be a domain and let B be a Borel subset of D with mn(B) >
0.

(a) Equality holds in (2.1) for some x ∈ D and some t > 0 if and only if either
(x = x∗, B ∼ B∗, D ∼= D∗) or (x = x̂∗, B ∼ B̂∗, D ∼= D̂∗).

(b) Equality holds in (2.2) for some x ∈ D ∩ D̂ and some t > 0 if and only if
either (B ∼ B∗, D ∼= D∗) or (B ∼ B̂∗, D ∼= D̂∗).

Theorem 4. (a) Equality holds in (2.3) for some x ∈ D, some y ∈ D, and some
t > 0 if and only if either (x = x∗, y = y∗, D ∼= D∗) or (x = x̂∗, y = ŷ∗, D ∼= D̂∗).

(b) Equality holds in (2.4) for some x ∈ S, some y ∈ D, and some t > 0 if and
only if either (y ∼ y∗, D ∼= D∗) or (y = ŷ∗, D ∼= D̂∗).
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The inequalities (2.1)–(2.4) lead to convex integral mean inequalities which we
now describe: Let D be a domain in Rn and let B be a Borel subset of D with
mn(B) > 0. Let Φ: R → R be a nonconstant, convex, increasing function with
Φ(0) = 0. Let Σ be a vertical line that intersects D. Then for all t > 0,

∫

Σ

Φ(PD
t (x,B)) m1(dx) ≤

∫

Σ

Φ(PD∗
t (x,B∗)) m1(dx),(2.5)

∫

Σ

Φ(pD
t (x, y)) m1(dx) ≤

∫

Σ

Φ(pD∗
t (x, y∗)) m1(dx), y ∈ D.(2.6)

Theorem 5. Let D, B, Φ, Σ be as above.
(a) Suppose that D ∼= D̂ and that Φ is a linear function. Then equality holds

in (2.5) for all t > 0.
(b) Suppose that D ∼= D̂ and that Φ is not linear in any interval. Then equality

holds in (2.5) for some t > 0 if and only if B ∼ B∗ or B ∼ B̂∗.
(c) Suppose that D � D̂. Then equality holds in (2.5) for some t > 0 if and

only if (D ∼= D∗, B ∼ B∗) or (D ∼= D̂∗, B ∼ B̂∗).

Theorem 6. Let D, Φ, Σ be as above.
(a) Suppose that D ∼= D̂. Then equality holds in (2.6) for all t > 0 and all

y ∈ D.
(b) Suppose that D � D̂. Then equality holds in (2.6) for some t > 0 and some

y ∈ D if and only if (D ∼= D∗, y = y∗) or (D ∼= D̂∗, y = ŷ∗).

In Sections 3 and 4 we prove Theorems 3 and 5. The proof of Theorems 4 and
6 is similar.

3. Proof of Theorem 3

We denote by S, U, V the symmetric, upper non-symmetric, and lower non-
symmetric part of D, respectively. Hence D = S ∪ U ∪ V and D∗ = S ∪ U ∪ V̂ .
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It is easy to prove that if either (x = x∗, B ∼ B∗, D ∼= D∗) or (x = x̂∗, B ∼
B̂∗, D ∼= D̂∗), then (2.1) and (2.2) hold with equality. So we prove only the converse
statements.

Since PD
t (x, ·) is a measure absolutely continuous with respect to mn, it suffices

to prove part (a) of Theorem 3 by considering the following nine cases: (a1) x ∈ D+,
B ⊂ Rn

+; (a2) x ∈ D−, B ⊂ Rn−; (a3) x ∈ D−, B ⊂ Rn
+; (a4) x ∈ D+, B ⊂ Rn−;

(a5) x ∈ D+, B symmetric with respect to Π; (a6) x ∈ D−, B symmetric with
respect to Π; (a7) x ∈ Do, B symmetric with respect to Π; (a8) x ∈ Do, B ⊂ Rn

+;
(a9) x ∈ Do, B ⊂ Rn−. Similarly we prove part (b) of Theorem 3 by considering
the following three cases: (b1) B ⊂ Rn

+; (b2) B ⊂ Rn−; (b3) B symmetric with
respect to Π.

Case (a3). In this case we assume that B ⊂ Rn
+. We have to prove the strict

inequality

PD
t (x,B) < PD∗

t (x̂, B), t > 0, x ∈ D−.

Suppose that there exist t1 > 0 and x1 ∈ D− such that PD
t1

(x1, B) = PD∗
t1

(x̂1, B).
By applying the parabolic minimum principle (see e.g. [11, Chapter XV]) to the
function PD∗

t (x̂, B)− PD
t (x,B), t > 0, x ∈ D−, we conclude that

PD
t (x,B) = PD∗

t (x̂, B), 0 < t < t1, x ∈ D−.

Taking limits as t → 0 for x̂ ∈ B, we arrive to the contradiction 0 = 1.

Case (a4). The proof in this case is the same as the proof for Case (a3).

Case (a1). In this case we assume that x ∈ D+ and B ⊂ Rn
+. We have to

prove that if PD
t (x,B) = PD∗

t (x,B) for t = T , then D ∼= D∗. By the parabolic
minimum principle applied to the function PD∗

t (x, B) − PD
t (x, B), t > 0, x ∈ D+,

we infer that

(3.1) PD
t (x, B) = PD∗

t (x,B), 0 < t < T, x ∈ D+.

Suppose that there exists a point v ∈ ∂V ∩ ∂S which is regular for the Dirichlet
problem in S. We take limits in (3.1) as x → v̂ and conclude that PD∗

t (v̂, B) = 0.
This is absurd because PD∗

t (x,B) > 0 for all t > 0 and all x ∈ D∗. Therefore all
points of the set ∂V ∩ ∂S are irregular for the Dirichlet problem in S. By Kellogg’s
theorem (see e.g. [13, Chapter V]), C2(∂S ∩∂V ) = 0. A standard application of the
strong Markov property implies that every compact subset K of V has harmonic
measure zero (every Brownian path from x ∈ S to K should pass through the set
∂S ∩ ∂V ). Hence C2(K) = 0 and therefore C2(V ) = 0; this means D ∼= D∗.

Cases (a2), (a5), (a6). The proofs in these cases are the same as the proof in
case (a1).

Case (b1). We assume that B ⊂ Rn
+ and have to prove that if

PD
t (x, B) + PD

t (x̂, B) = PD∗
t (x,B∗) + PD∗

t (x̂, B∗),



Symmetrization inequalities for Brownian transition functions and Dirichlet heat kernels 421

for some x ∈ S and some t = T > 0, then D ∼= D∗. By the parabolic minimum
principle,

(3.2) PD
t (x, B) + PD

t (x̂, B) = PD∗
t (x,B∗) + PD∗

t (x̂, B∗),

for all x ∈ S and all t with 0 < t ≤ T .
Suppose that the set ∂S ∩ ∂V contains a point v which regular for the Dirichlet

problem in S. We take limits in (3.2) as x → v and conclude that PD
t (v, B) =

PD∗
t (v̂, B). This contradicts the strict inequality of Case (a3). Therefore all points

of the set ∂S ∩ ∂V are irregular for the Dirichlet problem in S. Hence C2(V ) = 0
which means D ∼= D∗.

Case (b2). The proof in this case is the same as the proof in case (b1).

Case (b3). We assume that B is symmetric with respect to Π and have to prove
that if

PD
t (x, B) + PD

t (x̂, B) = PD∗
t (x,B∗) + PD∗

t (x̂, B∗),

for some x ∈ S and some t = T > 0, then either D ∼= D∗ or D ∼= D̂∗.
By the parabolic minimum principle,

(3.3) PD
t (x, B) + PD

t (x̂, B) = PD∗
t (x,B∗) + PD∗

t (x̂, B∗),

for all x ∈ S and all t with 0 < t ≤ T .
Suppose that all points the set ∂S ∩ ∂U are irregular for the Dirichlet problem

in S. This implies that C2(U) = 0 which means D ∼= D̂∗. Similarly if all points of
the set ∂S ∩ ∂V are irregular for the Dirichlet problem in S, then C2(V ) = 0 and
therefore D ∼= D∗.

If the set ∂S ∩ ∂U has a regular point u, then we take limits in (3.3) as x → u
and conclude that

PD
t (u,B) = PD∗

t (u,B).

By Case (a5), this implies D ∼= D∗.
If the set ∂S ∩ ∂V has a regular point v, we take limits as x → v̂ and use Case

(a6) to conclude that D ∼= D̂∗.

Cases (a7), (a8), (a9). These cases are covered by cases (b1), (b2), (b3).

4. Proof of Theorem 5

The proof uses the following elementary lemma; (see [17]).

Lemma 1. Let a1, b1, a2, b2 ∈ R be such that

a2 + b2 ≤ a1 + b1 and 0 ≤ a1 ≤ a2 ≤ b2 < b1.

Let Φ: R → R be a nonconstant, convex, increasing function. Then

(4.1) Φ(a2) + Φ(b2) ≤ Φ(a1) + Φ(b1).

Equality holds in (4.1) if and only if Φ is affine (that is, of the form Φ(x) = ax + b)
on [a1, b1] and a1 + b1 = a2 + b2.
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We proceed with the proof of the theorem.

(a) Suppose that D ∼= D̂ and that Φ is a linear function. It is easy to see (using
the strong Markov property) that for s ∈ S and t > 0,

PD
t (s,B) = P S

t (s,B) and PD∗
t (s,B∗) = P S

t (s, B∗).

Also, because of symmetry, for s ∈ S+ and t > 0,

P S
t (s,B) + P S

t (ŝ, B) = P S
t (s,B∗) + P S

t (ŝ, B∗).

Since Φ is linear, it follows that equality holds in (2.5).

(b) Suppose that D ∼= D̂ and Φ is not linear. If B ∼ B∗ or B ∼ B̂∗, then it is
easy to prove that (2.5) holds with equality for all t > 0. Conversely, assume that
(2.5) holds with equality for some t > 0. Then by the inequalities (2.1), (2.2) and
Lemma 1, for s ∈ Σ+,

Φ(P S
t (s,B)) + Φ(P S

t (ŝ, B)) = Φ(P S
t (s, B∗)) + Φ(P S

t (ŝ, B∗)).

Since Φ is not linear in any interval, it follows from Lemma 1 that for every s ∈ Σ+,

P S
t (s,B∗) = P S

t (s,B) or P S
t (s,B∗) = P S

t (ŝ, B).

By Theorem 3, B ∼ B∗ or B ∼ B̂∗.

(c) Suppose that D � D̂. If D ∼= D∗, B ∼ B∗ or if D ∼= D̂∗, B ∼ B̂∗, then it
is easy to show that equality holds in (2.5) for all t > 0. Conversely, assume that
equality holds in (2.5) for some t > 0. Then by the inequalities (2.1), (2.2) and
Lemma 1, for all s ∈ Σ+,

Φ(PD
t (s,B)) + Φ(PD

t (ŝ, B)) = Φ(PD∗
t (s,B∗)) + Φ(PD∗

t (ŝ, B∗)).

By Lemma 1, for each s ∈ Σ+, at least one of the following three equalities must be
satisfied:

PD
t (s,B) + PD

t (ŝ, B) = PD∗
t (s,B∗) + PD∗

t (ŝ, B∗),(4.2)

PD∗
t (s,B∗) = PD

t (s,B),(4.3)

PD∗
t (s,B∗) = PD

t (ŝ, B).(4.4)

By Theorem 3, we conclude that either (D ∼= D∗, B ∼ B∗) or (D ∼= D̂∗, B ∼
B̂∗). ¤

5. Proof of Theorem 1

For the proof of Theorem 1 we need some definitions and lemmas. For a point
p = (x1, x2, . . . , xn) ∈ Rn, we set h(p) = xn.

Definition 1. (i) Let Ω be a Borel set in Rn. We say that Ω ∈ A1 if there exists
a horizontal plane H such that for every vertical line Σ that intersects Ω, the set
Σ ∩ (Rn \Ω) is either empty or a nonempty, bounded, vertical segment, symmetric
with respect to H. We say that Ω ∈ A2 if for every vertical line Σ that intersects Ω,
the set Σ∩Ω is either the whole line Σ or an upward half-line. We say that Ω ∈ A3
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if for every vertical line Σ that intersects Ω, the set Σ∩Ω is either the whole line Σ
or a downward half-line.

(ii) Let D be an open set such that D � C for any striplike set C. We say that
D ∈ Gj if D ∼= Ω, for some Ω ∈ Aj, j = 1, 2, 3.

(iii) Let B be an open or closed set such that B � C for any striplike set C.
We say that B ∈ Fj if B ∼ Ω, for some Ω ∈ Aj, j = 1, 2, 3.

D1

£
£
£
£
£
£
£
£
£
££

C
C
C
C
C
C
C
C
C
C
CC

D2

£
£

£
£

£
£

£
£

£
£

£
£

C
C
C
C
C
C
C
C
C
C
CC

D3

Figure 4. The set Dj belongs to the class Gj , j = 1, 2, 3.

Lemma 2. Let D be an open set in Rn. Assume that D /∈ G1 ∪G2 ∪G3. There
exists a horizontal plane Ho such that SHoD

∼= D if and only if for every horizontal
plane H, either D ∼= PHD or RHD ∼= PHD.

Proof. We call Condition A the statement: for every horizontal plane H, either
D ∼= PHD or RHD ∼= PHD. It is easy to see that if there exists a horizontal plane
Ho such that SHoD

∼= D, then Condition A holds.
Conversely, assume that D satisfies Condition A. Let A be the set of all points

x ∈ Dc for which there exists a ball B(x) centered at x such that C2(B(x)\D) = 0.
Then A is a subset of ∂D.

Claim 1: C2(A) = 0.
Proof. We cover A by countably many balls Bj centered at points of A and

having the property C2(Bj \D) = 0. Since

A ⊂
⋃
j

(Bj \D),

Claim 1 follows from the subadditivity of capacity.

We set
Ω = D ∪ A.

It is clear that Ω is an open set of Rn and Ω ∼= D. Moreover, since D /∈ G1∪G2∪G3,
Ω is not essentially striplike. Also, Ω satisfies Condition A in a stronger form: For
every horizontal plane H, either Ω = PHΩ or RHΩ = PHΩ.

Claim 2: Ω is vertically convex.
Proof. Let Σ = {(x1, . . . , xn−1, y) : y ∈ R} be a vertical line that intersects Ω.

Let p1, p2 ∈ Σ ∩ Ω and suppose that h(p1) > h(p2). Let Σj be the component of
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Σ ∩ Ω that contains pj, j = 1, 2. We need to show that Σ1 = Σ2. Suppose that
Σ1 6= Σ2. Set

y1 = inf{h(p) : p ∈ Σ1}, y2 = sup{h(p) : p ∈ Σ2}
and

p′1 = (x1, . . . , xn−1, y1), p′2 = (x1, . . . , xn−1, y2).

Note that it may happen that y1 = y2. Consider the plane

Ho =

{
(x1, . . . , xn−1, xn) : xn =

y1 + y2

2

}
.

By successive applications of Condition A, we see that

Σ ∩ Ω = Σ \ [p′1, p
′
2].

Here [p′1, p
′
2] is the vertical segment with endpoints p′1, p

′
2 (or a singleton if p′1 = p′2).

By working in the same way for every vertical line that intersects Ω, we see that
Ω ∈ G1. Since C2(Ω \D) = C2(A) = 0, we also have D ∈ G1. This contradicts the
assumption of the lemma. Hence Claim 2 is proved.

Claim 3: There exists a plane Ho parallel to Π such that Ω is symmetric with
respect to Ho.

Proof. Suppose that Σ is a vertical line such that Σ∩Ω is a half-line. By using
the Condition A, we see that Ω (and hence D) belongs to G2 ∪ G3; contradiction.
Recalling also that Ω is vertically convex, we conclude that for every vertical line
intersecting D, either Σ ∩ Ω = Σ or Σ ∩ Ω is a vertical segment. Since Ω is not
essentially striplike, there exist vertical lines Σ for which Σ∩Ω is a vertical segment.

Fix a vertical line Σ with Σ ∩ Ω = (p1, p2). Define

Ho =

{
(x1, . . . , xn−1, xn) : xn =

h(p1) + h(p2)

2

}
.

Now using Condition A, we see that Ω is symmetric with respect to Ho and Claim
3 is proved.

By Claims 2 and 3, SHoΩ = Ω. Therefore Claim 1 implies that SHoD
∼= D. ¤

Lemma 3. Let B be an open or closed set in Rn. Assume that B /∈ F1∪F2∪
F3. There exists a horizontal plane Ho such that SHoB ∼ B if and only if for every
horizontal plane H, either B ∼ PHB or RHB ∼ PHB.

Proof. If SHoB ∼ B for some horizontal plane Ho, then it is easy to see that for
every horizontal plane H, either B ∼ PHB or RHB ∼ PHB.

Conversely, assume that the latter condition holds. Let B1 be the set of all points
p ∈ B for which there exists a ball B(p) centered at p such that mn(B ∩B(p)) = 0.
Let F := B \ B1. It is easy to see that F is a closed set. Note also that if p ∈ B1,
then p is a density point of Bc; by Lebesgue’s density theorem, mn(B1) = 0. Hence

(5.1) F ∼ B.



Symmetrization inequalities for Brownian transition functions and Dirichlet heat kernels 425

By standard arguments, (5.1) implies

(5.2) SHF ∼ SHB,

for all planes H parallel to Π.
By arguments similar to those in the proof of Lemma 2, we find that F is ver-

tically convex and symmetric with respect to some horizontal plane Ho. Therefore

(5.3) SHoF ∼ F.

Now (5.1), (5.2), (5.3) imply SHoB ∼ B. ¤
Proof of Theorem 1. (a) By [9, Lemma 7.2], there exist horizontal, oriented

planes Hj with corresponding polarizations Pj, j ∈ N, such that for the sequence
of sets Fk := Pk . . . P2P1(B), we have (convergence in the Hausdorff metric)

(5.4) lim
k→∞

dHaus(Fk, B
]) = 0.

For every k ∈ N, the sets B,Fk, B
] have common orthogonal projection on the

plane Π. Since B] is bounded and convex in the vertical direction, (5.4) implies
that

(5.5) lim
k→∞

mn(B] \ Fk) = 0.

By Theorem 3(a), inequality (2.5), and the assumption that Φ is affine,
∫

Σ

Φ(PD
t (x,B)) m1(dx) =

∫

Σ

Φ(PD
t (x, Fk)) m1(dx)

≤
∫

Σ

Φ(PD
t (x,B])) m1(dx)

=

∫

Σ

Φ(PD
t (x, Fk) + Pt(B

] \ Fk)) m1(dx)

=

∫

Σ

Φ(PD
t (x, Fk)) m1(dx)

+

∫

Σ

Φ(PD
t (x,B] \ Fk)) m1(dx)

=

∫

Σ

Φ(PD
t (x,B)) m1(dx)

+

∫

Σ

Φ(PD
t (x,B] \ Fk)) m1(dx).

We take limits as k →∞ and using (5.5) we obtain part (a) of Theorem 1.

(b) If SHB ∼ B, then it is clear that equality holds in (1.1) for all t > 0.
Conversely, assume that (1.1) holds with equality for some t > 0. Seeking for
a contradiction, assume also that SHB � B for any horizontal plane H. Then
Lemma 3 implies that either B ∈ F1 ∪F2 ∪F3, or there exists a horizontal plane
H such that B � PHB and RHB � PHB.
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If B ∈ F1 ∪ F2 ∪ F3, then B] is an essentially striplike set with B $ B]

and mn(B]) > mn(B). So (1.1) cannot hold with equality. Hence there exists a
horizontal plane H such that B � PHB and RHB � PHB. Then, by Theorem 5(b)
and inequality (1.1), for every t > 0,

∫

Σ

Φ(PD
t (x,B)) m1(dx) <

∫

Σ

Φ(P PHD
t (x, PHB)) m1(dx)

≤
∫

Σ

Φ(PD]

t (x,B])) m1(dx).

(5.6)

Contradiction.

(c) If SHD ∼= D and SHB ∼ B for some horizontal plane H, then we trivially
have equality in (1.1) for all t > 0, that is:

(5.7)
∫

Σ

Φ(PD
t (x,B)) m1(dx) =

∫

Σ

Φ(PD]

t (x,B])) m1(dx).

Conversely, assume that (5.7) holds for some t > 0. Seeking for a contradiction,
suppose that SHD � D for any horizontal plane H. Then either D ∈ G1 ∪ G2 ∪ G3

(this leads easily to a contradiction), or (by Lemma 2) there exists a horizontal
plane H such that D � PHD and RHD � PHD. By Theorem 5(c) and inequality
(1.1), we obtain

∫

Σ

Φ(PD
t (x,B)) m1(dx) <

∫

Σ

Φ(P PHD
t (x, PHB)) m1(dx)

≤
∫

Σ

Φ(PD]

t (x,B])) m1(dx).

(5.8)

This contradicts (5.7). Therefore there exists a horizontal plane H such that SHD ∼=
D. We may assume that H = Π; so we have D ∼= D] and it remains to prove that
B] ∼ B.

Suppose that B] � B. Then either B ∈ F1 ∪ F2 ∪ F3 (this leads easily to
a contradiction), or (by Lemma 3) there exists a horizontal plane H such that
B � PHB and RHB � PHB. We continue as above and arrive at a strict inequality
that contradicts (5.7).

(d) The proof is similar to the proof of (c). ¤
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