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Abstract. Given a smooth surface S in the Heisenberg group, we compute the Hessian of the
function measuring the Carnot–Charathéodory distance from S in terms of the mean curvature of
S and of an “imaginary curvature” which was introduced in [2] in order to find the geodesics which
are metrically normal to S. Explicit formulae are given when S is a plane or the metric sphere.

1. Introduction

In this article we continue to study the properties of the function “signed distance
from a surface S”, δS, in the Heisenberg group, started in [2]. In particular we are
interested in the horizontal Hessian of δS and in the related notions of curvature
for S. Let H = H1 be R3 with the Heisenberg group structure, and let d be the
associated Carnot–Charathéodory distance. See Section 2 for the definitions. If
S ⊂ H is closed, the distance from a point P to S is

dS(P ) = inf
Q∈S

d(P, Q)

Here, we consider the case where S = ∂Ω is the C3 boundary, in the Euclidean sense,
of an open subset of H. It would be natural to consider C2 surfaces in the Euclidean
sense, since such surfaces satisfy a internal/external Heisenberg sphere condition at
any non-characteristic point, see [2]. However, our elementary approach requires a
degree more of regularity. This is a minor nuisance, since here we are interested in
geometric properties of surfaces.
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The signed distance from S is

(1) δS(P ) =

{
−dS(P ) if P ∈ Ω,

dS(P ) if P /∈ Ω.

Observe that, given S, the signed distance δS is defined modulo a sign, which corre-
sponds to the choice of one of the two open sets having boundary S, or, equivalently,
to the choice of an orientation for S.

It was shown in [24] that, if S is a closed subset of H, then dS is a.e. solution
of the eikonal equation

(2) |∇HdS| = 1,

where ∇H = (X, Y ) is the horizontal gradient. More on this line of investigation is
in [3], [6], [12], [31]. Here X and Y are the left invariant vector fields

X = ∂x + 2y∂t, Y = ∂y − 2x∂t.

A sub-Riemannian metric is defined on the horizontal bundle H = span{X,Y } in
such a way that {X,Y } is a orthonormal basis for H .

Concerning the properties of the distance function from a point and the distance
function from a surface, we recall the paper by Agrachev and Gautier, [1] and the
contribution by Vershik and Gershkovich, which is surveyed in [33]. In [2], we proved
several regularity results for the function δS, in particular that, if S is C2 in the
Euclidean sense, then ∇HδS is C1 in the Euclidean sense in an open neighborhood
of S \ Char(S), where Char(S) is the characteristic set of S.

In this article, we move a step forward in the understanding of the higher reg-
ularity of δS. The horizontal Hessian of a smooth function f defined on an open
subset of H is the matrix

HessH f =

[
XXf Y Xf
XY f Y Y f

]
.

See, for instance, [10]. We denote by I and J the identity and the simplectic matrix,
respectively,

I =

[
1 0
0 1

]
, J =

[
0 1
−1 0

]
.

Theorem 1.1. Let S = ∂Ω be boundary of a C3 open subset of H and let P
be a non-characteristic point of S. Then,

(3) HessH δS(P ) = vP S ⊗ vP S · (hS(P )I + pS(P )J),

where vP S is the unit horizontal vector tangent to S at P , hS(P ) is the mean
curvature of S at P and pS(P ) is the curvature of the oriented metric normal to S
at P .

We shall also refer to hS(P ) as the real curvature and to pS(P ) as the imaginary
curvature of S at P , respectively. Some explanation about the terminology is in
order. Complete definitions will be given in Section 2.
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We can compare Theorem 1.1 with its Euclidean analog, see [17] Lemma 14.17,
p. 355. Let δE

S (P ) be the signed distance from P to S = ∂Ω. The Euclidean Hessian
of δE

S at x0 ∈ S, Hess δE
S (x0), is a symmetric 3×3 metrics, having as eigenvalues 0 and

the principal curvatures of S at P. The trace of Hess δE
S (x0) is the mean curvature

of S at x0. The quantity pS(P ) in Theorem 1.1 seems to have no Euclidean analog.
The point P ∈ S is characteristic if the tangent space of S at P coincides with

the fiber HP . If P is a non-characteristic point of S, then the intersection of the
space tangent to S at P , TP S, with the horizontal fiber HP is a one-dimensional
linear space VP S. We call VP S the horizontal direction tangent to S at P . The unit
horizontal vector tangent to S at P is the unit vector spanning VP S, which is defined
modulo a sign. There is a rich literature on the calculus on surfaces in H. Just to
mention a few references, we refer to [26], [13], [14], [15], [16], [28], [29]. In [14],
in particular, surfaces are defined in terms of graphs of functions, with the aid of
an implicit function theorem, an approach which is especially interesting in that it
provides an intrinsic definition of C1 surfaces in the Heisenberg sense.

If the open set Ω ⊂ H and S = ∂Ω is, near P , the level set of a smooth function
g and if locally they are given by g(z, t) < 0 and g(z, t) = 0, respectively, then the
analytic expression for pS(P ) is

(4) pS(P ) = − [X,Y ]g(P )

|∇Hg(P )| .

We say that the function g is compatible with the orientation of S. Observe that
pS(P ) is a first order object in the Euclidean sense, since [X, Y ]g = −4∂tg. On
the other hand, from an intrinsic point of view, we can think of pS(P ) as a second
order quantity, since it involves the commutator of two intrinsic first order differ-
ential operators. It was shown in [2] how pS is a quantity peculiarly related to the
Heisenberg geometry. Let N +

P S = γ be the oriented metric normal to S at P , i.e.,
the geodesic arc γ leaving Ω at P such that, for small σ > 0, δS(γ(σ)) = σ. The
lifetime τ of the geodesic γ, the maximum amount of time over which γ is length-
minimizing, is τ = π

|pS(P )| . The sign of pS(P ) is positive or negative according to the
fact that N +

P S points “upward” (the t-coordinate of P−1 ·N +
P S(σ) increases with

σ) or “downward”. Notice that pS(P ) = 0 if N +
P S is a Euclidean straight line. The

number pS(P ) is a sort of curvature for N +
P S. Theorem 1.1 says, in a way, that

pS(P ) is also a sort of curvature of the surface S. Let Hesssym
H = HessH + Hesstr

H

be the symmetrized horizontal Hessian operator, where the superscript tr denotes
transposition of matrices. Observe that the quantity pS does not appear in the
expression of Hesssym

H δS.
The mean curvature hS(P ) of a surface S at P is an object much studied in the

recent literature [7], [16], [28], [29], [5]. If S is given as the level set of the function
g near the non-characteristic point P , which is compatible with the orientation of
S, the mean curvature is defined by

(5) hS(P ) = X

(
Xg(P )

|∇Hg(P )|
)

+ Y

(
Y g(P )

|∇Hg(P )|
)

.
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Observe that, if S = {(z, t) : g(z, t) = 0}, and Ω = {(z, t) : g(z, t) < 0}, then
hS(P ) = divH νP S,

where νP S = ∇Hg(P )
|∇Hg(P )| is the intrinsic outer unit normal to S at P . By Theorem 1.1,

it is tautological that
Trace(HessH δS(P )) = hS(P ).

In Section 4, with some applications in perspective, we show that there are other
equivalent definitions for hS(P ). On the one hand, hS(P ) is the eigenvalue of a
suitable horizontal Weingarten map on S at P , in analogy with the Euclidean case
(Theorem 4.2). On the other hand, if Γ is the unique horizontal curve on S through
P and π(Γ) is its vertical projection onto the plane t = 0 in H, then hS(P ) is the
Euclidean curvature of π(Γ) at π(P ) (Theorem 4.1). Some of these facts have been
independently proved in a similar form in [5], [16], [7], [8]. In [16] it is also proved
that hS is the trace of a second order matrix which is different from the horizontal
Hessian of δS. For a more general treatment of the parallel transport see, e.g., [19]
for the Riemannian case and [21] for the sub-Riemannian one.

As an application of Theorem 1.1 and Theorem 4.1, in Theorem 5.2 we give
the explicit expression for the horizontal Hessian of the function measuring the
Carnot–Charathéodory distance from a point.

There are two reasons why we restricted our analysis to the Heisenberg group.
The first is out of necessity: the proofs in this paper are based on the results in
[2], which are stated and proved in this setting. The second is that the Heisenberg
group provides the simplest nontrivial example of Carnot–Charathéodory group and
it is important in itself, for instance in modelling the visual cortex [9], [8], [30]. It
is interesting that these new applications require a finer study of surfaces in the
Heisenberg group and of their curvatures.

Here is a short overview of the article. In Section 2 we provide some background
and preliminary results. In Section 3 we prove Theorem 1.1. Section 4 is devoted to
a discussion of the mean curvature, while in Section 5 we discuss several examples.

Note on the proofs. We will always assume implicitely that our surface S is
locally the graph of a function f from a subset of the plane {t = 0} to R, i.e.
0 = g(x, y, t) = t− f(x, y). In particular, without loss of generality, we assume that
Ω lies below the graph of f . The cases when S is not locally the graph of function,
i.e., in the “near-Euclidean case” when the plane tangent to S is vertical at some
point, can be dealt with in a way similar to that employed in [2], see the proof of
Theorem 6.1 (ii), pp. 680–681.

It is a pleasure to thank R. Monti for his constructive criticism and L. Capogna
for directing us to several references.

2. Notation and preliminaries

In this section, we collect some basic definitions and known facts about the
structure and the geometry of H. There is a vast literature on sub-Riemannian
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geometry and Carnot groups. Justs to quote a few titles, we refer the reader to [4],
[13], [18], [22], [25], [26], [27], [32].

The Heisenberg group H = H1 is the Euclidean space R3 endowed with the
noncommutative product

(x, y, t) · (x′, y′, t′) = (x + x′, y + y′, t + t′ + 2(x′y − xy′)).

Sometimes it is convenient to think of the elements of H as (z, t) ∈ C×R. Consider
the left invariant vector fields X and Y ,

X = ∂x + 2y∂t, Y = ∂y − 2x∂t.

The vector fields X, Y do not commute, [X, Y ] = −4∂t. The span of the vector
fields X and Y is called horizontal distribution, and it is denoted by H . The fiber
of H at a point P of H is HP = span{XP , YP}. The inner product in HP , here
denoted by 〈·, ·〉, is the unique inner product making XP and YP orthonormal.

An important element of H’s structure is the dilation group at the origin {δλ :
λ 6= 0},

δλ(z, t) = (λz, λ2t), z = x + iy.

By left translation, a dilation group is defined at each point P of H.
The Heisenberg group is also endowed with a rotation group, which is useful in

simplifying some calculations. For θ ∈ R, let

Rθ(z, t) = (eiθz, t)

be the rotation by θ around the t-axis. Composing with left translation, one could
define rotations around any vertical line (x, y) = (a, b). Rθ is an isometry of H and
its differential acts on the fiber HO as a rotation by θ. Under the usual identification
between the Riemannian tangent space of H at O, TOH, and the Lie algebra h of
H, the differential of Rθ can be thought of as a rotation on span{X, Y }, the first
stratum of h. With respect to the basis {X, Y },

dRθV =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
V

whenever V ∈ span{X, Y }. With some abuse of notation, we denote dRθ by Rθ.
The Carnot–Charathéodory distance between two points P and Q in H, here

denoted by d(P,Q), is defined as follows. Consider an absolutely continuous curve
γ in R3, joining P and Q, which is horizontal. That is, γ̇(t) = a(t)Xγ(t) + b(t)Yγ(t)

lies in Hγ(t). Its Carnot–Charathéodory length is lH(γ),

lH(γ) =

∫
(a(t)2 + b(t)2)1/2 dt.

The Carnot–Charathéodory distance between P and Q, d(P, Q), is the infimum
of the Carnot–Charathéodory lengths of such curves. The infimum is actually a
minimum and the distance between P and Q is realized by the length of a geodesic.
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By translation invariance, all geodesics are left translations of geodesics passing
through the origin. The unit-speed geodesics at the origin [23], [22] are

(6) γO,φ,W (σ) =





x(σ) = sin(α(W ))1−cos(φσ)
φ

+ cos(α(W )) sin(φσ)
φ

,

y(σ) = sin(α(W )) sin(φσ)
φ

− cos(α(W ))1−cos(φσ)
φ

,

t(σ) = 2φσ−sin(φσ)
φ2 .

Here, W is a unitary vector in HO and α(W ) ∈ [0, 2π) is unique argument with
the property γ̇O,φ,W (0) = W . The geodesic is length minimizing over any interval of
length 2π/|φ|. In the case φ = 0, the geodesic is a straight line in the plane {t = 0},

x(σ) = cos(α(W ))σ, y(σ) = sin(α(W ))σ,

and we say that the geodesic is straight.
From these equations we deduce the parametric equations of the boundary of

the ball B(0, r). (z, t) ∈ ∂B(0, r) if and only if there is φ ∈ [−2π/r, 2π/r] so that

(7)

{
|z| = 2 sin(φr/2)

φ
,

t = 2φr−sin(φr)
φ2 .

If P = (z, t) and z 6= 0, then there exists a unique length minimizing geodesic
connecting P and O. If P = (0, t), t 6= 0, (i.e., if P belongs to the center of H)
then there is a one parameter family of length minimizing geodesics joining P and
O, obtained by rotation of a single geodesic around the t-axis.

We call curvature of γO,φ,W the parameter κ(γO,φ,W ) = |φ|. We will see later
how κ(γO,φ,W ) is related to the curvature of a surface in H. The notion of curva-
ture extends to all geodesics by left translations, κ(LP γ) = κ(γ), where LP is left
translation by P ∈ H. Given points P = (z, t) and P ′ = (z′, t′), they are joined by
a unique length minimizing geodesic, unless z = z′.

Let
γP,φ,α = LP γO,φ,α.

The parameter φ is geometric in the following sense. The quantity 2π/|φ| is the
length of any sub-arc of γP,φ,W over which γP,φ,W is length minimizing. On the
other hand, sgn(φ) is positive if and only if the t-coordinate increases with σ. In H
the orientation of the t-axis is an intrinsic metric notion, unlike the Euclidean space.
For instance, the Lie group of the isometries of H has two connected components,
one containing the isometries which fix the direction of t-axis, the other containing
the isometries which invert it. If γP,φ,W and γP ′,φ′,W ′ have an arc in common, then
φ = ±φ′, while no such easy relation exists for the parameter W . To change the
orientation of a geodesic, observe that

γP,φ,W (σ) = γP,−φ,−W (−σ).

Unlike the Euclidean case, a geodesic γ leaving O is not determined by its tan-
gent vector at the origin, γ̇(0) = W = cos(α(W ))XO + sin(α(W ))YO. The extra
parameter we need is κ(γ).
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The parameter κ(γ), if φ = κ(γ) 6= 0, is related to the dilation group as follows.
δλ (γO,φ,W ) is a reparametrization of the geodesic γO,φ/λ,W . That is, all geodesics γ
leaving 0 and having fixed initial velocity γ̇(0) = v in HO are dilated of each other.
The case of the straight geodesics is the limiting one, corresponding to λ → 0. In
a precise sense, then, the set of geodesics at O is parametrized by the unit circle in
HO and by the dilation group, a feature of H with no Euclidean counterpart. This
simple fact will be a recurrent theme in the following sections.

Let S be a smooth surface in H. We need some geometric notions about S,
some of which were studied in [2].

Definition 2.1. Let S be a closed subset of H, P ∈ S. The metric normal to
S at P is the set NP S of the points Q ∈ H such that d(Q,S) = d(Q,P ).

Notice that, in general, the metric normal is not a geodesic arc. This can also
be seen in the Euclidean case, considering the metric normal to a cone at its vertex.
Nevertheless, if S is C1 surface, then NP S is a (possibly degenerate) geodesic arc.
See [2] for the details, especially Sections 3 and 4.

We can now give the following definition of oriented metric normal.

Definition 2.2. Let S be a C1 surface in the Euclidean sense in H, which
is the boundary of an open set Ω and of H − Ω and let P ∈ S. The oriented
metric normal to S at P , N +

P S, is the unique parametrization of NP S such that
δS(N +

P S(σ), P ) = σ.

Definition 2.3. Let S be a smooth surface in H and let P ∈ S be a non-
characteristic point. The Euclidean tangent space to S at P is denoted by TP S.
The direction tangent to S at P is the 1-dimensional space VP S = TP S ∩HP . The
plane tangent to S at P , ΠP S, is the Euclidean plane in H, tangent to S at P in
the Euclidean sense. The direction normal to S at P is NP S = HP ª VP S, where
ª is taken with respect to the sub-Riemannian metric.

The exterior normal to a C1 surface S at P is

νS(P ) =
(
N +

P S
)′

(0),

the vector tangent to NP S at P .

Remark 2.1. The map P → νS(P ) from the non-characteristic surface S to
the fiber HP is known in literature as the horizontal Gauss map, see e.g. [16] and
[28].

The group tangent to S at P [26] is the 2-dimensional vector space GP S =
VP S ⊕ T , where T = {(0, 0, t) : t ∈ R} is the center of H and VP S is the one
parameter subgroup of H generated by VP S. One point we want to make in the
present paper is that GP S does not seem to capture the complexity of the geodesics’
set, while TP S does, in a precise sense.

Suppose that S is locally given by g(x, y, t) = 0. Let P be a point in S and let
C be the characteristic point of ΠP S, the Euclidean plane in H which is tangent to
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S at P . Then,

(8) d(P,C) =
|∇Hg(P )|
2|∂tg(P )| .

The equation of N +
P S can be written in terms of g’s partial derivatives. N +

P S =
P · η (left translation by P ), where η = (u, v, s) and

(9) η(σ) =





x′(σ) = 1
4∂tg

{
Y g(P )

(
1− cos

(
4∂tg(P )σ
|∇Hg(P )|

))

+Xg(P ) sin
(

4∂tg(P )σ
|∇Hg(P )|

)}
,

y′(σ) = 1
4∂tg

{
−Xg(P )

(
1− cos

(
4∂tg(P )σ
|∇Hg(P )|

))

+Y g(P ) sin
(

4∂tg(P )σ
|∇Hg(P )|

)}
,

t′(σ) = |∇Hg(P )|2
8(∂tg(P ))2

{
4∂tg(P )σ
|∇Hg(P )| − sin

(
4∂tg(P )σ
|∇Hg(P )|

)}
.

See p. 671 in [2]. When g(z, t) = t− f(z), we have




x′ = 1
4
(Xf sin α + Y f(1− cos α)),

y′ = 1
4
(Y f sin α−Xf(1− cos α)),

t′ = |∇Hf |2
8

(α− sin α),

where α = 4τ
|∇Hf | .

The following facts are established by direct calculation.

Proposition 2.1. Let S be a smooth surface in H, implicitely defined by
g(x, y, t) = 0. Let P ∈ S be non-characteristic. Then,

VP S = span{Y g(P ) ·XP −Xg(P ) · YP},
NP S = span{Xg(P ) ·XP + Y g(P ) · YP} = span{∇Hg(P )}.(10)

Proof. Let U = Y g(P )·XP−Xg(P )·YP and W = Xg(P )·XP +Y g(P )·YP . Let ·
the Euclidean inner product and let ∇ the Euclidean gradient. Since U ·∇g(P ) = 0,
then U ∈ TP S. Since P is non-charachteristic, U 6= 0 6= W. The vectors U and W
are orthogonal in HP , hence HP = span{U,W}. ¤

We introduce an exponential map F : (u, v, σ) 7→ F (u, v, σ), defined from an
open subset of R2 ×R with values in H,

(11) F (u, v, σ) = N +
(u,v,f(u,v))S(σ).

We are going to use the coordinates

(x, y, t) = F (u, v, σ) = (u, v, f(u, v)) ◦ (x′, y′, t′)
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where (x′, y′, t′) = γu,v(σ) and γu,v is the metric normal’s left translate by P−1. We
have, then 




xu = 1 + x′u,
yu = y′u,
tu = fu(u, v)− 2y′ + t′u + 2(vx′u − uy′u).

See [2], p. 678, Lemma 6.5.
At p. 679 of [2] we find the following formulae, which we summarize in a vast

lemma.

Lemma 2.1. We have the following equalities.

4x′u = (Xf)u sin α + (Y f)u(1− cos α) + αuXf cos α + αuY f sin α

= (Xf)u sin α + (Y f)u(1− cos α)

− cos α
Xf

2

4τ

| ∇Hf |3
(
2Xf(Xf)u + 2Y f(Y f)u

)

− sin α
Xf

2

4τ

| ∇Hf |3
(
2Xf(Xf)u + 2Y f(Y f)u

)
,

and so (x′u)|τ=0 = 0. Analogously

4x′v = (Xf)v sin α + (Y f)v(1− cos α)

− (
cos αXf

4τ

| ∇Hf |3 + sin αY f
4τ

| ∇Hf |3 )
(
Xf(Xf)u + Y f(Y f)u

)
,

and (x′v)|τ=0 = 0;

4x′τ = Xf cos α
4

| ∇Hf | + Y f sin α
4

| ∇Hf | ,

and (x′τ )|τ=0 = Xf
|∇Hf | ;

4y′u = (Y f)u sin α− (Xf)u(1− cos α)

− 4τ

| ∇Hf |3
(
cos αY f − sin αXf

)(
Xf(Xf)u + Y f(Y f)u

)
,

and (y′u)|τ=0 = 0;

4y′v = (Y f)v sin α− (Xf)v(1− cos α)

− 4τ

| ∇Hf |3
(
cos αY f − sin αXf

)(
Xf(Xf)v + Y f(Y f)v

)
,

and (y′v)|τ=0 = 0;

4y′τ =
4τ

| ∇Hf |3
(
cos αY f − sin αXf

)
,
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and (y′τ )|τ=0 = Y f
|∇Hf | .

8t′u = 2
(
Xf(Xf)u + Y f(Y f)u

)
(α− sin α)

− 4τ

| ∇Hf |
(
Xf(Xf)u + Y f(Y f)u

)
(1− cos α),

and (t′u)|τ=0 = 0;

8t′v = 2
(
Xf(Xf)v + Y f(Y f)v

)
(α− sin α)

− 4τ

| ∇Hf |
(
Xf(Xf)v + Y f(Y f)v

)
(1− cos α),

and (t′v)|τ=0 = 0;

8t′τ = 4 | ∇Hf | (1− cos α),

and

t′τ = 0.

3. The Hessian of the function measuring
the distance from a smooth surface

Let g be a smooth function from H in R. We define the horizontal Hessian
HessH g and the symmetrized horizontal Hessian Hess∗H g of g. See, e.g., [10], [20]
for a discussion of second order differential operators in the Heisenberg group.

(12) HessH g =

(
XXg Y Xg
XY g Y Y g

)
.

Let (XY )∗g = 1
2
(XY g + Y Xg).

(13) Hess∗H g =

(
XXg (XY )∗g

(XY )∗g Y Y g

)
.

Next, we prove Theorem 1.1. For ease of calculation, we restate it in a less geometric
form.

Theorem 3.1. Let S = ∂Ω be a surface in H, where Ω is locally defined by
the inequality t− f(x, y) < 0. Let

Q = XXf (Y f)2 − 2(XY )∗f Xf Y f + Y Y f (Xf)2.

Then, the horizontal Hessian of δS at P ∈ S, non-characteristic point, is

HessH δS =




(Y f)2

|∇Hf |5 Q + 4Xf Y f
|∇Hf |3 −Y f

[
Xf

|∇Hf |5 Q− 4 Y f
|∇Hf |3

]

−Xf
[

Y f
|∇Hf |5 Q + 4 Xf

|∇Hf |3
]

(Xf)2

|∇Hf |5 Q− 4Xf Y f
|∇Hf |3




= vP S ⊗ vP S · (hS(P )I + pS(P )J).

(14)
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Hence, the symmetrized horizontal Hessian of the distance function δS, restricted
to the surface S, is

(15) −Hess∗H δS =

(
− (Y f)2

|∇Hf |5 Q− 4Xf Y f
|∇Hf |3

Xf Y f
|∇Hf |5 Q + 2 (Xf)2−(Y f)2

|∇Hf |3
Xf Y f
|∇Hf |5 Q + 2 (Xf)2−(Y f)2

|∇Hf |3 − (Xf)2

|∇Hf |5 Q + 4Xf Y f
|∇Hf |3

)

and, on S,

(16) ∆HδS =
Q

|∇Hf |3 =
XXf(Y f)2 − 2(XY )∗fXfY f + Y Y f(Xf)2

| ∇Hf |3 .

Remark 3.1. If S is smooth and C is a characteristic point of S, then |HessH
δS(P )| = O(d(P,C)−1) as P → C in S. We will see in Section 5 that this estimate
can fail if P goes to C in H without restrictions.

Elementary linear algebra applied to (14), or a direct calculation with (15),
shows that the characteristic polynomial of Hess∗H δS is

(17) P(λ) = λ2 − hS(P )λ− 1

4
p2

S(P ).

We could consider the roots λ1,2 of P, i.e., the eigenvalues of the symmetrized
horizontal Hessian Hess∗H δS, to be the “horizontal principal curvatures” of S at
P . It would be interesting to have a direct geometric interpretation for these two
quantities.

The eigenvalues of Hess∗H δS have opposite sign, unless pS(P ) = 0. On the other
hand, if there is an open subset A of S s.t. pS(P ) = 0 whenever P ∈ A, then A must
be a vertical subset of S, i.e., A is defined as {(x, y, t) : ϕ(x, y) = 0}. Following [10]
(see also [20] and [11]), we say that a function k is H-convex if Hess∗H k is positive
definite. As a consequence of the above, we have the following remark.

Remark 3.2. Let S be an orientable surface in H, which is free of characteristic
points, and let δS the signed distance from S associated to an orientation of S. Then,
δS is H-convex or concave in a neighborhood of S if and only if S is a vertical set
{(x, y, t) : ϕ(x, y) = 0} and {(x, y) : ϕ(x, y) = 0} is a curve in R2 which does not
change the sign of its Euclidean curvature.

In particular the Carnot–Charathéodory distance in H is not H-convex, since
the metric spheres are not vertical sets. This could be compared with the result in
[10], where it is proved that the gauge distance in H is mildly convex.

In order to prove the theorem, we need some preliminary results. We denote
by Hess k the Euclidean Hessian of a function k from R3 in R. If K = (k1, . . . , km)
maps R3 in Rm, we write

Hess K = (Hess k1, . . . , Hess km).

Consider the equation, see (11),

(x, y, t) = F (u, v, τ).
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Let us denote by Hess x, Hess y, Hess t the Euclidean Hessian matrices of x(u, v, τ),
y(u, v, τ), t(u, v, τ); let ξ = (u, v, τ) and let ξx, ξy, ξt be the columns of the Jacobian
matrix of F−1 computed when τ = 0.

Let a = ξx + 2yξt and b = ξy − 2xξt.

Lemma 3.1. The entries of the horizontal Hessian of δS satisy the following
relations.

(i) We have

(18) |∇Hf | ·XXδS = −
∣∣∣Fu|Fv|Hess F (a, a)

∣∣∣.

Here,
∣∣∣c1|c2|c3

∣∣∣ denotes the determinant of the 3× 3 matrix having columns
cj, j = 1, 2, 3.

(ii) We have

(19) |∇Hf | · Y Y δS = −
∣∣∣Fu|Fv|Hess F (b, b)

∣∣∣.
(iii) XY τ and Y Xτ satisfy

(20)

{
XδS ·XXδS + Y δS ·XY δS = 0,

XδS · Y XδS + Y δS · Y Y δS = 0.

Proof. The Inverse Function Theorem applied to the equation (x, y, t) = F (u, v,
τ) gives a set of equations for the second derivatives of τ = δS, w.r.t. x, y, t. Let p, q
be any two variables, possibly equal, chosen among x, y, t. Then

(21)





xuupq + xvvpq + xττpq = −Hess x(ξp, ξq),

yuupq + yvvpq + yττpq = −Hess y(ξp, ξq),

tuupq + tvvpq + tττpq = −Hess t(ξp, ξq).

We solve the linear systems with respect to the second partial derivatives of τ ,

τpq =

det




xu, xv, −Hess x(ξp, ξq)
yu, yv, −Hess y(ξp, ξq)
tu, tv, −Hess t(ξp, ξq)




det




xu, xv, xτ

yu, yv, yτ

tu, tv, tτ .




(22)

From Lemma 2.1,

det

∣∣∣∣∣∣

xu, xv, xτ

yu, yv, yτ

tu, tv, tτ .

∣∣∣∣∣∣
τ=0

= |∇Hf |

Since XX = ∂xx + 4y∂xt + 4y2∂tt, since the determinant is linear with respect to
each column and Hess F (U, V ) is bilinear in U and V , then (22) implies that, when
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τ = 0,

|∇Hf | ·XXδS =
∣∣∣Fu|Fv|Fτ

∣∣∣ ·XXδS

=
∣∣∣Fu|Fv| − [Hess F (ξx, ξx) + 4y Hess F (ξx, ξt) + 4y2 Hess F (ξt, ξt)]

∣∣∣

= −
∣∣∣Fu|Fv|Hess F (a, a)

∣∣∣

and this shows (i). (ii) can be proved in the same way, starting from the expression

Y Y = ∂yy − 4x∂yt + 4x2∂tt.

(iii) follows taking derivatives w.r.t. X and Y of the eikonal equation (2). ¤
Proof of Theorem 3.1. By (i) and (ii) in Lemma 3.1, the expression of XXδS and

Y Y δS can be computed if we know HessF restricted to τ = 0 and J(F−1)(x, y, t)|τ=0

= (ξx|ξy|ξt). By (iii), this allows us to compute XY δS and Y XδS as well.
We apply the classical Implicit Function Theorem to

(x, y, t) = F (u, v, τ).

Recall from Lemma 2.1 that the Jacobian of F ,

(23) JF (u, v, 0) = J

(
x y t
u v τ

)

τ=0

=




1 0 Xf
|∇Hf |

0 1 Y f
|∇Hf |

fu fv
2vXf−2uY f

|∇Hf |


 ,

whose determinant is

det JF (u, v, 0) =| ∇Hf | .
Its inverse matrix is

J(F−1)(x, y, t)|τ=0 = J

(
u v τ
x y t

)

τ=0

=




1 + Xffu

|∇Hf |2
Xffv

|∇Hf |2 − Xf
|∇Hf |2

Y ffu

|∇Hf |2 1 + Y ffv

|∇Hf |2 − Y f
|∇Hf |2

− fu

|∇Hf | − fv

|∇Hf |
1

|∇Hf | .


 = (ξx|ξy|ξt).

(24)

If g(x, y, t) = t − f(x, y), we write XXf = XXg, XY f = XY g, and so on. The
following relations will be used below.

(Xf)u = XXf, (Y f)u = XY f,

(Xf)v = Y Xf, (Y f)v = Y Y f.
(25)
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Recalling the derivatives of x, y, t computed in the proof of Lemma 2.1, we can
compute

xuu =
1

4
(Xf)uu sin α +

1

4
(Y f)uu(1− cos α) + (

1

4
(Xf)u cos α +

1

4
(Y f)u sin α)αu

+
1

4
αu sin α

Xf

2

4τ

| ∇Hf |3
(
2Xf(Xf)u + 2Y f(Y f)u

)

− 1

4
cos α

(Xf

2

4τ

| ∇Hf |3
(
2Xf(Xf)u + 2Y f(Y f)u

)
)u

− 1

4
cos α

Xf

2

4τ

| ∇Hf |3
(
2Xf(Xf)u + 2Y f(Y f)u

)

− 1

4
sin α(

Xf

2

4τ

| ∇Hf |3
(
2Xf(Xf)u + 2Y f(Y f)u

))
u
,

hence

(xuu)|τ=0 = 0.

xvu =
1

4
(Xf)vu sin α +

1

4
(Y f)uv(1− cos α) + (

1

4
(Xf)u cos α +

1

4
(Y f)u sin α)αv

+
1

4
αv sin α

Xf

2

4τ

| ∇Hf |3
(
2Xf(Xf)u + 2Y f(Y f)u

)

− cos α
1

4
(
Xf

2

4τ

| ∇Hf |3
(
2Xf(Xf)u + 2Y f(Y f)u

)
)v

− αv
1

4
cos α

Xf

2

4τ

| ∇Hf |3
(
2Xf(Xf)u + 2Y f(Y f)u

)

− 1

4
sin α(

Xf

2

4τ

| ∇Hf |3
(
2Xf(Xf)u + 2Y f(Y f)u

)
)v,

(xvu)|τ=0 = 0.

xvv =
1

4
(Xf)vv sin α +

1

4
(Y f)vv(1− cos α)

+
1

4

(
(Xf)v cos α +

1

4
(Y f)v sin α

)

− (
1

4

(
cos αXf

4τ

| ∇Hf |3 +
1

4
sin αY f

4τ

| ∇Hf |3 )
(
Xf(Xf)u + Y f(Y f)u

)
)v,

(xvv)|τ=0 = 0.

xuτ =
1

4
(Xf

4

| ∇Hf |)u cos α− 1

4
Xf

4

| ∇Hf | sin ααu

+
1

4
(Y f

4

| ∇Hf |)u sin α +
1

4
Y fαu cos α

4

| ∇Hf | ,
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(xuτ )|τ=0 =
Y f

| ∇Hf |3 ((Xf)uY f −Xf(Y f)u)

=
Y f

| ∇Hf |3 ((XXf)Y f −Xf(XY f)).

xττ = (Xf
1

| ∇Hf |)τ cos α−Xfατ sin α
1

| ∇Hf |
+ (Y f

1

| ∇Hf |)τ sin α + Y fατ cos α
1

| ∇Hf |
= −Xfατ sin α

1

| ∇Hf | + Y fατ cos α
1

| ∇Hf | ,

and

(xττ )|τ=0 =
4Y f

| ∇Hf |2 .

xvτ = (Xf
1

| ∇Hf |)v cos α−Xfαv sin α
1

| ∇Hf |
+ (Y f

1

| ∇Hf |)v sin α + Y fαv cos α
1

| ∇Hf |
= (Xf

1

| ∇Hf |)v cos α + (Y f
1

| ∇Hf |)v sin α,

and

(xvτ )|τ=0 =
Y f

| ∇Hf |3 ((Xf)vY f −Xf(Y f)v) =
Y f

| ∇Hf |3 ((Y Xf)Y f −Xf(Y Y f)).

Moreover,

tuu = fuu + (
1

4

(
Xf(Xf)u + Y f(Y f)u

)
u
(α− sin α)

+ (
1

4

(
Xf(Xf)u − Y f(Y f)u

)2
(1− cos α)

τ

|∇Hf |3
− τ

2 | ∇Hf |
(
Xf(Xf)u

+ Y f(Y f)u

)
(1− cos α))u

+

(
τ

2 | ∇Hf |
(
Xf(Xf)u + Y f(Y f)u

))

u

· (1− cos α))

+ 2vx′uu − 2uy′uu − 2y′u − 2y′u,

so that

(tuu)τ=0 = (fuu + 2vx′uu − 2uy′uu − 2y′u − 2y′u)τ=0 = fuu;
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analogously

(tvu)τ=0 = fvu,

and

(tvv)τ=0 = fvv,

and

(tuτ )τ=0 = 2vx′uτ − 2uy′uτ − 2y′τ ,

and

(tvτ )τ=0 = 2vx′vτ − 2uy′vτ + 2x′τ ,

and

(tττ )τ=0 = 2vx′ττ − 2uy′ττ .

Hence

Hess xτ=0 =
Y f

| ∇Hf |3

·



0 0 (XXf)Y f −Xf(XY f)
0 0 (Y Xf)Y f −Xf(Y Y f)

(XXf)Y f −Xf(XY f) (Y Xf)Y f −Xf(Y Y f) 4 | ∇Hf |


 .

Arguing in the same way we get

Hess yτ=0 =
Xf

| ∇Hf |3

·



0 0 (XY f)Xf − Y f(XXf)
0 0 (Y Y f)Xf − Y f(Y Xf)

(XY f)Xf − Y f(XXf) (Y Y f)Xf − Y f(Y Xf) −4 | ∇Hf |


 .

Hess tτ=0 =




fuu fvu 2vx′uτ − 2uy′uτ − 2y′τ
fvu fvv 2vx′vτ − 2uy′vτ + 2x′τ

2vx′uτ − 2uy′uτ − 2y′τ 2vx′vτ − 2uy′vτ + 2x′τ 2vx′ττ − 2uy′ττ


 .

The horizontal Hessian matrix can be written now directly.
A direct calculation shows that

(26) a =

(
(Y f)2

|∇Hf |2 ,−Xf · Y f

|∇Hf |2 ,
Xf

|∇Hf |
)

(viewed as a column vector) and

(27) b =

(
−Xf · Y f

|∇Hf |2 ,
(Xf)2

|∇Hf |2 ,
Y f

|∇Hf |
)

.

We then compute

Hess |τ=0x(a, a) = 2
(Y f)2Xf

|∇Hf |6 Q + 4
(Xf)2Y f

|∇Hf |4 ,
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Hess |τ=0y(a, a) = −2
(Xf)2Y f

|∇Hf |6 Q− 4
(Xf)3

|∇Hf |4 ,

Hess |τ=0t(a, a) = −2
(Y f)2

|∇Hf |4Q− 4
Xf · Y f

|∇Hf |2

+ 8
(Xf)2

|∇Hf |4 (vY f + uXf) + 4
Xf · Y f

|∇Hf |6 (vY f + uXf)Q

Recall now that

−|∇Hf | ·XXδS =

∣∣∣∣∣∣

1 0 Hess x|τ=0(a, a)
0 1 Hess y|τ=0(a, a)

2v −Xf −2u− Y f Hess t|τ=0(a, a)

∣∣∣∣∣∣

= − (Y f)2

|∇Hf |4Q− 4
Xf · Y f

|∇Hf |2 .

Analogous calculations yield the value of Y Y δS.
In order to compute the mixed derivatives, we use (20).
Let us recall now that

Q = XXf (Y f)2 − 2(XY )∗f Xf Y f + Y Y f (Xf)2.

Then, the horizontal Hessian of δS is that given in (14),

−HessH δS =


 − (Y f)2

|∇Hf |5 Q− 4Xf Y f
|∇Hf |3 Y f

[
Xf

|∇Hf |5 Q− 4 Y f
|∇Hf |3

]

Xf
[

Y f
|∇Hf |5 Q + 4 Xf

|∇Hf |3
]

− (Xf)2

|∇Hf |5 Q + 4Xf Y f
|∇Hf |3


 ,

i.e.,

−HessH δS =
Q

| ∇Hf |3
(
− (Y f)2

|∇Hf |2
XfY f
|∇Hf |2

XfY f
|∇Hf |2 − (Xf)2

|∇Hf |2

)

+
4

| ∇Hf |

(
− XfY f
|∇Hf |2 − (Y f)2

|∇Hf |2
(Xf)2

|∇Hf |2
XfY f
|∇Hf |2 .

)
.

(28)

Now, let

M =

(
(Y f)2

|∇Hf |2 − XfY f
|∇Hf |2

− XfY f
|∇Hf |2

(Xf)2

|∇Hf |2

)
.

Then, if we set p = 4
|∇Hf | and

J =

(
0 1
−1 0

)
,

we have

HessH δS = kM + pMJ = M(kI + pJ) = M

(
k p
−p k

)
.(29)
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Let us remark that, keeping in mind (8) and that g = t− f(x, y), we have

d(P,C) =
|∇Hf |

2
,

so that

p =
2

d(P, C)
,

that represents indeed a curvature. Moreover, let us define

cos θ =
Xf

|∇Hf | ,

and

sin θ =
Y f

|∇Hf | .

Then

M =

(
sin2 θ − sin θ cos θ

− sin θ cos θ cos2 θ

)
= vP S ⊗ vP S. ¤

4. Mean curvature

In this section, we make some considerations about the notion of mean curvature
for a surface in H (see, e.g., [16]).

Definition 4.1. Let S = ∂Ω be a smooth surface in H, with Ω locally defined
by the inequality g(x, y, t) < 0. The mean curvature of S at P ∈ S is

(30) hS(P ) = X

(
Xg(P )

|∇Hg(P )|
)

+ Y

(
Y g(P )

|∇Hg(P )|
)

.

The curvature is well defined for non characteristic points only.
Here are some characterizations of mean curvature. The first is in terms of the

distance function and it is an immediate consequence of Theorem 3.1.

Corollary 4.1. Let S = ∂Ω be the boundary of an open, C3 set in H. Then,
for any non characteristic point P in S,

(31) ∆HδS(P ) = hS(P ).

Monti pointed out to us that the same result can be obtained by an explicit
calculation, which does not rely on the knowledge of the distance’s Hessian. In [16],
it is shown that the mean curvature is the trace of a certain matrix M , which is
not the Hessian of the distance function.

The second is in terms of horizontal curves on S. First, we state an immediate
consequence of the existence theorem for O.D.E.’s.

Lemma 4.1. Let S be a smooth surface in H and let P ∈ S be non-characteristic.
Then, modulo restrictions and reparametrizations, there exists a unique horizontal
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curve Γ through P on S. Suppose that S is defined by g(x, y, t) = 0. A parametriza-
tion of the curve is the solution of the O.D.E.’s system

(32)

{
Γ̇(τ) = Y g(Γ(τ)) ·X(Γ(τ)) −Xg(Γ(τ)) · Y(Γ(τ)),

Γ(0) = P.

Before we state the theorem relating the horizontal curves Γ and the mean
curvature of S, we fix some notation. We give H = span{X, Y } the orientation
for which the oriented angle from X to Y has amplitude π/2. Let P ∈ S = ∂Ω.
The positive horizontal direction VP S tangent to S is V +

P S, the unit vector in the
direction VP S such that the angle from NP S to V +

P S has amplitude −π/2, i.e.,

V +
P S = dR−π/2NP S,

dR−π/2 denoting the differential of R−π/2. If the curve Γ of Lemma 4.1 is oriented
in such a way that Γ̇ has the same orientation of V +

P S, we say that Γ is a positively
oriented horizontal curve on S. Let p be the projection of H onto the z-plane,
p(z, t) = z and let γ = p(Γ) be the projection of Γ. γ inherits the orientation of Γ.
The Euclidean curvature k of the oriented curve γ at γ(t0) is defined (locally in t0)
by

d

dt
|t=t0 (n(γ(t))) = k · γ̇(t0),

where

n(γ(t)) =
dRπ/2γ̇(t)

|dRπ/2γ̇(t)|
is the unit normal to the oriented curve γ at γ(t), which is locally well defined even
if γ has self intersections.

In a picture, γ has positive curvature if it borders a convex region on its right
hand side.

Theorem 4.1. Let S = ∂Ω be a smooth surface and let P ∈ S be non-
characteristic. Let Γ be the oriented horizontal curve on S through P . Then,
hS(P ) is the curvature of the oriented curve p(Γ) in R2 at p(P ).

Proof. Suppose first that TP S is a non-vertical plane, that is, that in a neigh-
borhood of P , S is locally given by S = {f(x, y) = t}. The horizontal curve Γ on S
through P satisfies equation (32), hence Γ = (x, y, t) is a solution of




ẋ = Y f(Γ),

ẏ = −Xf(Γ),

ṫ = 2yY f(Γ) + 2xXf(Γ).

Since Xf and Y f are independent of t, we solve for x and y, independently of t,
and we find the differential equation for γ = p(Γ),

{
ẋ = Y f(Γ),

ẏ = −Xf(Γ).
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Suppose that Y f 6= 0 at P (otherwise, we can let Xf 6= 0 at P , since P is non
characteristic). Parametrizing γ as y = γ(x), we find

y′ = −Xf

Y f
.

The curvature of γ in the Euclidean plane is defined as

k = − d

dx

(
y′√

1 + (y′)2

)
= − y′′

(1 + (y′)2)3/2

=
(Y f)3

|∇Hf |3
d

dx

(
Xf

Y f

)

=
Y f

|∇Hf |3 [(∂xXf + ∂yXfy′)Y f − (∂xY f + ∂yY fy′)Xf ]

=
XXf (Y f)2 − 2(XY )∗f Xf Y f + Y Y f (Xf)2

|∇Hf |3
= ∆HδS = hS(P )

by Corollary 4.1.
The case when TP S is a vertical plane can be dealt with similarly. ¤
In the Heisenberg group, vectors belonging to different sections of the tangent

bundle can be compared by means of left translations. Under the identification
H ≡ R3, hence of the tangent space at P ∈ H with R3, the differential of the left
translation by Q = (a, b, c), LQ : P 7→ Q ◦ P , is the matrix

dLQ =




1 0 0
0 1 0
2b −2a 1




which is independent of the point where the differential is calculated. By definition
of Carnot–Carathéodory distance, dLQ maps HP in HQ◦P , isometrically.

Fix P ∈ H and let φ : I → H be a smooth, horizontal curve, such that φ(0) = P .
Let W be a section of the horizontal bundle along φ: W (s) ∈ Hφ(s) for s ∈ I, and
W is a smooth map. We define the derivative of W along φ at P as

dH
φ W (s)

ds |s=0
:= lim

s→0

dL(φ(0))◦(−φ(s))W (s)−W (0)

s
.

We give the notion of derivative of a vector field with respect to a vector in the
Heisenberg group.

Definition 4.2. Let W be a section of the horizontal bundle H . Let V ∈ HP

and φ : I → H be any horizontal curve such that φ(0) = P and φ′(0) = V . We set

∇H
V W (P ) :=

dH(W ◦ φ)(s)

ds |s=0
.
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Lemma 4.2. Let W = aX + bY be a section of the horizontal bundle H and
φ : I → H be any horizontal curve such that φ(0) = P and φ′(0) = V . Then

∇H
V W (P ) = V a(P )X(P ) + V b(P )Y (P )

where V a and V b are the derivatives of the functions a and b in the direction V ,
respectively.

Proof. Indeed

dL(φ(0))◦(−φ(s))W (s)−W (0)

s

=
dL(φ(0))◦(−φ(s))

(
a(φ(s)), b(φ(s), 2φ2(s)a(φ(s))− 2φ1(s)b(φ(s))

)−W (φ(0))

s

=

(
a(φ(s)), b(φ(s), 2φ2(0)a(φ(s))− 2φ1(0)b(φ(s))

)−W (φ(0))

s

=
a(φ(s))− a(φ(0))

s
X(φ(0)) +

b(φ(s))− b(φ(0))

s
Y (φ(0))

and as a consequence

lim
s→0

dL(φ(0))◦(−φ(s))W (φ(s))−W (φ(0))

s
= V a(P )X(P ) + V b(P )Y (P ). ¤

Let NS(P ) the unit vector normal to S = ∂Ω at P , in the Heisenberg sense, and
pointing outside Ω. If g(x, y, t) = 0 locally represents S, then

νS(P ) =

(
Xg(P )

|∇Hg(P )|XP +
Y g(P )

|∇Hg(P )|YP

)

depending on the orientation of S.

Theorem 4.2. The linear operator MP S : V 7→ ∇H
V νS(P ) maps VP S into VP S.

MP S acts on VP S as multiplication times hS(P ).

Modulo a sign, the map MP S is the Weingarten map for surfaces in the Heisen-
berg group.

Proof. If W = νS(P ), we have

∇H
V NS(P ) ∈ VP S.

In fact, differentiating |νS(P ) ◦ φ(s)|2 = 1 with respect to s, νS(P ) = ν1(P )XP +
ν2(P )YP , we obtain

0 = ν1(φ(s))
d

ds
ν1(φ(s)) + ν2(φ(s))

d

ds
ν2(φ(s)).

For s = 0, this relation becomes

0 = 〈νS(P ),∇H
V νS(P )〉H.
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Since νS(P ) = Xg(P )
|∇Hg(P )|XP + Y g(P )

|∇Hg(P )|YP we get, for V = α1X(P ) + α2Y (P ) ∈ VP S,

(33) ∇H
V νS(P ) =

[
X( Xg(P )

|∇Hg(P )|) Y ( Xg(P )
|∇Hg(P )|)

X( Y g(P )
|∇Hg(P )|) Y ( Y g(P )

|∇Hg(P )|)

]
·
[

α1

α2

]
.

The linear map V 7→ ∇H
V NS(P ) is defined on the one-dimensional linear space

VP S, hence it acts as multiplication by a constant k. Testing (33) on (α1, α2) =
(−Y g(P ), Xg(P )) = Γ̇(t), if Γ(t) = P , i.e., on a basis of VP S, we see that

k =
Q

|∇Hg|3
is the mean curvature of S at P . ¤

Observe that multiplication by the matrix in (33) acts on VP S as multiplication
by the matrix’ trace.

5. Examples

In this section, we see two basic examples of surfaces in H. First, we consider
the case of the plane {t = 0}. Then, we consider the case of the ball with respect
to the Heisenberg distance. In particular, we explicitely compute the Hessian of the
function “distance from a point”.

Calculations are easier if we exploit the symmetries of H.

Lemma 5.1. Let g be a smooth function on H, which is homogeneous of degree
m with respect to the dilation group at the origin. Let Wj be horizontal left invariant
vector fields on H, j = 1, . . . , n. Then, W1 . . . Wng is homogeneous of degree m−n,

(34) W1 . . .Wng(δλP ) = λm−ng(P ).

In particular, if S is a smooth surface in H and σ denotes the distance function from
S, then σ, ∇Hσ and HessH σ are homogeneous of degreee 1, 0 and −1, respectively.

Recall that Rθ denotes both the rotation by θ around the t-axis in H and the
rotation by θ in span{X, Y }. We use the same symbol for the matrix

Rθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

Lemma 5.2. Let f be a smooth function on H, which is invariant under the
rotation group at the origin,

f(rθP ) = f(P )

for θ in R. Then, ∇H and HessH commute with rotations. Namely,

(35) ∇Hf(RθP ) = Rθ∇Hf(P )

and

(36) HessH f(RθP ) = Rθ HessH f(P ).
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In (36), the multiplication on the right hand side is a multiplication of 2 × 2
matrices.

5.1. Nonvertical planes. Let Π be the plane {t = 0}. Observe that all
nonvertical planes are isometric to Π. In [2] we computed the metric normal to Π
at P = (x, y, 0) = (z, 0),

γP (σ) = (u(σ), v(σ), s(σ)) =





x
2

(
1 + cos

(
2σ
|z|

))
+ y

2
sin

(
2σ
|z|

)
,

y
2

(
1 + cos

(
2σ
|z|

))
− x

2
sin

(
2σ
|z|

)
,

|z|2
2

(
2σ
|z| + sin

(
2σ
|z|

))
.

The geodesic γP realizes the distance from Π when |σ| ≤ π|z|
2
. By Lemma 5.1,

δΠ is homogeneous of degree 1, ∇HδΠ is homogeneous of degree 0 and HessH δΠ is
homogeneous of degree −1. Since δΠ is invariant under rotations around the t-axis,
HessH δΠ commutes with the same group of rotations.

Let β = σ
|z| ∈ (−π/2, π/2), R = |z| ≥ 0 and α = arg z − σ

|z| ∈ [0, 2π), for a
suitable choice of arg z. Here, we use on H the coordinates

(u, v, s) = (R cos β cos α, R cos β sin α, R2(β + 1/2 sin(2β))).

Hence

J

(
u, v, s
R, α, β

)
=




cos α cos β, −R cos β sin α, −R sin β cos α
cos β sin α, R cos β cos α, −R sin β sin α

2R(β + 1
2
sin(2β)), 0, 2R2 cos2 β




and

det J

(
u, v, s
R, α, β

)
= 2R3 cos β(cos β + β sin β).

As a consequence

det J

(
R, α, β
u, v, s

)
=




cos2 β cos α
cos β+β sin β

, cos2 β sin α
cos β+β sin β

, sin β
2R(cos β+β sin β)

− sin α
R cos β

, cos α
R cos β

, 0

− cos α
R

β+sin β cos β
cos β+β sin β

, − sin α
R

β+sin β cos β
cos β+β sin β

, cos β
2R2(cos β+β sin β)




A long, but elementary calculation shows now that, in the new coordinates,

(37) X =
cos β · cos(β − α)

cos β + β sin β
∂R − sin α

R cos β
∂α − β cos α + cos β · sin(β − α)

R(cos β + β sin β)
∂β

and

(38) Y = −cos β · sin(β − α)

cos β + β sin β
∂R +

cos α

R cos β
∂α − β sin α + cos β · cos(β − α)

R(cos β + β sin β)
∂β.

Hence,

Lemma 5.3. Let Π be the plane {t = 0}. Then
XδΠ = − sin(β − α)
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and
Y δΠ = − cos(β − α).

Proof. Recalling (37) and (38) we get XδΠ = − sin(β−α) and Y δΠ = − cos(β−
α). ¤

Remark 5.1. After the computation of XδΠ, we can deduce the value of Y δΠ

keeping in mind (35).

Theorem 5.1. Let Π be the plane {t = 0}. Then

HessH δΠ =
1

R cos β(cos β + β sin β)

[
cos(α− β)A, cos(α− β)B
sin(α− β)A, sin(α− β)B

]
,

where
A = −(sin α cos β + β cos(α + β) + cos2 β sin(α− β))

and
B = (cos α cos β + β sin(α + β) + cos2 β cos(α− β)).

Moreover, for P ∈ Π, P 6= O, then

−(∆δΠ)σ=0 = 0,

i.e., the mean curvature is 0.

Proof. Recalling Lemma 5.3 we get by straightforward computation:

XXδΠ = − sin α

R cos β
cos(α− β) +

β cos α− cos β sin(α− β)

R(cos β + β sin β)
cos(α− β)

=
cos(α− β)

R cos β
A,

Y XδΠ =
cos α

R cos β
cos(α− β) +

β sin α + cos β cos(α− β)

R(cos β + β sin β)
cos(α− β)

=
cos(α− β)

R cos β
B,

XY δΠ = − sin α

R cos β
sin(α− β) +

β cos α− cos β sin(α− β)

R(cos β + β sin β)
sin(α− β)

=
sin(α− β)

R cos β
A,

Y Y δΠ
cos α

R cos β
sin(α− β) +

β sin α + cos β cos(β − α)

R(cos β + β sin β)
sin(α− β) =

sin(α− β)

R cos β
B.

In particular, we have

Trace(HessH δΠ)σ=0 = Trace

(
1

R

[ −2 cos α sin α, 2 cos2 α
−2 sin2 α, 2 cos α sin α

])
= 0.

As a consequence the mean curvature of Π−O is 0. This fact could also be proved
as follows. The punctured plane Π−O is the union of straight half line leaving O,



The Hessian of the distance from a surface in the Heisenberg group 59

hence its Heisenberg curvature at a point P is the Euclidean curvature of a straight
line by Theorem 4.1. ¤

Remark 5.2. Notice that HessH δΠ is singular as R → 0 and as β → ±π/2.
For instance, if α = 0, then Y Y δΠ diverges as β → ±π/2 and R → 0. Indeed

(HessH δΠ)α=0 =
1

R cos β(cos β + β sin β)

·
[ −(β − cos β sin β) cos2 β, (cos β + β sin β + cos3 β) cos β

(β − cos β sin β) sin β cos β, −(cos β + β sin β + cos3 β) sin β

]

and

(Y Y δΠ)α=0 = −tan β

R

cos β + β sin β + cos3 β

cos β + β sin β
= −tan β

R
(1 +

cos3 β

cos β + β sin β
).

The singularity as R → 0 is expected, by Theorem 3.1. The singularity as
β → ±π/2 shows that the estimate at the end of Theorem 3.1 can not be extended
outside the surface.

5.2. The Carnot–Charathéodory sphere and the Hessian of the dis-
tance function. Here we consider Σ = ∂B(0, 1), the sphere of unitary radius with
respect to the Carnot–Charathéodory metric. The poles of Σ are NP = (0, 0, 1/π)
and SP = (0, 0, 1/π). The calculation of the horizontal Hessian of δΣ will be accom-
plished in several steps. First, we find the equations of the horizontal curves lying
on Σ. Via Theorem 4.1, this allows us to compute the mean curvature of Σ at every
point. By Theorem 3.1, (14) and (16), and Corollary 4.1, the second order terms of
the formula relating HessH to the equation of Σ are all contained in the expression
for the mean curvature of Σ. Hence, in order to compute HessH δΣ we are left with
the calculation of some first order derivatives.

Finally, we note that the calculation of HessH δΣ immediately leads to an ex-
pression for the horizontal Hessian of the Carnot–Charathéodory distance in H,
HessH d(O, ·).

We can parametrize Σ in several useful ways. Let (z, t) ∈ Σ. Then, there are
φ ∈ [0, 2π) and u ∈ [−2π, 2π] such that

(39)

{
z(u) = eiφ2 sin(u/2)

u
,

t(u) = 2u−sin(u)
u2 .

The parametric representation in (39) can be easily deduced by the geodesic equa-
tions (6).

Below we consider the upper half of Σ, corresponding to u ≥ 0, so that B(O, 1)
is below the surface.

We see, now, how Σ is ruled by horizontal curves. Incidentally, this provides a
differently useful parametrization of Σ.
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Proposition 5.1. The surface Σ−{NP, SP} is the disjoint union of horizontal
curves γθ(u) = (z(u), t(u)) (|u| < 2π),

(40)

{
z(u) = ei(ψ(u/2)+θ)2 sin(u/2)

u
,

t(u) = 2u−sin(u)
u2 ,

where ψ satisfies the conditions ψ(0) = 0 and

(41) ψ′(p) = cot2 p− cot p

p
.

These are the only horizontal curves on Σ.

In (41), observe that ψ′ is well defined for p = 0 as well.

Proof. First, note that, by (39), any curve parametrized as in (40) lies on Σ. Let
now γ be the curve in (40) corresponding to θ = 0 (by rotation invariance, Rθγ = γθ

is horizontal if and only if γ is). The curve γ = (x, y, t) is horizontal if and only if

(42) ṫ(u) = 2ẋ(u)y(u)− 2x(u)ẏ(u).

Here, {
x(u) = cos(ψ(u/2)) sin(u/2)

u/2
,

y(u) = sin(ψ(u/2)) sin(u/2)
u/2

.

Let p = u/2 We make (42) into an explicit O.D.E. A calculation shows that

2ẋ(2p)y(2p)− 2x(2p)ẏ(2p) = −ψ′(p)
sin2(p)

p2

and that

ṫ(2p) = cos(p)
sin(p)− p cos(p)

p3
.

Equation (41) follows immediately. ¤
It can be proved that ψ(p) → ∞ as p → π, i.e., that the projection of p(γθ)

onto the plane {t = 0} spiralizes infinitely many times around the origin. It can
also be shown that the Heisenberg length of γθ, i.e., the Euclidean length of p(γθ),
is infinite.

Next, we compute the mean curvature of Σ.

Proposition 5.2. The curvature of Σ at P = (z, t), where
{
|z| = 2 sin(u/2)

u
,

t = 2u−sin(u)
u2

is the number

(43) hΣ(P ) =
u cos u− sin u

u
2
cos

(
u
2

)− sin
(

u
2

) u

4 sin
(

u
2

) .
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Proof. By Theorem 4.1, we only need to apply the formula for the computation
of the mean curvature of a curve in parametric form (see, e.g., [17]) to the curves
described in Proposition 5.1. ¤

By Proposition 5.2, in order to compute the Hessian of δΣ, we are left with the
calculation of a number of first order derivatives of f .

Lemma 5.4. Let t = f(x, y) be the equation of the upper half of Σ, let (z, t)
be as in (39) and u = 2v. Then,

(44)

{
Xf(z, t) = 2 cos φ cos(v)

v
+ 2 sin φ sin(v)

v
= 2

v
cos(φ− v),

Y f(z, t) = 2 sin φ cos(v)
v

− 2 cos φ sin(v)
v

= 2
v
sin(φ− v).

Proof. Let t = f(x, y). By the chain rule,

(45) J

(
t
x y

)
= J

(
t
u φ

)
· J

(
x y
u φ

)−1

.

By (39),

J

(
t
u φ

)
=

(
cos(u/2)

(u/2)3
[sin(u/2)− u/2 cos(u/2)] , 0

)
=

(
−cos(u/2)

u/2
h(u/2), 0

)

where

h(s) =
s cos(s)− sin(s)

s2

and

J

(
x y
u φ

)
=

[
1
2
h(u/2) cos φ − sin(u/2)

u/2
sin φ

1
2
h(u/2) sin φ sin(u/2)

u/2
cos φ

]

so that

J

(
x y
u φ

)−1

=
1

1
2
h(u/2) sin(u/2)

u/2

[ sin(u/2)
u/2

cos φ sin(u/2)
u/2

sin φ

−1
2
h(u/2) sin φ 1

2
h(u/2) cos φ

]
.

Using (45), we obtain

J

(
t
x y

)
= −

(
2 cos φ

u
,
2 sin φ

u

)

and the conclusion of the lemma follows immediately. ¤
We have now all the ingredients for the calculation of HessH δΣ.

Theorem 5.2. Let P = (z, t) be the point of the upper half of Σ,

(46)

{
z(u) = 2 sin(u/2)

u
,

t(u) = 2u−sin(u)
u2 .

Then,

(47) HessH δΣ(P ) = vP Σ⊗ vP Σ · (hΣ(P )I + pΣ(P )J),
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where
vP Σ = sin(φ− v) ·XP − cos(φ− v) · YP ,

hΣ(P ) =
u cos u− sin u

u
2
cos

(
u
2

)− sin
(

u
2

) u

4 sin
(

u
2

) ,

and
pΣ(P ) = u.

Proof. The theorem follows immediately from Theorem 1.1, Proposition 5.2,
Lemma 5.4, (4) and the definition of vP Σ. ¤
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