THE REGULARITY OF WEAK SOLUTIONS TO NONLINEAR SCALAR FIELD ELLIPTIC EQUATIONS CONTAINING $p \& q$-LAPLACIANS

Chengjun He^{a} and Gongbao $\mathbf{L i}^{a, b}$
Chinese Academy of Sciences, Wuhan Institute of Physics and Mathematics Wuhan, 430071, China; cjhe@wipm.ac.cn
Central China Normal University, School of Mathematics and Statistics
Wuhan, 430079, China; ligb@mail.ccnu.edu.cn

Abstract

In this paper, we consider the regularity of weak solutions $u \in W^{1, p}\left(\mathbf{R}^{N}\right) \cap$ $W^{1, q}\left(\mathbf{R}^{N}\right)$ of the elliptic partial differential equation $$
-\Delta_{p} u-\Delta_{q} u=f(x), x \in \mathbf{R}^{N}
$$ where $1<q<p<N$. We prove that these solutions are locally in $C^{1, \alpha}$ and decay exponentially at infinity. Furthermore, we prove the regularity for the solutions $u \in W^{1, p}\left(\mathbf{R}^{N}\right) \cap W^{1, q}\left(\mathbf{R}^{N}\right)$ of the following equations $$
-\Delta_{p} u-\Delta_{q} u=f(x, u), x \in \mathbf{R}^{N}
$$ where $N \geq 3,1<q<p<N$, and $f(x, u)$ is of critical or subcritical growth about u. As an application, we can show that the solution we got in [8] has the same regularity.

1. Introduction

In this paper, we study the regularity of weak solutions to the following nonlinear elliptic equations with $p \& q$-Laplacians:

$$
\left\{\begin{array}{l}
-\Delta_{p} u+m|u|^{p-2} u-\Delta_{q} u+n|u|^{q-2} u=g(x, u), \quad x \in \mathbf{R}^{N} \tag{1.1}\\
u \in W^{1, p}\left(\mathbf{R}^{N}\right) \cap W^{1, q}\left(\mathbf{R}^{N}\right)
\end{array}\right.
$$

where $m, n>0, N \geq 3,1<q<p<N, \Delta_{t} u=\operatorname{div}\left(|\nabla u|^{t-2} \nabla u\right)$ is the t-Laplacian of u for $t>1$.

The $p \& q$-Laplacian problem (1.1) comes, for example, from a general reaction diffusion system

$$
\begin{equation*}
u_{t}=\operatorname{div}[D(u) \nabla u]+c(x, u) \tag{1.2}
\end{equation*}
$$

where $D(u)=\left(|\nabla u|^{p-2}+|\nabla u|^{q-2}\right)$. This system has a wide range of applications in physics and related sciences, such as biophysics, plasma physics, and chemical reaction design. In such applications, the function u describes a concentration, the

[^0]first term on the right-hand side of (1.2) corresponds to the diffusion with a diffusion coefficient $D(u)$, whereas the second one is the reaction and relates to source and loss processes. Typically, in chemical and biological applications, the reaction term $c(x, u)$ has a polynomial form with respect to the concentration u.

Recently, the eigenvalue problem for a $p \& q$-Laplacian type equation with $p=2$ was studied by Bence [1] and the stationary solution of (1.2) was studied by Cherfils and Il'yasov in [4] on a bounded domain $\Omega \subset \mathbf{R}^{N}$ with $D(u)=\left(|\nabla u|^{p-2}+|\nabla u|^{q-2}\right)$ and $c(x, u)=-p(x)|u|^{p-2} u-q(x)|u|^{q-2} u+\lambda g(x)|u|^{\gamma-2} u$ for $1<p<\gamma<q$ and $\gamma<p^{*}$, where $p^{*}=\frac{n p}{n-p}$ if $p<n$, and $p^{*}=+\infty$, if $p \geq n$.

In [8], using the concentration compactness principle and Mountain Pass Theorem, we proved the existence of a nontrivial solution to (1.1) under suitable assumptions on $g(x, u)\left(\right.$ see $\left(\mathrm{C}_{1}\right)-\left(\mathrm{C}_{5}\right)$ in [8]). It is natural to study the regularity of weak solutions of (1.1). To this end, we consider the following equation

$$
\begin{equation*}
-\Delta_{p} u-\Delta_{q} u=f(x) \tag{1.3}
\end{equation*}
$$

where $f \in L_{\text {loc }}^{\infty}\left(\mathbf{R}^{N}\right)$. By a weak solution u to (1.3), we mean a function $u \in$ $W^{1, p}\left(\mathbf{R}^{N}\right) \cap W^{1, q}\left(\mathbf{R}^{N}\right)\left(\right.$ or $W_{\text {loc }}^{1, p}\left(\mathbf{R}^{N}\right)$) such that

$$
\int_{\mathbf{R}^{N}}\left[|\nabla u|^{p-2} \nabla u \nabla \varphi+|\nabla u|^{q-2} \nabla u \nabla \varphi-f(x) \varphi\right] d x=0 \text { for any } \varphi \in C_{0}^{\infty}\left(\mathbf{R}^{N}\right)
$$

It is obvious that (1.1) is a special case of (1.3) if we take $f(x)=g(x, u(x))-$ $m|u(x)|^{p-2} u(x)-n|u(x)|^{q-2} u(x)$.

For degenerate elliptic equations

$$
\begin{equation*}
-\Delta_{p} u=f(x, u) \tag{1.4}
\end{equation*}
$$

and systems with some special structure, the $C^{1, \alpha}$ regularity of weak solutions was proved in [7] when $p=2$, and in [11, 17, 18] and [6] when $p \geq 2$. The existence and integrability of second-order derivatives of weak solutions to (1.4) were studied in $[13,15,19]$ for all $1<p<+\infty$, from which the $C^{1, \alpha}$ regularity of weak solutions to (1.4) is obtained.

With an extra assumption that $u \in L^{\infty}(\Omega),[5]$ and [16] proved the local $C^{1, \alpha}$ regularity of the solutions u to a general class of quasilinear elliptic equations

$$
\begin{equation*}
\int_{\Omega} \sum_{j=1}^{N}\left\{a_{j}(x, u, \nabla u) \cdot \varphi_{x_{j}}\right\}-h(x, u, \nabla u) \varphi d x=0, \varphi \in C_{0}^{\infty}(\Omega), \tag{1.5}
\end{equation*}
$$

where a_{j} belongs to $C^{0}\left(\Omega \times \mathbf{R} \times \mathbf{R}^{N}\right) \cap C^{1}\left(\Omega \times \mathbf{R} \times \mathbf{R}^{N}-\{0\}\right)$ and h is a Caratheodory function, i.e., for each $(t, p) \in \mathbf{R}^{N+1}, h(x, t, p)$ is measurable in x and continuous in t and p for a.e. $x \in \mathbf{R}^{N}$. It was shown that their results can be applied to (1.4) for all $1<p<\infty$.

The decay of the solution u of p-Laplacian type equations were considered by many authors. When $p=2,[2]$ showed that under some conditions on f, if u is a
radially symmetric solution of

$$
\begin{cases}-\Delta u=f(u) & \text { in } \mathbf{R}^{N} \tag{1.6}\\ u \in H^{1}\left(\mathbf{R}^{N}\right), & u \neq 0\end{cases}
$$

then $u \in C^{2}\left(\mathbf{R}^{N}\right)$ and

$$
\begin{equation*}
\left|D^{\alpha} u(x)\right| \leq C e^{-\delta|x|}, x \in \mathbf{R}^{N} \tag{1.7}
\end{equation*}
$$

for some $C, \delta>0$ and for $|\alpha| \leq 2$. By introducing exponential weighted spaces, [3] showed that positive solutions of

$$
\begin{cases}-\Delta u+f(x, u)=0 & \text { in } \mathbf{R}^{N} \tag{1.8}\\ u \rightarrow 0 & \text { at infinity }\end{cases}
$$

decay exponentially at infinity.
Under suitable assumptions on $V(x)$ and f, the existence and $C^{1, \alpha}$ regularity of weak solutions of the p-Laplacian type Schrödinger equations

$$
\left\{\begin{array}{l}
-\Delta_{p} u+V(x)|u|^{p-2} u=f(x, u) \tag{1.9}\\
u \in W^{1, p}\left(\mathbf{R}^{N}\right), 1<p<+\infty
\end{array}\right.
$$

were proved in [11]. Furthermore, it was shown in [11] that the solutions decay exponentially in x when $|x| \geq R$ for some $R>0$. We extend this result to $p \& q$ Laplacian type equations, too.

Our main results are as follows:
Theorem 1. Suppose that $f \in L_{\mathrm{loc}}^{\infty}\left(\mathbf{R}^{N}\right)$ and $u \in W_{\mathrm{loc}}^{1, p}\left(\mathbf{R}^{N}\right) \cap L_{\mathrm{loc}}^{\infty}\left(\mathbf{R}^{N}\right)$ is a weak solution of (1.3) where $p>1$. Then
(i) $|\nabla u| \in L_{\text {loc }}^{\infty}\left(\mathbf{R}^{N}\right)$ and for every compact $K \subset \mathbf{R}^{N}$, there exists a constant C depending only on $N, p, q, \operatorname{ess} \sup _{K}|u|$ and $\operatorname{ess} \sup _{K}|f|$ such that

$$
\begin{equation*}
\|\nabla u\|_{L^{\infty}(K)} \leq C ; \tag{1.10}
\end{equation*}
$$

(ii) $x \rightarrow \nabla u(x)$ is locally Hölder continuous in \mathbf{R}^{N}, i.e., there exists an $\alpha \in(0,1)$ and a constant C depending only upon N, p, q, ess $\sup _{K}|u|$ and ess $\sup _{K}|f|$ for every compact $K \subset \mathbf{R}^{N}$, such that

$$
\begin{equation*}
|\nabla u(x)-\nabla u(y)| \leq C|x-y|^{\alpha}, \quad x, y \in K \tag{1.11}
\end{equation*}
$$

Theorem 2. Suppose that $f(x, t)$ satisfy:
(A1) $f(x, t): \mathbf{R}^{N} \times \mathbf{R}^{1} \rightarrow \mathbf{R}^{1}$ satisfies the Caratheodory conditions, i.e., for a.e. $x \in \mathbf{R}^{N}, f(x, t)$ is continuous in $t \in \mathbf{R}^{1}$ and for each $t \in \mathbf{R}^{1}, f(x, t)$ is Lebesgue measurable with respect to $x \in \mathbf{R}^{N}$.
(A2) $f(x, t)$ is of critical or subcritical growth about u at infinity, i.e., for any $\varepsilon>0$, there is a $C_{\varepsilon}>0$ such that $|f(x, t)| \leq \varepsilon|t|^{q-1}+C_{\varepsilon}|t|^{p^{*}-1}$ for all $(x, t) \in \mathbf{R}^{N} \times R^{1}$, where $p^{*}=\frac{N P}{N-p}$ if $N>p, 0<p^{*}<+\infty$ if $N \leq p$.

If $u \in W^{1, p}\left(\mathbf{R}^{N}\right) \cap W^{1, q}\left(\mathbf{R}^{N}\right), 1<q<p<N$, is a weak solution of

$$
\begin{equation*}
-\Delta_{p} u-\Delta_{q} u=f(x, u), \tag{1.12}
\end{equation*}
$$

then there is an $\alpha>0$ and a constant C depending only on $N, p, q, \operatorname{ess} \sup _{B_{R}\left(x_{0}\right)}|u|$ for any $R>0$, such that

$$
\begin{align*}
|\nabla u(x)| & \leq C, \tag{1.13}\\
|\nabla u(x)-\nabla u(y)| & \leq C|x-y|^{\alpha} \tag{1.14}
\end{align*}
$$

for all $x, y \in B_{R}\left(x_{0}\right)$ and any $x_{0} \in \mathbf{R}^{N}$.
In [8] the existence of a weak solution of (1.1) was obtained under the following assumptions:
$\left(\mathrm{C}_{1}\right) g: \mathbf{R}^{N} \times \mathbf{R}^{1} \rightarrow \mathbf{R}^{1}$ satisfies the Caratheodory conditions; $g(x, t) \geq 0$, for $t \geq 0$ and $g(x, t) \equiv 0$, for $t<0$ and all $x \in \mathbf{R}^{N}$,
(C_{2}) $\lim _{t \rightarrow 0^{+}} \frac{g(x, t)}{t^{p-1}}=0$ uniformly in $x \in \mathbf{R}^{N} ; \lim _{s \rightarrow+\infty} \frac{g(x, t)}{t^{p-1}}=\ell$ uniformly in $x \in \mathbf{R}^{N}$ for some $\ell \in(0,+\infty)$,
and some extra technical conditions.
By Theorem 1 and 2, it is easy to see that weak solutions of (1.1) are locally in $C^{1, \alpha}$. We also get the exponential decay of weak solutions at infinity under the hypotheses $\left(\mathrm{C}_{1}\right)$ and $\left(\mathrm{C}_{2}\right)$.

In fact, we have the following result:
Theorem 3. Suppose $g(x, t)$ satisfies (A1), (A2) of Theorem 2 and u is a weak solution of (1.1). Then
(i) u is bounded on \mathbf{R}^{N}, i.e., $\|u\|_{L^{\infty}\left(\mathbf{R}^{N}\right)}<+\infty$ and $\lim _{R \rightarrow+\infty}\|u\|_{L^{\infty}(|x|>R)}=0$;
(ii) $u(x)$ decays exponentially as $|x| \rightarrow+\infty$, i.e., $\exists C>0, \varepsilon>0, R>0$ such that

$$
\begin{equation*}
|u(x)| \leq C e^{-\varepsilon|x|} \quad \text { when }|x| \geq R . \tag{1.15}
\end{equation*}
$$

One cannot obtain Theorem 1 by the results in [5, 16] or [11], since the $p \& q-$ Laplace equations do not satisfy the assumptions in [5, 16] and [11]. Our results are new to our knowledge; they are the generalization of the results of [5, 16] and [11]. Theorem 2 is an application of Theorem 1, which may be applied to more cases.

To prove Theorem 1, we mainly use the frame works of [5, 16, 11], respectively, to different steps. Since the main purpose of $[5,16]$ and $[11]$ is to consider the regularity of weak solutions for p-Laplacian type equations, the ellipticity and growth conditions imposed on a_{j} are homogeneous about ∇u. For example, in [16], it is
required that

$$
\begin{align*}
\sum_{i, j=1}^{N} \frac{\partial a_{j}}{\partial \eta_{i}}(x, \mu, \eta) \cdot \xi_{i} \xi_{j} & \geq \gamma \cdot(\kappa+|\eta|)^{p-2}|\xi|^{2} \tag{1.16}\\
\sum_{i, j=1}^{N}\left|\frac{\partial a_{j}}{\partial \eta_{i}}(x, \mu, \eta)\right| & \leq \Gamma \cdot(\kappa+|\eta|)^{p-2}
\end{align*}
$$

for some $\gamma, \Gamma>0$ and $\kappa \in[0,1]$. It is obvious that $p \& q$-Laplace equations do not satisfy the above conditions. Since $p \& q$-Laplace equations can not be included in the frame works of $[5,16]$ or $[11]$, much more careful analysis is needed in the proof.

We use the method of Proposition 1 in [16] to get a useful identity (see (2.5) in $\S 2$ below). Although in [16] only a similar inequality is required to show the boundedness of the gradiant ∇u of any weak solution u to (1.3), we expect that this identity can be used somewhere. After the local boundedness of $|\nabla u|$ is proved, we follow the usual way (see $[7,9]$) to obtain the $C^{1, \alpha}$ regularity of the weak solution.

To prove Theorem 2, we use Theorem 1. To apply Theorem 1 , we need only to prove the local boundedness of the weak solutions u, i.e., $\|u\|_{L^{\infty}\left(B_{R}\left(x_{0}\right)\right)} \leq C\left(x_{0}\right)$ for any given $x_{0} \in \mathbf{R}^{N}$ and then apply Theorem 1 with $f(x)=f(x, u(x))$. Usually, one uses the test function $\varphi=\eta^{p} u^{+}\left(u_{L}^{+}\right)^{p(\beta-1)}$ with

$$
u_{L}^{+}= \begin{cases}u^{+}, & u<L \\ L, & u \geq L\end{cases}
$$

to prove the local boundedness of u^{+}(see, e.g., $[10,12]$). As one may see, this test function does not work in our case. We follow [14] to define $\bar{u}=u^{+}+k$, and

$$
\bar{u}_{L}= \begin{cases}\bar{u}, & u^{+}<L \\ L+k, & u \geq L\end{cases}
$$

and $\varphi(x)=\eta^{p}\left(\bar{u} \bar{u}_{L}^{p(\beta-1)}-k^{p(\beta-1)+1}\right)$ for some $k>0$ as a test function. It turns out that this test function does work.

To prove Theorem 3, we mainly use the method of [11]. The key step is to get a decay estimate of the weak solution as in [10](see (5.25) below). However, as both p and q-Laplacian are involved, the test functions used in [10, 11, 14] do not work. We overcome this difficulty by using two test functions separately, to get a couple of inequalities and then combine them to get (5.25). As soon as (5.25) is obtained, the exponential decay of the solutions will be obtained as in [11].

The paper is organized as follows: In $\S 2$, we prove Theorem 1(i); in §3, we prove Theorem 1(ii); in §4, we prove the boundedness of weak solutions and then apply Theorem 1 to prove Theorem 2. In $\S 5$, we give the proof of Theorem 3.

Our symbols are standard. For example, $B_{r}\left(x_{0}\right)$ for $x_{0} \in \mathbf{R}^{N}, r>0$ is the open ball $\left\{x \in \mathbf{R}^{N}| | x-x_{0} \mid<r\right\} ; L^{p}(\Omega)$ is the usual L^{p}-space over the domain $\Omega \subset \mathbf{R}^{N}$ with norm $\|\cdot\|_{L^{p}(\Omega)}$; meas E means the N-dimensional Lebesgue measure of the set $E \subset \mathbf{R}^{N}$, and so on.

2. The proof of Theorem 1(i)

In this section, we give the proof of Theorem 1(i). To this end, we consider the following equation

$$
\begin{cases}-\Delta_{p} u-\Delta_{q} u=f(x), & x \in \mathbf{R}^{N}, \tag{2.1}\\ u \in W_{\mathrm{loc}}^{1, p}\left(\mathbf{R}^{N}\right), & 1<q<p .\end{cases}
$$

Notice that we have by the assumptions that

$$
\begin{equation*}
f \in L_{\mathrm{loc}}^{\infty}\left(R^{N}\right), \quad u \in L_{\mathrm{loc}}^{\infty}\left(\mathbf{R}^{N}\right) \tag{2.2}
\end{equation*}
$$

We will show that

$$
\begin{equation*}
\|\nabla u\|_{L^{\infty}\left(B_{R}\left(x_{0}\right)\right)} \leq C \tag{2.3}
\end{equation*}
$$

where C is a constant depending only on N, p, q, and $\|u\|_{L^{\infty}\left(B_{R}\left(x_{0}\right)\right)}$. For simplicity, we give the proof on $B \equiv B_{1}\left(x_{0}\right)$, the unit ball in \mathbf{R}^{N} with centre x_{0} for any given $x_{0} \in \mathbf{R}^{N}$. Firstly, we prove an identity inspired by [16].

Proposition 2.1. If ψ is a nonnegative C^{2}-function with compact support and $G: \mathbf{R}^{1} \rightarrow \mathbf{R}^{1}$ is a piecewise C^{1}-function with only finitely many breaks and

$$
\begin{equation*}
0 \leq G^{\prime} \leq c_{0} \tag{2.4}
\end{equation*}
$$

for some constant c_{0}, then any weak solution u of (2.1) satisfies

$$
\begin{align*}
& \int_{B} \sum_{i, j=1}^{N}\left\{\left(|\nabla u|^{p-2}+|\nabla u|^{q-2}\right) \delta_{i j}+\left[(p-2)|\nabla u|^{p-4}+(q-2)|\nabla u|^{q-4}\right] u_{x_{i}} u_{x_{j}}\right\} \\
& \quad \cdot u_{x_{s}, x_{i}} u_{x_{s}, x_{j}} G^{\prime}\left(u_{x_{s}}\right) \psi d x \\
& =\int_{B} \sum_{j=1}^{N}\left(|\nabla u|^{p-2}+|\nabla u|^{q-2}\right) u_{x_{j}} \cdot \frac{d}{d x_{s}}\left\{G\left(u_{x_{s}}\right) \psi_{x_{j}}\right\} d x \tag{2.5}\\
& \quad-\int_{B} f \frac{d}{d x_{s}}\left\{G\left(u_{x_{s}}\right) \psi\right\} d x
\end{align*}
$$

where $\delta_{i j}$ are the Kronecker symbols.
Proof. The proof follows by multiplying equation (2.1) by $\frac{d}{d x_{s}}\left(G\left(u_{x_{s}}\right) \psi\right)$ and integrating by parts.

Next we show the L^{∞}-estimate of the gradient of solutions u of (2.1). Before that we give the following result.

Lemma 2.2. ([16], Corollary 1) For any $v \in W^{1, p}\left(B_{R}\right)$, where $B_{R}=B_{R}\left(x_{0}\right)$ for any fixed $x_{0} \in \mathbf{R}^{N}$, suppose that

$$
\begin{equation*}
\int_{B_{R}}|v| d x \leq M \cdot R^{N} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{A_{k, r}}|\nabla v|^{p} d x \leq M^{p} \cdot\left(r^{\prime}-r\right)^{-p} \cdot R^{N \alpha} \cdot\left(\text { meas } A_{k, r^{\prime}}\right)^{1-\alpha} \tag{2.7}
\end{equation*}
$$

for some constant M, some $\alpha \in(0, p / N)$, all $k \geq 0$ and all r and r^{\prime} satisfying

$$
R / 2<r<r^{\prime} \leq R,
$$

where $A_{k, r}=\left\{x \in B_{r}\left(x_{0}\right) \mid v(x)>k\right\}$. Then there is a constant C depending only on N, p, and α such that

$$
\begin{equation*}
v \leq C \cdot M \quad \text { in } B_{R / 2}\left(x_{0}\right) \tag{2.8}
\end{equation*}
$$

For the proof of Theorem 1(i), it is enough to prove the following result.
Proposition 2.3. Suppose that (2.2) holds for the weak solution u of (2.1). Then for any $x_{0} \in \mathbf{R}^{N}$, there exists a constant C depending only on N, p, q, ess $\sup _{B}|u|$ and ess $\sup _{B}|f|$ such that

$$
\begin{equation*}
|\nabla u| \leq C \quad \text { in } B_{1 / 2}\left(x_{0}\right), \tag{2.9}
\end{equation*}
$$

where $B=B_{1}\left(x_{0}\right)$.
Proof. Choose a nonnegative C^{∞}-function ρ having the properties

$$
\rho(t) \begin{cases}=0, & \text { for } t \geq 1 \tag{2.10}\\ \in(0,1), & \text { for } t \in(0,1) \\ =1, & \text { for } t \leq 0\end{cases}
$$

For $R \in(0,1 / 8)$ and $i \in \mathbf{Z}^{+} \cup\{0\}$, we set

$$
\begin{align*}
R_{i} & =2 R+2^{-i-1} R \\
B_{i} & =B_{R_{i}}\left(x_{0}\right) \tag{2.11}\\
\varphi_{i}(x) & =\rho\left(2^{i+1} R^{-1}\left(\left|x-x_{0}\right|-R_{i}\right)\right) .
\end{align*}
$$

In the following, C stands for a generic constant depending only on N, p, q, ess $\sup _{B}|u|$ and ess $\sup _{B}|f|$ and may differ in different spaces, where $B=B_{1}\left(x_{0}\right)$. In contrast to C, the generic constant $C(R)$ may also depend on R, and $C(\varepsilon)$ may depend on ε.

To prove (2.9), we will first show that there is an $R_{0}>0$ depending only on N, $p, q, \operatorname{ess} \sup _{B}|u|$ and $\operatorname{ess} \sup _{B}|f|$ such that

$$
\begin{equation*}
\int_{B_{i}}|\nabla u|^{p+2 i} d x \leq C(R) \tag{2.12}
\end{equation*}
$$

for $i=0,1, \ldots,[N p]$ provided that

$$
\begin{equation*}
R \leq R_{0} \tag{2.13}
\end{equation*}
$$

where $[N p]$ is the integer part of $N p$. It can be seen that (2.12) is true for $i=0$. Hence we may suppose that (2.12) holds for some $i \in\{1, \ldots,[N p]-1\}$ and then we prove that it is true for $i+1$.

We pick an $M>0$ and define for $t \in \mathbf{R}^{1}$ that

$$
\begin{aligned}
g(t) & = \begin{cases}t-1, & \text { if } t \geq 1 \\
0, & \text { if } t \in[-1,1], \\
t+1, & \text { if } t \leq-1,\end{cases} \\
g_{M}(t) & = \begin{cases}M, & \text { if } g(t) \geq M, \\
g(t), & \text { if } g(t) \in[-M, M] \\
-M, & \text { if } g(t) \leq-M,\end{cases}
\end{aligned}
$$

and

$$
G(t)=g(t)\left|g_{M}(t)\right|^{2 i}
$$

It is obvious that $G(t)$ satisfies the assumption of Proposition 2.1. Then for any $s \in\{1,2, \ldots, N\}$, we define

$$
\begin{gathered}
u_{s}=g\left(u_{x_{s}}\right)= \begin{cases}u_{x_{s}}-1, & \text { if } u_{x_{s}} \geq 1, \\
0, & \text { if } u_{x_{s}} \in[-1,1], \\
u_{x_{s}}+1, & \text { if } u_{x_{s}} \leq-1,\end{cases} \\
u_{s, M}=g_{M}\left(u_{x_{s}}\right)= \begin{cases}M, & \text { if } u_{s} \geq M, \\
u_{s}, & \text { if } u_{s} \in[-M, M], \\
-M, & \text { if } u_{s} \leq-M .\end{cases}
\end{gathered}
$$

Inserting

$$
G\left(u_{x_{s}}\right)=u_{s}\left|u_{s, M}\right|^{2 i}, \quad \psi=\varphi_{i+1}^{2}
$$

into the left hand of (2.5) and noting that $G^{\prime}\left(u_{x_{s}}\right) \geq u_{s, M}^{2 i} \geq 0$, we have

$$
\begin{align*}
& \int_{B} \sum_{i, j=1}^{N}\left\{\left(|\nabla u|^{p-2}+|\nabla u|^{q-2}\right) \delta_{i j}+\left[(p-2)|\nabla u|^{p-4}+(q-2)|\nabla u|^{q-4}\right] u_{x_{i}} u_{x_{j}}\right\} \\
& \quad \cdot u_{x_{s}, x_{i}} u_{x_{s}, x_{j}} G^{\prime}\left(u_{x_{s}}\right) \psi d x \\
& =\int_{B}\left\{\left(|\nabla u|^{p-2}+|\nabla u|^{q-2}\right)\left|\nabla u_{x_{s}}\right|^{2}+\left[(p-2)|\nabla u|^{p-4}+(q-2)|\nabla u|^{q-4}\right]\right. \tag{2.14}
\end{align*}
$$

$\left.\cdot\left|\nabla u \cdot \nabla u_{x_{s}}\right|^{2}\right\} G^{\prime}\left(u_{x_{s}}\right) \psi d x$

$$
\begin{aligned}
& \geq \int_{B}\left\{\left[|\nabla u|^{p-2}\left|\nabla u_{x_{s}}\right|^{2}+(p-2)|\nabla u|^{p-4}\left|\nabla u \cdot \nabla u_{x_{s}}\right|^{2}\right]\right. \\
& \left.\quad+\left[|\nabla u|^{q-2}\left|\nabla u_{x_{s}}\right|^{2}+(q-2)|\nabla u|^{q-4}\left|\nabla u \cdot \nabla u_{x_{s}}\right|^{2}\right]\right\} u_{s, M}^{2 i} \varphi_{i+1}^{2} d x \\
& \geq \min \{1, p-1\} \int_{B}|\nabla u|^{p-2}\left|\nabla u_{x_{s}}\right|^{2} u_{s, M}^{2 i} \varphi_{i+1}^{2} d x .
\end{aligned}
$$

On the other hand, by the definition of $u_{s, M}$, we have that $|\nabla u| \geq 1$ on the support of $u_{s, M}$. Hence

$$
\begin{aligned}
& \int_{B} \sum_{j=1}^{N}\left(|\nabla u|^{p-2}+|\nabla u|^{q-2}\right) u_{x_{j}} \cdot \frac{d}{d x_{s}}\left\{G\left(u_{x_{s}}\right) \psi_{x_{j}}\right\} d x \\
&= \int_{B} \sum_{j=1}^{N}\left(|\nabla u|^{p-2}+|\nabla u|^{q-2}\right) u_{x_{j}} \cdot G^{\prime}\left(u_{x_{s}}\right) u_{x_{s} x_{s}} \psi_{x_{j}} d x \\
&+\int_{B} \sum_{j=1}^{N}\left(|\nabla u|^{p-2}+|\nabla u|^{q-2}\right) u_{x_{j}} \cdot G\left(u_{x_{s}}\right) \psi_{x_{s} x_{j}} d x \\
& \leq C \int_{B}\left(|\nabla u|^{p-2}+|\nabla u|^{q-2}\right)|\nabla u| u_{s, M}^{2 i}\left|\nabla u_{s}\right| \varphi_{i+1}\left|\nabla \varphi_{i+1}\right| d x \\
&+C(R) \int_{B} \sum_{j=1}^{N}\left(|\nabla u|^{p-1}+|\nabla u|^{q-1}\right) u_{s, M}^{2 i}|\nabla u| d x \\
& \leq C \int_{B}|\nabla u|^{p-1} u_{s, M}^{2 i}\left|\nabla u_{s}\right| \cdot \varphi_{j+1}\left|\nabla \varphi_{j+1}\right| d x+C(R) \int_{B}|\nabla u|^{p+2 i} d x \\
& \leq \varepsilon \int_{B}|\nabla u|^{p-2}\left|\nabla u_{s}\right|^{2} u_{s, M}^{2 i} \varphi_{i+1}^{2} d x+C(\varepsilon) \int_{B}|\nabla u|^{p} u_{s, M}^{2 i}\left|\nabla \varphi_{i+1}\right|^{2} d x+C(R),
\end{aligned}
$$

and by (2.2) and the fact that $|\nabla u| \geq 1$ on the support of $u_{s, M}$, we have that

$$
\begin{align*}
& \int_{B}(-f) \frac{d}{d x_{s}}\left\{G\left(u_{x_{s}}\right) \psi\right\} d x \\
& \leq C \int_{B}|f| u_{s, M}^{2 i}\left|\nabla u_{x_{s}}\right| \varphi_{i+1}^{2} d x+C \int_{B}\left|f \| u_{s}\right| u_{s, M}^{2 i} \varphi_{i+1}\left|\nabla \varphi_{i+1}\right| d x \\
& \leq C \int_{B}|\nabla u|^{p-1} u_{s, M}^{2 i}\left|\nabla u_{s}\right| \varphi_{i+1}^{2} d x+C \int_{B}|\nabla u|^{p} u_{s, M}^{2 i} \varphi_{i+1}\left|\nabla \varphi_{i+1}\right| d x \tag{2.16}\\
& \leq \varepsilon \int_{B}|\nabla u|^{p-2}\left|\nabla u_{s}\right|^{2} u_{s, M}^{2 i} \varphi_{i+1}^{2} d x+C(\varepsilon) \int_{B}|\nabla u|^{p} u_{s, M}^{2 i} \varphi_{i+1}^{2} d x \\
& \quad+C(R) \int_{B}|\nabla u|^{p+2 i} d x .
\end{align*}
$$

Thus by (2.5), (2.14), (2.15) and (2.16), we have that

$$
\begin{aligned}
& \min \{1, p-1\} \int_{B}|\nabla u|^{p-2}\left|\nabla u_{x_{s}}\right|^{2} u_{s, M}^{2 i} \varphi_{i+1}^{2} d x \\
& \leq \int_{B} \sum_{j=1}^{N}\left(|\nabla u|^{p-2}+|\nabla u|^{q-2}\right) u_{x_{j}} \cdot \frac{d}{d x_{s}}\left\{G\left(u_{x_{s}}\right) \psi_{x_{j}}\right\} d x-\int_{B} f \frac{d}{d x_{s}}\left\{G\left(u_{x_{s}}\right) \psi\right\} d x
\end{aligned}
$$

$$
\begin{aligned}
\leq & 2 \varepsilon \int_{B}|\nabla u|^{p-2}\left|\nabla u_{s}\right|^{2} u_{s, M}^{2 i} \varphi_{i+1}^{2} d x+C(\varepsilon) \int_{B}|\nabla u|^{p} u_{s, M}^{2 i}\left|\nabla \varphi_{i+1}\right|^{2} d x \\
& +C(\varepsilon) \int_{B}|\nabla u|^{p} u_{s, M}^{2 i} \varphi_{i+1}^{2} d x+C(R) \\
\leq & 2 \varepsilon \int_{B}|\nabla u|^{p-2}\left|\nabla u_{s}\right|^{2} u_{s, M}^{2 i} \varphi_{i+1}^{2} d x+C(\varepsilon, R) \int_{B}|\nabla u|^{p+2 i} d x+C(R) \\
\leq & 2 \varepsilon \int_{B}|\nabla u|^{p-2}\left|\nabla u_{s}\right|^{2} u_{s, M}^{2 i} \varphi_{i+1}^{2} d x+C(\varepsilon, R) .
\end{aligned}
$$

Then ε can be chosen such that

$$
\begin{equation*}
\int_{B}|\nabla u|^{p-2}\left|\nabla u_{x_{s}}\right|^{2} u_{s, M}^{2 i} \varphi_{i+1}^{2} d x \leq C(R) \tag{2.17}
\end{equation*}
$$

Now, we prove (2.12) for $i+1$. Notice that

$$
\begin{equation*}
\sum_{s=1}^{N}|\nabla u|^{p+2} u_{s, M}^{2 i}=\sum_{s=1}^{N}\left(\sum_{j=1}^{N} u_{x_{j}}^{2}\right)^{(p+2) / 2} u_{s, M}^{2 i} \leq \sum_{s=1}^{N} \sum_{j=1}^{N}\left|u_{x_{j}}\right|^{p+2} u_{s, M}^{2 i} \tag{2.18}
\end{equation*}
$$

and the fact that

$$
\left|u_{x_{j}}\right|^{p+2} u_{s, M}^{2 i} \leq\left|u_{x_{s}}\right|^{p+2} u_{s, M}^{2 i} \leq \sum_{s=1}^{N}\left|u_{x_{s}}\right|^{p+2} u_{s, M}^{2 i} \text {, if }\left|u_{x_{j}}\right| \leq\left|u_{x_{s}}\right|,
$$

as well as

$$
\left|u_{x_{j}}\right|^{p+2} u_{s, M}^{2 i} \leq\left|u_{x_{j}}\right|^{p+2} u_{j, M}^{2 i} \leq \sum_{s=1}^{N}\left|u_{x_{s}}\right|^{p+2} u_{s, M}^{2 i}, \text { if }\left|u_{x_{j}}\right| \geq\left|u_{x_{s}}\right| .
$$

Thus we have

$$
\begin{equation*}
\sum_{s=1}^{N} \sum_{j=1}^{N}\left|u_{x_{j}}\right|^{p+2} u_{s, M}^{2 i} \leq N^{2} \sum_{s=1}^{N}\left|u_{x_{s}}\right|^{p+2} u_{s, M}^{2 i} \tag{2.19}
\end{equation*}
$$

Hence with the help of (2.18) and (2.19), we have that

$$
\begin{array}{ll}
\sum_{s=1}^{N} \int_{B}|\nabla u|^{p+2} u_{s, M}^{2 i} \varphi_{i+1}^{2} d x & \\
\leq C \sum_{s=1}^{N} \int_{B} \mid u_{x_{s}}^{p+2} u_{s, M}^{2 i} \varphi_{i+1}^{2} d x & \text { by (2.18), } \tag{2.19}\\
\leq C \sum_{s=1}^{N} \int_{B}\left|u_{s}\right|^{p} u_{s} u_{s, M}^{2 i} \varphi_{i+1}^{2} \cdot u_{x_{s}} d x+C \sum_{s=1}^{N} \int_{B} u_{s, M}^{2 i} \varphi_{i+1}^{2} d x
\end{array}
$$

$$
\begin{aligned}
\leq & C \sum_{s=1}^{N} \int_{B}\left|u_{s}\right|^{p} u_{s, x_{s}} u_{s, M}^{2 i} \varphi_{i+1}^{2} u d x+C \sum_{s=1}^{N} \int_{B}\left|u_{s}\right|^{p-2} u_{s} u_{s, x_{s}} u_{s, M}^{2 i} \varphi_{i+1}^{2} u d x \\
& +C \sum_{s=1}^{N} \int_{B}\left|u_{s}\right|^{p} u_{s} u_{s, M}^{2 i-2} u_{s, M} u_{s, M, x_{s}} \varphi_{i+1}^{2} u d x \\
& +C \sum_{s=1}^{N} \int_{B}\left|u_{s}\right|^{p} u_{s} u_{s, M}^{2 i} \varphi_{i+1}\left|\nabla \varphi_{i+1}\right| u d x+C(R) \int_{B_{i}}|\nabla u|^{2 i} d x
\end{aligned}
$$

$$
\begin{align*}
\leq & C \sum_{s=1}^{N} \int_{B}|\nabla u|^{p}\left|\nabla u_{s}\right| u_{s, M}^{2 i} \varphi_{i+1}^{2} d x+C \sum_{s=1}^{N} \int_{B}|\nabla u|^{p} u_{s, M}^{2 i} \varphi_{i+1}^{2} d x \tag{2.20}\\
& +C \sum_{s=1}^{N} \int_{B}|\nabla u|^{p+1} u_{s, M}^{2 i} \varphi_{i+1}\left|\nabla \varphi_{i+1}\right| d x+C(R) \\
\leq & 2 \varepsilon \sum_{s=1}^{N} \int_{B}|\nabla u|^{p+2} u_{s, M}^{2 i} \varphi_{i+1}^{2} d x+C(\varepsilon, R) \sum_{s=1}^{N} \int_{B}|\nabla u|^{p} u_{s, M}^{2 i} d x \\
& +C(\varepsilon) \sum_{s=1}^{N} \int_{B}|\nabla u|^{p-2}\left|\nabla u_{s}\right|^{2} u_{s, M}^{2 i} \varphi_{i+1}^{2} d x+C(R) .
\end{align*}
$$

Here, integration by parts and Young's inequality are used. Then, by virtue of (2.12) for i and (2.17), (2.20) implies that

$$
\begin{equation*}
\sum_{s=1}^{N} \int_{B}|\nabla u|^{p+2} u_{s, M}^{2 i} \varphi_{i+1}^{2} d x \leq C(R) . \tag{2.21}
\end{equation*}
$$

Set $i=0$ in (2.21). We get

$$
\begin{equation*}
\sum_{s=1}^{N} \int_{B}|\nabla u|^{p+2} \varphi_{1}^{2} d x \leq C(R), \tag{2.22}
\end{equation*}
$$

and letting $M \rightarrow+\infty$ in (2.21), we get

$$
\begin{equation*}
\sum_{s=1}^{N} \int_{B}|\nabla u|^{p+2} u_{s}^{2 i} \varphi_{i+1}^{2} d x \leq C(R) \tag{2.23}
\end{equation*}
$$

So by (2.22) and (2.23) we get

$$
\begin{aligned}
\int_{B_{i+1}}|\nabla u|^{p+2(i+1)} d x & \leq \int_{B}|\nabla u|^{p+2}|\nabla u|^{2 i} \varphi_{i+1}^{2} d x \\
& \leq C \sum_{s=1}^{N} \int_{B}|\nabla u|^{p+2}\left|u_{x_{s}}\right|^{2 i} \varphi_{i+1}^{2} d x
\end{aligned}
$$

$$
\leq C \sum_{s=1}^{N} \int_{B}|\nabla u|^{p+2}\left|u_{s}\right|^{2 i} \varphi_{i+1}^{2} d x+C \sum_{s=1}^{N} \int_{B}|\nabla u|^{p+2} \varphi_{i+1}^{2} d x \leq C(R) .
$$

Thus (2.12) is proved.
Now, we use (2.12) to prove (2.9). From now on, we fix R by taking

$$
\begin{equation*}
R=R_{0} \tag{2.24}
\end{equation*}
$$

for some given $R_{0} \in \mathbf{R}^{1}$. As the dependence on R of the generic constant C does not matter any more, we do not indicate it in the following. For $k \geq 0$ and

$$
R \leq r \leq r^{\prime} \leq 2 R
$$

we set

$$
\begin{aligned}
\varphi(x) & =\rho\left(\left(r^{\prime}-r\right)^{-1} \cdot\left(\left|x-x_{0}\right|-r\right)\right), \\
A_{k, r} & =\left\{x \in B_{r}\left(x_{0}\right) \mid u_{s}(x)>k\right\} .
\end{aligned}
$$

For $t \in \mathbf{R}^{1}$, we define

$$
g(t)= \begin{cases}t-1, & \text { if } t \geq 1 \\ 0, & \text { if } t \in[-1,1] \\ t+1, & \text { if } t \leq-1\end{cases}
$$

and

$$
G(t)=\max \{g(t)-k, 0\} .
$$

It is obvious that $G(t)$ satisfies the assumption of Proposition 2.1. Then we define $u_{s}=g\left(u_{x_{s}}\right)$ and insert

$$
G\left(u_{x_{s}}\right)=\max \left\{u_{s}-k, 0\right\}, \quad \psi=\varphi^{2}
$$

into (2.5), and following in the same way which leads to (2.17), we get

$$
\begin{equation*}
\int_{A_{k, r^{\prime}}}|\nabla u|^{p-2}\left|\nabla u_{s}\right|^{2} \varphi^{2} d x \leq C \cdot\left(r^{\prime}-r\right)^{-2} \int_{A_{k, r}}|\nabla u|^{p} d x . \tag{2.25}
\end{equation*}
$$

Noticing that (2.12) gives that

$$
\begin{equation*}
\int_{B_{N_{p}}}|\nabla u|^{N p} d x \leq C \tag{2.26}
\end{equation*}
$$

and the fact that $r^{\prime}<R_{i}$ implies that

$$
\begin{equation*}
B_{r^{\prime}}\left(x_{0}\right) \subset B_{i}\left(x_{0}\right) \tag{2.27}
\end{equation*}
$$

for any $i \in\{0,1, \ldots,[N p]\}$, we have by (2.26) and (2.27) that

$$
\begin{equation*}
\left(\int_{A_{k, r^{\prime}}}|\nabla u|^{N p} d x\right)^{1 / N} \leq\left(\int_{B_{N p}}|\nabla u|^{N p} d x\right)^{1 / N} \leq C \tag{2.28}
\end{equation*}
$$

Then, (2.28) and Hölder's inequality show that

$$
\begin{align*}
\int_{A_{k, r^{\prime}}}|\nabla u|^{p} d x & \leq\left(\int_{A_{k, r^{\prime}}}|\nabla u|^{N p} d x\right)^{1 / N} \cdot\left(\operatorname{meas} A_{k, r^{\prime}}\right)^{\frac{N-1}{N}} \tag{2.29}\\
& \leq C \cdot\left(\operatorname{meas} A_{k, r^{\prime}}\right)^{\frac{N-1}{N}} .
\end{align*}
$$

Thus, by (2.25), (2.29), Young's and Hölder's inequalities, we get that

$$
\begin{equation*}
\int_{A_{k, r^{\prime}}}|\nabla u|^{p-2}\left|\nabla u_{s}\right|^{2} \varphi^{2} d x \leq C \cdot\left(r^{\prime}-r\right)^{-2}\left(\text { meas } A_{k, r^{\prime}}\right)^{1-\frac{1}{N}}, \tag{2.30}
\end{equation*}
$$

and then

$$
\begin{equation*}
\int_{A_{k, r}}|\nabla u|^{p-2}\left|\nabla u_{s}\right|^{2} d x \leq C \cdot\left(r^{\prime}-r\right)^{-2}\left(\text { meas } A_{k, r^{\prime}}\right)^{1-\frac{1}{N}} . \tag{2.31}
\end{equation*}
$$

If $p \geq 2$, (2.31) implies that

$$
\begin{equation*}
\int_{A_{k, r}}\left|\nabla u_{s}\right|^{2} d x \leq \int_{A_{k, r}}|\nabla u|^{p-2}\left|\nabla u_{s}\right|^{2} d x \leq C \cdot\left(r^{\prime}-r\right)^{-2}\left(\text { meas } A_{k, r^{\prime}}\right)^{1-\frac{1}{N}} . \tag{2.32}
\end{equation*}
$$

If $p \leq 2$, we additionally use (2.29), Hölder's and Young's inequalities to obtain that

$$
\begin{align*}
& \int_{A_{k, r}}\left|\nabla u_{s}\right|^{p} d x \\
& \leq\left(\int_{A_{k, r}}\left(r^{\prime}-r\right)^{2-p}|\nabla u|^{p-2}\left|\nabla u_{s}\right|^{2} d x\right)^{p / 2} \cdot\left(\int_{A_{k, r}}\left(r^{\prime}-r\right)^{-p}|\nabla u|^{p} d x\right)^{(2-p) / 2} \tag{2.33}\\
& \leq \frac{p}{2}\left(r^{\prime}-r\right)^{2-p} \cdot \int_{A_{k, r}}|\nabla u|^{p-2}\left|\nabla u_{s}\right|^{2} d x+\frac{2-p}{2}\left(r^{\prime}-r\right)^{-p} \cdot \int_{A_{k, r}}|\nabla u|^{p} d x \\
& \leq C\left(r^{\prime}-r\right)^{-p}\left(\operatorname{meas} A_{k, r^{\prime}}\right)^{1-\frac{1}{N}} .
\end{align*}
$$

If we choose $R_{0} \in(1 / 2,1)$ in (2.24) at first, we have

$$
\begin{align*}
\int_{B_{2 R}}\left|u_{x_{s}}\right| d x & \leq\left(\int_{B_{2 R}}|\nabla u|^{p} d x\right)^{1 / p} \cdot\left(\text { meas } B_{2 R}\right)^{\frac{(p-1)}{p}} \\
& \leq C \cdot\left[\kappa_{N} \cdot(2 R)^{N}\right]^{\frac{(p-1)}{p}} \tag{2.34}\\
& \leq C R^{N},
\end{align*}
$$

where κ_{N} denotes the volume of the unit ball in \mathbf{R}^{N}.
So (2.32), (2.33), (2.34) and Lemma 2.2 show that

$$
u_{s} \leq C \quad \text { in } B_{R}\left(x_{0}\right) .
$$

As $-u$ satisfies all the same estimates above as u does, we have shown that Proposition 2.3 is true. Hence Theorem 1(i) is proved.

3. The proof of Theorem 1(ii)

We will prove Theorem 1(ii) in this section. To this end, it is enough to prove the following result:

Proposition 3.1. Suppose that u is a weak solution of (2.1) and $u, f(x)$ and $|\nabla u|$ are locally bounded. Then there is an $\alpha>0$ and a constant C depending only on N, p, q, ess $\sup _{B}|u|$ and ess $\sup _{B}|f|$ such that

$$
\begin{equation*}
\left|\nabla u(x)-\nabla u\left(x_{0}\right)\right| \leq C \cdot\left|x-x_{0}\right|^{\alpha}, \quad \forall x \in B_{1 / 2}\left(x_{0}\right), \tag{3.1}
\end{equation*}
$$

where $B=B_{1}\left(x_{0}\right)$ for any given $x_{0} \in \mathbf{R}^{N}$.
In the following, ρ is defined as in (2.10). By C, we denote a positive generic constant depending only on N, p, q, ess $\sup _{B_{1}\left(x_{0}\right)}|u|$ and ess $\sup _{B_{1}\left(x_{0}\right)}|f|$. We pick an $R \in(0,1 / 2)$ and set

$$
\begin{equation*}
M=\max _{s} \operatorname{ess} \sup _{B_{R}\left(x_{0}\right)}\left|u_{x_{s}}\right| . \tag{3.2}
\end{equation*}
$$

Before we prove Proposition 3.1, we give the following results:
Lemma 3.2. ([[9], Lemma 3.9) There is a C depending only on N, such that

$$
(l-k) \cdot\left(\text { meas } A_{l, \rho}\right)^{1-\frac{1}{N}} \leq \beta \rho^{N} \operatorname{meas}^{-1}\left\{B_{\rho}\left(x_{0}\right) \backslash A_{k, \rho}\right\} \cdot \int_{A_{l, k, \rho}}|\nabla v| d x
$$

for all $l>k$ and $v \in W^{1,1}\left(B_{\rho}\left(x_{0}\right)\right)$, where $A_{k, \rho}=\left\{x \in B_{\rho}\left(x_{0}\right) \mid v(x)>k\right\}$ and $A_{l, k, \rho}=\left\{x \in B_{\rho}\left(x_{0}\right) \mid k<v(x) \leq l\right\}$.

Lemma 3.3. ([9], Lemma 4.7) If a nonnegative sequence $\left\{y_{h}\right\}, h=0,1,2, \ldots$, satisfies

$$
y_{h+1} \leq c b^{h} y_{h}^{1+\varepsilon}, \quad h=0,1, \ldots,
$$

where c, ε and $b>1$ are positive constants, then

$$
y_{h} \leq c^{\frac{(1+\varepsilon)^{h}-1}{\varepsilon}} b^{\frac{(1+\varepsilon)^{h}-1}{\varepsilon^{2}}-\frac{h}{\varepsilon}} y_{0}^{(1+\varepsilon) h} .
$$

Especially, if $y_{0} \leq \theta=c^{-1 / \varepsilon} b^{-1 / \varepsilon^{2}}$, then

$$
y_{h} \leq \theta b^{-1 / \varepsilon}
$$

and

$$
y_{h} \rightarrow 0, \quad \text { as } h \rightarrow \infty .
$$

Lemma 3.4. ([9], Lemma 4.8) Suppose $u(x)$ is measurable and bounded on $B_{\rho_{0}}\left(x_{0}\right)$. Considering $B_{\rho}\left(x_{0}\right)$ and $B_{b \rho}\left(x_{0}\right)$, where $b>1$ is a constant, if for all $\rho \leq b^{-1} \rho_{0}, u(x)$ satisfies one of the following inequalities

$$
\begin{aligned}
& \operatorname{osc}\left\{u ; B_{\rho}\left(x_{0}\right)\right\} \leq \bar{c} \rho^{\varepsilon}, \\
& \operatorname{osc}\left\{u ; B_{\rho}\left(x_{0}\right)\right\} \leq \theta \operatorname{osc}\left\{u ; B_{b \rho}\left(x_{0}\right)\right\},
\end{aligned}
$$

where $\bar{c}, \varepsilon \leq 1$ and $\theta<1$ are positive constants, then

$$
\operatorname{osc}\left\{u ; B_{\rho}\left(x_{0}\right)\right\} \leq c \rho_{0}^{-\alpha} \rho^{\alpha}
$$

whenever $\rho \leq \rho_{0}$, where

$$
\alpha=\min \left\{\varepsilon,-\log _{b} \theta\right\}, \quad c=b^{\alpha} \max \left\{\bar{c} \rho_{0}^{\varepsilon}, \operatorname{osc}\left\{u ; B_{\rho_{0}}\left(x_{0}\right)\right\}\right\} .
$$

Lemma 3.5. ([5], Proposition 4.1) Suppose that u is a weak solution of (2.1) and $u, f(x)$ and $|\nabla u|$ are locally bounded. Then for any given $x_{0} \in \mathbf{R}^{N}$, there is a $\mu>0$ depending only on N, p, q, M, ess $\sup _{B_{1}\left(x_{0}\right)}|u|$ and ess $\sup _{B_{1}\left(x_{0}\right)}|f|$, such that if for some $1 \leq s \leq N$

$$
\begin{equation*}
\operatorname{meas}\left\{x \in B_{R}\left(x_{0}\right) \mid u_{x_{s}}(x) \leq M / 2\right\} \leq \mu R^{N}, \tag{3.3}
\end{equation*}
$$

then

$$
u_{x_{s}}(x) \geq M / 8, \quad \forall x \in B_{R / 2}\left(x_{0}\right)
$$

where M is defined in (3.2). Analogously, if

$$
\begin{equation*}
\operatorname{meas}\left\{x \in B_{R}\left(x_{0}\right) \mid u_{x_{s}}(x) \geq-M / 2\right\} \leq \mu R^{N} \tag{3.4}
\end{equation*}
$$

then

$$
u_{x_{s}}(x) \leq-M / 8, \quad \forall x \in B_{R / 2}\left(x_{0}\right)
$$

Now, we begin to prove Proposition 3.1.
We have shown in $\S 2$ that the gradient of a weak solution u of (2.1) is locally bounded under the condition of Proposition 3.1. Therefore, by Lemma 3.5 there are two cases: Case I: Either (3.3) or (3.4) is satisfied; Case II: Neither (3.3) nor (3.4) is satisfied. We follow [5] to consider these two cases to prove Proposition 3.1.

Case I: Either (3.3) or (3.4) is satisfied. Notice that if either (3.3) or (3.4) holds, we have by Lemma 3.5 that

$$
\left|u_{x_{s}}(x)\right| \geq M / 8, \quad \forall x \in B_{R / 2}\left(x_{0}\right) .
$$

Moreover, by the definition of M (see (3.2)) we have

$$
\begin{equation*}
M / 8 \leq|\nabla u| \leq M \quad \text { in } B_{R / 2}\left(x_{0}\right) \tag{3.5}
\end{equation*}
$$

For $l>k \geq 0$ and $r, r^{\prime} \in \mathrm{R}$ satisfying $0<r<r^{\prime} \leq R$, we set for a solution u of (2.1) that

$$
\begin{aligned}
\varphi(x) & =\rho\left(\left(r^{\prime}-r\right)^{-1} \cdot\left(\left|x-x_{0}\right|-r\right)\right), \\
A_{k, r} & =\left\{x \in B_{r}\left(x_{0}\right) \mid u_{x_{s}}(x)>k\right\}
\end{aligned}
$$

and

$$
A_{l, k, r}=\left\{x \in B_{r}\left(x_{0}\right) \mid k<u_{x_{s}}(x) \leq l\right\} .
$$

For $t \in \mathbf{R}^{1}$, we define

$$
g(t)= \begin{cases}t-1, & \text { if } t \geq 1 \\ 0, & \text { if } t \in[-1,1] \\ t+1, & \text { if } t \leq-1\end{cases}
$$

and

$$
G(t)=\max \{g(t)-k, 0\} .
$$

It is obvious that $G(t)$ satisfies the assumption of Proposition 2.1. Then we define $u_{s}=g\left(u_{x_{s}}\right)$ and insert

$$
G\left(u_{x_{s}}\right)=\max \left\{u_{s}-k, 0\right\}, \quad \psi=\varphi^{2}
$$

into (2.5). Integrating the first term on the right of (2.5) by parts, then following in the same way which leads to (2.17), we get

$$
\begin{align*}
\int_{A_{k, r^{\prime}}}\left|\nabla u_{x_{s}}\right|^{2} \varphi^{2} d x & \leq C \int_{A_{k, r^{\prime}}}\left(u_{x_{s}}-k\right)^{2}|\nabla \varphi|^{2} d x+C \int_{A_{k, r^{\prime}}} \varphi^{2} d x \\
& \leq C \cdot\left(r^{\prime}-r\right)^{-2} \int_{A_{k, r^{\prime}}}\left(u_{x_{s}}-k\right)^{2} d x+C \cdot \operatorname{meas} A_{k, r^{\prime}} \tag{3.6}
\end{align*}
$$

Notice that if $u_{x_{s}}$ satisfies (3.6), so does $-u_{x_{s}}$. On the other hand, for $W(x)=$ $\pm u_{x_{s}}(x)$, at least one of the following inequalities

$$
\begin{aligned}
& \text { meas }\left\{x \in B_{R / 2}\left(x_{0}\right) \left\lvert\, u_{x_{s}}(x)>\max _{B_{R}\left(x_{0}\right)} u_{x_{s}}-\frac{1}{2} \operatorname{osc}\left\{u_{x_{s}} ; B_{R}\left(x_{0}\right)\right\}\right.\right\} \leq \frac{1}{2} \text { meas } B_{R / 2}\left(x_{0}\right), \\
& \text { meas }\left\{x \in B_{R / 2}\left(x_{0}\right) \left\lvert\, u_{x_{s}}(x)<\min _{B_{R}\left(x_{0}\right)} u_{x_{s}}+\frac{1}{2} \operatorname{osc}\left\{u_{x_{s}} ; B_{R}\left(x_{0}\right)\right\}\right.\right\} \leq \frac{1}{2} \text { meas } B_{R / 2}\left(x_{0}\right)
\end{aligned}
$$

must be true. That is, either $W(x)=u_{x_{s}}(x)$ or $W(x)=-u_{x_{s}}(x)$ satisfies

$$
\begin{align*}
& \text { meas }\left\{x \in B_{R / 2}\left(x_{0}\right) \left\lvert\, W(x)>\max _{B_{R}}\left(x_{0}\right) W-\frac{1}{2} \operatorname{osc}\left\{u_{x_{s}} ; B_{R}\left(x_{0}\right)\right\}\right.\right\} \tag{3.7}\\
& \leq \frac{1}{2} \text { meas } B_{R / 2}\left(x_{0}\right) .
\end{align*}
$$

If we set

$$
\begin{equation*}
\omega=\frac{1}{2} \operatorname{osc}\left\{u_{x_{s}} ; B_{R}\left(x_{0}\right)\right\}, \quad k^{\prime}=\max _{B_{R}\left(x_{0}\right)} W-\omega \quad \text { and } \quad k^{\prime \prime}=\max _{B_{R}\left(x_{0}\right)} W \tag{3.8}
\end{equation*}
$$

then (3.7) implies that

$$
\begin{equation*}
\text { meas } A_{k^{\prime}, R / 2} \leq \frac{1}{2} \text { meas } B_{R / 2}\left(x_{0}\right) \tag{3.9}
\end{equation*}
$$

In the following, we first assume that

$$
\begin{equation*}
\omega \geq 2^{t_{0}} R \tag{3.10}
\end{equation*}
$$

where t_{0} is determined below.
Lemma 3.6. For any $\theta \in(0,1)$, there is a $t_{0}>0$, such that if W satisfies (3.6), (3.10) (i.e., W satisfies all the estimates that $u_{x_{s}}$ does in (3.6) and (3.10)), then for

$$
\begin{align*}
& k^{\prime \prime}=\max _{B_{R}\left(x_{0}\right)} W \geq \max _{B_{R}} W-2^{-t_{0}} \omega, \tag{3.11}\\
& k^{0}=\max _{B_{R}} W-2^{-t_{0}+1} \omega \tag{3.12}
\end{align*}
$$

we have

$$
\begin{equation*}
\text { meas } A_{k^{0}, R / 2} \leq \theta R^{N} \tag{3.13}
\end{equation*}
$$

where $A_{k^{0}, R / 2}$ is defined for W as for $u_{x_{s}}$.

In fact, from (3.7) we know that we can assume $W=u_{x_{s}}$ in Lemma 3.6 without loss of generality.

Proof. Set $k_{t}=\max _{B_{R}\left(x_{0}\right)} W-2^{-t} \omega, D_{t}=A_{k_{t}, R / 2} \backslash A_{k_{t+1}, R / 2}, t=0,1, \ldots, t_{0}-1$. Putting $r=R / 2, r^{\prime}=R, k=k_{t}, l=k_{t+1}, t=0,1, \ldots, t_{0}-2$, into (3.6), we have

$$
\begin{equation*}
\int_{A_{k_{t}, R / 2}}|\nabla W|^{2} d x \leq C\left[1+(R / 2)^{-2}\left(2^{-t} \omega\right)^{2}\right] \cdot \text { meas } A_{k t, R} \tag{3.14}
\end{equation*}
$$

By (3.10) and (3.14), we have

$$
\begin{equation*}
\int_{A_{k}, R / 2}|\nabla W|^{2} d x \leq C \kappa_{N}\left(2^{-t} \omega\right)^{2} R^{N-2} \tag{3.15}
\end{equation*}
$$

where κ_{N} is the volume of the unit ball in \mathbf{R}^{N}.
Now we use Lemma 3.2 to estimate the left hand side of (3.15). Putting $k=k_{t}$, $l=k_{t+1}, \rho=R / 2$ into Lemma 3.2 and with the help of (3.9), we have

$$
\begin{align*}
& \text { meas }^{1-\frac{1}{N}} A_{k_{t_{0}-1}, R / 2} \leq \text { meas }^{1-\frac{1}{N}} A_{k_{t+1}, R / 2} \\
& \leq \frac{\beta(R / 2)^{N}}{\left(k_{t+1}-k_{t}\right) \operatorname{meas}\left(B_{R / 2}\left(x_{0}\right) \backslash A_{k_{t}, R / 2}\right)} \int_{A_{k_{t+1}, k_{t}, R / 2}}|\nabla W| d x \\
& \leq \frac{\beta \cdot(R / 2)^{N}}{2^{-(t+1)} \omega \operatorname{meas}\left(B_{R / 2}\left(x_{0}\right) \backslash A_{k_{t}, R / 2}\right)} \int_{D_{t}}|\nabla W| d x \tag{3.16}\\
& \leq \frac{2^{t+2} \beta}{\kappa_{N} \cdot \omega} \int_{D_{t}}|\nabla W| d x
\end{align*}
$$

where $D_{t}=A_{k_{t+1}, k_{t}, R / 2}$. Then (3.15) and (3.16) give

$$
\begin{equation*}
\text { meas } \frac{2(N-1)}{N} A_{k_{t_{0}-1}, R / 2} \leq C \beta^{2} \kappa_{N}^{-1} \cdot R^{N-2} \text { meas } D_{t} . \tag{3.17}
\end{equation*}
$$

Summing up t from 0 to $t_{0}-2$ and noticing that \sum_{t} meas $D_{t} \leq$ meas $B_{R / 2}\left(x_{0}\right)=$ $\kappa_{N}\left(\frac{R}{2}\right)^{N}$, we have

$$
\begin{equation*}
\text { meas } \frac{2(N-1)}{N} A_{k_{t_{0}-1}, R / 2} \leq \frac{C \beta^{2}}{t_{0}-1} \cdot R^{2(N-1)} \tag{3.18}
\end{equation*}
$$

So, if we take $t_{0}=2+\left[C \beta^{2} \theta^{-\frac{2(N-1)}{N}}\right]$ and $k^{0}=k_{t_{0}-1}$ in (3.18), we get (3.13), and Lemma 3.6 is proved.

Following Lemma 3.6, we show another result.
Lemma 3.7. For $R / 4 \leq r<r^{\prime} \leq R / 2, k \in\left[k^{0}, k^{0}+\frac{H}{2}\right]$ and $H=\max _{B_{R}\left(x_{0}\right)} W-k^{0}$, if W satisfies (3.6), (3.13) (where $A_{k, l}$ are defined for W), we have either

$$
\begin{equation*}
\max _{B_{R / 4}\left(x_{0}\right)} W(x) \leq k^{0}+\frac{H}{2} \tag{3.19}
\end{equation*}
$$

or

$$
\begin{equation*}
H \leq R . \tag{3.20}
\end{equation*}
$$

Proof. Considering $B_{\rho_{h}}\left(x_{0}\right)$, where $\rho_{h}=\frac{R}{4}+\frac{R}{2^{h+2}}, h=0,1, \ldots$, and a sequence of levels

$$
k_{h}=k^{0}+\frac{H}{2}-\frac{H}{2^{h+1}}, \quad h=0,1, \ldots
$$

and denoting $y_{h}=R^{-N}$ meas $A_{k_{h}, \rho_{h}}$ and $D_{h+1}=A_{k_{h}, \rho_{h+1}} \backslash A_{k_{h+1}, \rho_{h+1}}$, it is obvious that $k^{0} \leq k_{h} \leq k^{0}+\frac{H}{2}$ is true for all $h=0,1, \ldots$. By (3.6) with $k=k_{h}, l=k_{h+1}$, $r^{\prime}=\rho_{h}, r=\rho_{h+1}$, we have

$$
\begin{align*}
\int_{D_{h+1}}|\nabla W|^{2} d x & \leq C\left[1+\left(R / 2^{(h+3)}\right)^{-2} \cdot\left(\max _{B_{R}} u_{x_{s}}-k_{h}\right)^{2}\right] \cdot R^{N} y_{h} \tag{3.21}\\
& \leq C\left[1+2^{2(h+3)} R^{-2} H^{2}\right] R^{N} y_{h} .
\end{align*}
$$

If (3.20) were not true, that is

$$
\begin{equation*}
1<R^{-2} H^{2} \tag{3.22}
\end{equation*}
$$

then (3.21), (3.22) would imply that

$$
\begin{align*}
\int_{D_{h+1}}|\nabla W|^{2} d x & \leq C\left[1+2^{2(h+3)}\right] H^{2} R^{N-2} y_{h} \tag{3.23}\\
& \leq C 2^{2(h+4)} H^{2} R^{N-2} y_{h}
\end{align*}
$$

Noticing that

$$
\text { meas } D_{h+1} \leq \text { meas } A_{k_{h}, \rho_{h+1}} \leq \text { meas } A_{k_{h}, \rho_{h}}=R^{N} y_{h}
$$

we have by Hölder's inequality and (3.23) that

$$
\begin{align*}
\int_{D_{h+1}}|\nabla W| d x & \leq\left(\int_{D_{h+1}}|\nabla W|^{2} d x\right)^{1 / 2} \cdot\left(\text { meas } D_{h+1}\right)^{1 / 2} \tag{3.24}\\
& \leq C 2^{h+4} H R^{(N-2) / 2} y_{h}^{1 / 2} \cdot\left(R^{N} y_{h}\right)^{1 / 2} \\
& \leq C 2^{h+4} H R^{N-1} y_{h}
\end{align*}
$$

On the other hand, for

$$
\begin{equation*}
\theta \leq 2^{-2 N-1} \kappa_{N}, \tag{3.25}
\end{equation*}
$$

if we take $k=k_{h}, l=k_{h+1}, \rho=\rho_{h+1}$ in Lemma 3.2 and by (3.13), (3.25) and Lemma 3.2, then we have that

$$
\begin{align*}
\int_{D_{h+1}}|\nabla W| d x & \geq \beta^{-1}\left(k_{h+1}-k_{h}\right) R^{N-1} y_{h+1}^{1-1 / N} \rho_{h+1}^{-N} \cdot \operatorname{meas}\left(B_{\rho_{h+1}}\left(x_{0}\right) \backslash A_{k_{h}, \rho_{h+1}}\right) \\
& \geq \beta^{-1} 2^{-(h+2)} H R^{N-1}\left(\frac{R}{2}\right)^{-N} \cdot \operatorname{meas}\left(B_{R / 4}\left(x_{0}\right) \backslash A_{k^{0}, R / 2}\right) \tag{3.26}\\
& \geq \beta^{-1} 2^{-(h+N+3)} \kappa_{N} H R^{N-1} y_{h+1}^{1-1 / N} .
\end{align*}
$$

So, (3.24) and (3.26) show that

$$
\begin{align*}
y_{h+1} & \leq\left(C \beta 2^{N+7} \kappa_{N}^{-1}\right) \cdot\left(4^{\frac{N}{N+1}}\right)^{h} \cdot y_{h}^{\frac{N}{N-1}} \tag{3.27}\\
& \triangleq c_{0} b_{0}^{h} y_{h}^{1+\varepsilon_{0}}, \quad h=0,1, \ldots,
\end{align*}
$$

where $\varepsilon_{0}=\frac{1}{N-1}>0, b_{0}=4^{\frac{N}{N-1}}, c_{0}=\left(C \beta 2^{N+7} \kappa_{N}^{-1}\right)^{\frac{N}{N-1}}$.
Then, if

$$
y_{0} \leq c_{0}^{-1 / \varepsilon_{0}} b_{0}^{-1 / \varepsilon_{0}^{2}}
$$

that is, (3.13) is satisfied with $\theta \leq c_{0}^{-1 / \varepsilon_{0}} b_{0}^{-1 / \varepsilon_{0}{ }^{2}}$, (3.25) and Lemma 3.3 show that

$$
y_{h} \rightarrow 0, \quad \text { as } h \rightarrow+\infty
$$

and

$$
\max _{B_{R / 4}\left(x_{0}\right)} W(x)=\lim _{h \rightarrow \infty} k_{h}=k^{0}+\frac{H}{2} .
$$

So, Lemma 3.7 is proved.
Thus by Lemma 3.6 and Lemma 3.8 under the assumption (3.10), we finally get that

$$
\begin{aligned}
\max _{B_{R / 4}\left(x_{0}\right)} W(x) & =\lim _{h \rightarrow \infty} k_{h}=k^{0}+\frac{H}{2}=k^{0}+\frac{1}{2}\left[\max _{B_{R}\left(x_{0}\right)} W-k^{0}\right] \\
& =\frac{1}{2}\left[\max _{B_{R}\left(x_{0}\right)} W+k^{0}\right]=\max _{B_{R}\left(x_{0}\right)} W-2^{-t_{0}} \omega
\end{aligned}
$$

that is,

$$
\begin{equation*}
\omega \leq 2^{t_{0}}\left\{\max _{B_{R}\left(x_{0}\right)} W-\max _{B_{R / 4}\left(x_{0}\right)} W\right\} \tag{3.28}
\end{equation*}
$$

Thus we have

$$
\begin{align*}
\omega & \leq \max \left\{2^{t_{0}}\left(\max _{B_{R}\left(x_{0}\right)} W-\max _{B_{R / 4}\left(x_{0}\right)} W\right) ; 2^{t_{0}} R\right\} \\
& \leq 2^{t_{0}} \max \left\{\max _{B_{R}\left(x_{0}\right)} W-\max _{B_{R / 4}\left(x_{0}\right)} W ; R\right\} \tag{3.29}
\end{align*}
$$

even if (3.10) does not hold.
Remember that by definition

$$
\omega=\frac{1}{2} \operatorname{osc}\left\{u_{x_{s}} ; B_{R}\left(x_{0}\right)\right\} \quad \text { and } \quad W=u_{x_{s}} \text { or } W=-u_{x_{s}}
$$

Inequality (3.29) shows that either

$$
\begin{equation*}
\operatorname{osc}\left\{u_{x_{s}} ; B_{R}\left(x_{0}\right)\right\} \leq 2^{t_{0}} R \tag{3.30}
\end{equation*}
$$

or

$$
\begin{aligned}
\operatorname{osc}\left\{u_{x_{s}} ; B_{R}\left(x_{0}\right)\right\} & \leq 2^{t_{0}+1}\left[\max _{B_{R}\left(x_{0}\right)} W-\max _{B_{R / 4}\left(x_{0}\right)} W\right] \\
& \leq 2^{t_{0}+1}\left[\operatorname{osc}\left\{u_{x_{s}} ; B_{R}\left(x_{0}\right)\right\}-\operatorname{osc}\left\{u_{x_{s}} ; B_{R / 4}\left(x_{0}\right)\right\}\right]
\end{aligned}
$$

that is,

$$
\begin{equation*}
\operatorname{osc}\left\{u_{x_{s}} ; B_{R / 4}\left(x_{0}\right)\right\} \leq\left(1-\frac{1}{2^{t_{0}+1}}\right) \operatorname{osc}\left\{u_{x_{s}} ; B_{R}\left(x_{0}\right)\right\} . \tag{3.31}
\end{equation*}
$$

Then (3.30), (3.31) and Lemma 3.4 imply that $u \in C^{1, \alpha}\left(B_{1 / 8}\left(x_{0}\right)\right)$ for some $\alpha \in$ $(0,1)$, and Proposition 3.1 is proved in Case I.

Case II: Neither (3.3) nor (3.4) is satisfied. In this section, we will prove Proposition 3.1 under the assumption that neither (3.3) nor (3.4) is true, i.e.,

$$
\operatorname{meas}\left\{x \in B_{R}\left(x_{0}\right) \left\lvert\, u_{x_{s}}>\frac{M}{2}\right.\right\} \leq\left(\kappa_{N}-\mu\right) R^{N}
$$

and

$$
\operatorname{meas}\left\{x \in B_{R}\left(x_{0}\right) \left\lvert\, u_{x_{s}}<-\frac{M}{2}\right.\right\} \leq\left(\kappa_{N}-\mu\right) R^{N}
$$

where κ_{N} denotes the volume of the unit ball in \mathbf{R}^{N}. Obviously, the above two inequalities show that

$$
\begin{align*}
& \operatorname{meas}\left\{x \in B_{R}\left(x_{0}\right) \mid u_{x_{s}}>\left(1-1 / 2^{t}\right) \bar{M}\right\} \leq\left(\kappa_{N}-\mu\right) R^{N} \tag{3.32}\\
& \operatorname{meas}\left\{x \in B_{R}\left(x_{0}\right) \mid u_{x_{s}}<-\left(1-1 / 2^{t}\right) \bar{M}\right\} \leq\left(\kappa_{N}-\mu\right) R^{N} \tag{3.33}
\end{align*}
$$

where $\bar{M}=\max _{s} \operatorname{ess} \sup _{B_{2 R}\left(x_{0}\right)}\left|u_{x_{s}}\right|$ and $t \geq 1$.
For the proof of Proposition 3.1 in Case II, we first assume that

$$
\begin{equation*}
\bar{M}>2^{t_{1}} R \tag{3.34}
\end{equation*}
$$

where t_{1} will be determined in the following lemma.
Lemma 3.8. For any $\theta \in(0,1)$, there exists $t_{1} \geq 2$ such that

$$
\begin{align*}
& \operatorname{meas}\left\{x \in B_{R}\left(x_{0}\right) \mid u_{x_{s}}>\left(1-1 / 2^{t_{1}}\right) \bar{M}\right\} \leq \theta R^{N} \tag{3.35}\\
& \operatorname{meas}\left\{x \in B_{R}\left(x_{0}\right) \mid u_{x_{s}}<-\left(1-1 / 2^{t_{1}}\right) \bar{M}\right\} \leq \theta R^{N} \tag{3.36}
\end{align*}
$$

where $\bar{M}=\max _{s} \operatorname{ess} \sup _{B_{2 R}\left(x_{0}\right)}\left|u_{x_{s}}\right|$.
Proof. We set $\varphi(x)=\rho\left(r^{\prime}-r\right)^{-1}\left(\left|x-x_{0}\right|-r\right)$,

$$
A_{k, r}^{+}=\left\{x \in B_{r} x_{0} \mid u_{x_{s}}>k\right\} \text { for (3.35), where } k \geq\left(1-1 / 2^{t_{1}}\right) \bar{M}>0
$$

and

$$
A_{k, r}^{-}=\left\{x \in B_{r} x_{0} \mid u_{x_{s}}<k\right\} \text { for (3.36), where } k \leq-\left(1-1 / 2^{t_{1}}\right) \bar{M}<0 .
$$

We will prove (3.35) only; (3.36) can be proved similarly. Notice that we have

$$
\frac{\bar{M}}{2} \leq\left|u_{x_{s}}\right| \leq \bar{M} \quad \text { on } A_{k, r}^{+}
$$

For $t \in \mathbf{R}^{1}$, we define

$$
g(t)= \begin{cases}t-1, & \text { if } t \geq 1 \\ 0, & \text { if } t \in[-1,1] \\ t+1, & \text { if } t \leq-1\end{cases}
$$

and

$$
G(t)=\max \{g(t)-k, 0\} .
$$

It is obvious that $G(t)$ satisfies the assumption of Proposition 2.1. Then we define $u_{s}=g\left(u_{x_{s}}\right)$ and insert

$$
G\left(u_{x_{s}}\right)=\max \left\{u_{s}-k, 0\right\}, \quad \psi=\varphi^{2}
$$

into (2.5), and following the steps to get (3.6) again, we have

$$
\begin{equation*}
\int_{A_{k, r}^{+}}\left|\nabla u_{x_{s}}\right|^{2} d x \leq C \cdot\left(r^{\prime}-r\right)^{-2} \int_{A_{k, r^{\prime}}^{+}}\left[u_{x_{s}}-k\right]^{2} d x+C \text { meas } A_{k, r^{\prime}}^{+} \tag{3.37}
\end{equation*}
$$

Taking $r=R$ and $r^{\prime}=2 R$ in (3.37), we have

$$
\begin{equation*}
\int_{A_{k, R}^{+}}\left|\nabla u_{x_{s}}\right|^{2} d x \leq C R^{-2} \int_{A_{k, 2 R}^{+}}\left[u_{x_{s}}-k\right]^{2} d x+C \text { meas } A_{k, 2 R}^{+} . \tag{3.38}
\end{equation*}
$$

Noticing that (3.32) implies that

$$
\begin{equation*}
\operatorname{meas}\left(B_{R} \backslash A_{\left(1-2^{-t}\right) \bar{M}, R}\right) \geq \mu R^{N} \tag{3.39}
\end{equation*}
$$

we get by $(3.34),(3.38),(3.39)$ and Lemma 3.2 with $v=u_{x_{s}}, l=\left(1-2^{-(t+1)}\right) \bar{M}$, $k=\left(1-2^{-t}\right) \bar{M}$, where $2 \leq t \leq t_{0}, \rho=R$ (and, for convenience, we will still use k, l in the following calculations) that

$$
\begin{aligned}
& 2^{-(t+1)} \bar{M}\left(\operatorname{meas} A_{\left(1-1 / 2^{s+1}\right) \bar{M}, R}^{+}\right)^{1-1 / N} \\
& \leq C R^{N} \cdot \frac{1}{\mu R^{N}} \int_{A_{l, k, R}^{+}}\left|\nabla u_{x_{s}}\right| d x \\
& \leq C \mu^{-1}\left(\int_{A_{l, k, R}^{+}}\left|\nabla u_{x_{s}}\right|^{2} d x\right)^{1 / 2} \cdot\left(\operatorname{meas} A_{l, k, R}^{+}\right)^{1 / 2} \\
& \leq C \mu^{-1}\left[C R^{-2} \cdot \int_{A_{k, 2 R}^{+}}(\bar{M}-k)^{2} d x+C \text { meas } A_{k, 2 R}^{+}\right]^{1 / 2}\left(\operatorname{meas} A_{l, k, R}^{+}\right)^{1 / 2} \\
& =C \mu^{-1}\left[R^{-2} \cdot 2^{-2 t} \bar{M}^{2}+1\right]^{1 / 2}\left(\operatorname{meas} A_{k, 2 R}^{+}\right)^{1 / 2}\left(\operatorname{meas} A_{l, k, R}^{+}\right)^{1 / 2} \\
& \leq C \mu^{-1} R^{-1} 2^{-t} \bar{M}\left[\kappa_{N}(2 R)^{N}\right]^{1 / 2}\left[\operatorname{meas} A_{l, k, R}^{+}\right]^{1 / 2}
\end{aligned}
$$

Squaring both sides of (3.40) and dividing both sides by $2^{-2(t+1)}$, we get

$$
\left(\operatorname{meas} A_{\left(1-1 / 2^{t+1}\right) \bar{M}, R}^{+}\right)^{2(N-1) / N} \leq C \mu^{-1} \kappa_{N} R^{N-2}\left[\text { meas } A_{l, k, R}^{+}\right]^{1 / 2}
$$

We sum up $t=2,3, \ldots, t_{1}-1$ and notice that \sum meas $A_{l, k, R}^{+} \leq \kappa_{N} R^{N}$ to obtain

$$
\begin{equation*}
\left(t_{1}-2\right)\left(\text { meas } A_{\left(1-1 / 2^{t_{1}}\right) \bar{M}, R}^{+}\right)^{2(N-1) / N} \leq C \mu^{-1} \kappa_{N}^{2} R^{2(N-1)} . \tag{3.41}
\end{equation*}
$$

So to prove Lemma 3.8, it is enough to take

$$
\begin{equation*}
t_{1}=3+C \mu^{-1} \kappa_{N}^{2} \theta^{-2(N-1) / N} \tag{3.42}
\end{equation*}
$$

in (3.41).

Lemma 3.9. If $u_{x_{s}}$ satisfies (3.37), then there exists a $\theta \in(0,1)$ such that if for some t_{1}

$$
\begin{equation*}
\operatorname{meas}\left\{x \in B_{R}\left(x_{0}\right) \mid u_{x_{s}}>\left(1-1 / 2^{t_{1}}\right) \bar{M}\right\} \leq \theta R^{N} \tag{3.43}
\end{equation*}
$$

then

$$
\begin{equation*}
\text { ess } \sup _{B_{R / 2}\left(x_{0}\right)} u_{x_{s}} \leq\left(1-1 / 2^{t_{1}+1}\right) \bar{M} . \tag{3.44}
\end{equation*}
$$

Proof. From (3.37),

$$
\begin{equation*}
\int_{A_{l, k, r}^{+}}\left|\nabla u_{x_{s}}\right|^{2} d x \leq C\left(r^{\prime}-r\right)^{-2} \int_{A_{k, r^{\prime}}^{+}}\left[u_{x_{s}}-k\right]^{2} d x+C \text { meas } A_{k, r^{\prime}}^{+} \tag{3.45}
\end{equation*}
$$

We set

$$
\begin{aligned}
& \rho_{h}=\frac{R}{2}+\frac{R}{2^{h+1}}, \quad H=\sup _{B_{2 R}\left(x_{0}\right)}\left[u_{x_{s}}-\left(1-1 / 2^{t_{1}}\right) \bar{M}\right], \\
& k_{h}=\left[1-1 / 2^{t_{1}}\right] \cdot \bar{M}+\left(1-1 / 2^{h}\right) \cdot H / 2, h=0,1, \ldots,
\end{aligned}
$$

and denote

$$
y_{h}=R^{-N} \text { meas } A_{k_{h}, \rho_{h}}^{+}, \quad D_{h+1}=A_{k_{h}, \rho_{h+1}}^{+} \backslash A_{k_{h+1}, \rho_{h+1}}^{+} .
$$

It is obvious that

$$
k_{0} \leq k_{h} \leq k_{0}+H / 2, h=0,1, \ldots
$$

So by (3.45) with

$$
k=k_{h}, l=k_{h+1} r^{\prime}=\rho_{h}, r=\rho_{h+1}, h=0,1, \ldots,
$$

we get

$$
\begin{align*}
\int_{D_{h+1}}\left|\nabla u_{x_{s}}\right|^{2} d x & \leq C\left(\rho_{h}-\rho_{h+1}\right)^{-2} \int_{A_{k_{h}, \rho_{h}}^{+}}\left[u_{x_{s}}-k_{h}\right]^{2} d x+C \text { meas } A_{k_{h}, \rho_{h}}^{+} \tag{3.46}\\
& \leq C\left[2^{2(h+2)} H^{2} R^{-2}+1\right] \text { meas } A_{k_{h}, \rho_{h}}^{+} .
\end{align*}
$$

If $2^{2(h+2)} H^{2} R^{-2} \leq 1$, then by virtue of (3.34) we have

$$
H \leq 2^{-(h+1)} R \leq R / 2 \leq 1 / 2^{t_{1}+1} \bar{M}
$$

Then by the definition of H, we have

$$
\begin{align*}
\sup _{B_{2 R}\left(x_{0}\right)} u_{x_{s}} & =H+\left(1-1 / 2^{t_{1}}\right) \bar{M} \\
& \leq 1 / 2^{t_{1}+1} \bar{M}+\left(1-1 / 2^{t_{1}}\right) \bar{M} \tag{3.47}\\
& \leq\left(1-1 / 2^{t_{1}+1}\right) \bar{M}
\end{align*}
$$

If $2^{2(h+2)} H^{2} R^{-2} \geq 1$, then (3.46) shows that

$$
\begin{align*}
\int_{D_{h+1}}\left|\nabla u_{x_{s}}\right|^{2} d x & \leq C 2^{-2(h+2)} H^{2} R^{-2} \text { meas } A_{k_{h}, \rho_{h}}^{+} \tag{3.48}\\
& \leq C 2^{2(h+2)} H^{2} R^{N-2} y_{h} .
\end{align*}
$$

By (3.48), Hölder's inequality and the fact that

$$
\text { meas } D_{h+1} \leq R^{N} y_{h},
$$

we have

$$
\begin{align*}
\int_{D_{h+1}}\left|\nabla u_{x_{s}}\right| d x & \leq\left(\int_{D_{h+1}}\left|\nabla u_{x_{s}}\right|^{2} d x\right)^{1 / 2} \cdot\left(\text { meas } D_{h+1}\right)^{1 / 2} \tag{3.49}\\
& \leq C 2^{h+3} H R^{N-1} y_{h}
\end{align*}
$$

Taking $k=k_{h}, l=k_{h+1}, \rho=\rho_{h+1}$ in Lemma 3.2 and noticing that in (3.43) we can assume that $\theta \leq 2^{-(N+1)} \kappa_{N}$, we have

$$
\begin{align*}
\int_{D_{h+1}}\left|\nabla u_{x_{s}}\right| d x & \geq \beta^{-1}\left(k_{h+1}-k_{h}\right) R^{N-1} y_{h+1}^{1-1 / N} \rho_{h+1}^{-N} \operatorname{meas}\left(B_{\rho_{h+1}}\left(x_{0}\right) \backslash A_{k_{h}, \rho_{h+1}}^{+}\right) \tag{3.50}\\
& \geq \beta^{-1} 2^{-(h+2)} H R^{N-1} y_{h+1}^{1-1 / N} R^{-N} \operatorname{meas}\left(B_{R / 2}\left(x_{0}\right) \backslash A_{k_{0}, R}^{+}\right) \\
& \geq \beta^{-1} 2^{-(h+2)} H R^{N-1} y_{h+1}^{1-1 / N} R^{-N} \cdot 2^{-(N+1)} \kappa_{N} R^{N} \\
& =\beta^{-1} 2^{-(h+N+3)} H \kappa_{N} R^{N-1} y_{h+1}^{1-1 / N} .
\end{align*}
$$

So (3.49), (3.50) imply that

$$
y_{h+1}^{1-1 / N} \leq C 4^{h+3} y_{h},
$$

that is,

$$
\begin{equation*}
y_{h+1} \leq C^{\frac{N}{N-1}}\left(4^{\frac{N}{N-1}}\right)^{h} y_{h}^{\frac{N}{N-1}} \triangleq c_{1} b_{1}^{h} y_{h}^{1+\varepsilon_{1}}, \tag{3.51}
\end{equation*}
$$

where $\varepsilon_{1}=\frac{1}{N-1}>0, b_{1}=4^{\frac{N}{N-1}}, c_{1}=C^{\frac{N}{N-1}}$. If

$$
y_{0} \leq c_{1}^{-1 / \varepsilon_{1}} b_{1}^{-1 / \varepsilon_{1}{ }^{2}}
$$

that is, (3.43) is satisfied with $\theta \leq c_{1}^{-1 / \varepsilon_{0}} b_{1}^{-1 / \varepsilon_{0}{ }^{2}}$, then (3.51) and Lemma 3.3 show that

$$
y_{h} \rightarrow 0, \quad \text { as } h \rightarrow+\infty,
$$

and

$$
\begin{align*}
\sup _{B_{R / 2}\left(x_{0}\right)} u_{x_{s}}(x) & \leq \lim _{h \rightarrow \infty} k_{h}=k^{0}+\frac{H}{2} \\
& \leq\left(1-2^{-t_{1}}\right) \bar{M}+\frac{1}{2}\left[\bar{M}-\left(1-2^{-t_{1}}\right) \bar{M}\right] \tag{3.52}\\
& =\left(1-1 / 2^{t_{1}+1}\right) \bar{M} .
\end{align*}
$$

Inequalities (3.47) and (3.52) show that Lemma 3.9 is true.
Conclusion of the proof of Case II. If (3.34) is not satisfied, then

$$
\begin{equation*}
\max _{s} \operatorname{ess} \sup _{B_{2 R}\left(x_{0}\right)}\left|u_{x_{s}}\right|=\bar{M} \leq 2^{t_{1}} R . \tag{3.53}
\end{equation*}
$$

Otherwise, if (3.34) is satisfied, we take $\theta=\min \left\{2^{-N-1} \kappa_{N} ; c_{1}^{-1 / \varepsilon_{0}} b_{1}^{-1 / \varepsilon_{0}{ }^{2}}\right\}$ by Lemma 3.9, then take t_{1} by Lemma 3.8 to obtain (3.44), that is,

$$
\mathrm{ess} \sup _{B_{R / 2}\left(x_{0}\right)} u_{x_{s}}(x) \leq\left(1-1 / 2^{t_{1}+1}\right) \max _{s} \operatorname{ess} \sup _{B_{2 R}\left(x_{0}\right)}\left|u_{x_{s}}\right|
$$

and

$$
\operatorname{ess} \inf _{B_{R / 2}\left(x_{0}\right)} u_{x_{s}}(x) \geq-\left(1-1 / 2^{t_{1}+1}\right) \max _{s} \text { ess } \sup _{B_{2 R}\left(x_{0}\right)}\left|u_{x_{s}}\right| .
$$

Thus we get

$$
\begin{equation*}
\max _{s} \text { ess } \sup _{B_{R / 2}\left(x_{0}\right)}\left|u_{x_{s}}\right| \leq \delta_{0} \cdot \max _{s} \operatorname{ess} \sup _{B_{2 R}\left(x_{0}\right)}\left|u_{x_{s}}\right|, \tag{3.54}
\end{equation*}
$$

where $\delta_{0}=1-1 / 2^{t_{1}+1}$.
Similarly to Case I, (3.53), (3.54) and Lemma 3.4 with some modifications show that

$$
\begin{equation*}
\max _{s} \operatorname{ess} \sup _{B_{\rho}\left(x_{0}\right)}\left|u_{x_{s}}\right| \leq C \cdot \rho^{\alpha} \text { for any } \rho \in(0,2 R) \tag{3.55}
\end{equation*}
$$

which obviously implies Proposition 3.1 in Case II.
For completeness, we give the proof of (3.55) in the following. If we set $R=R_{0}$, $\rho_{0}=2 R, \rho_{k}=4^{-k} \rho_{0}, k=1,2, \ldots$ and $w_{k}=\max _{s} \sup _{B_{\rho_{k}}\left(x_{0}\right)}\left|u_{x_{s}}\right|$, then (3.53) and (3.54) show that

$$
w_{k}=\max \left\{2^{s_{0}} \rho_{k}, \delta_{0} w_{k-1}\right\}
$$

and

$$
w_{0} \leq 2^{s_{0}} \rho_{0} \equiv \widetilde{C} \cdot 4^{-\alpha}
$$

where $\alpha=\min \left\{1,-\log _{4} \delta_{0}\right\}$. Then for $y_{k}=4^{k \alpha} w_{k}, k=1,2, \ldots$, we have

$$
\begin{align*}
y_{k} & \leq \max \left\{2^{s_{0}} \cdot 4^{k \alpha} \rho_{k}, \delta_{0} \cdot 4^{k \alpha} w_{k-1}\right\} \\
& =\max \left\{2^{s_{0}} \cdot 4^{k(\alpha-1)} \rho_{0}, 4^{\alpha} \delta_{0} y_{k-1}\right\} \tag{3.56}\\
& \leq \max \left\{2^{s_{0}} \rho_{0}, y_{k-1}\right\} \\
& =\max \left\{\widetilde{C} \cdot 4^{-\alpha}, y_{k-1}\right\}
\end{align*}
$$

and

$$
\begin{equation*}
y_{0}=w_{0} \leq \widetilde{C} \cdot 4^{-\alpha} . \tag{3.57}
\end{equation*}
$$

So (3.56), (3.57) show that for all $k=0,1,2, \ldots$

$$
y_{k} \leq \widetilde{C} \cdot 4^{-\alpha}
$$

that is,

$$
\begin{equation*}
w_{k} \leq \widetilde{C} \cdot 4^{-\alpha} \cdot 4^{-k \alpha}=\widetilde{C} \cdot 4^{-\alpha}\left(\frac{\rho_{k}}{\rho_{0}}\right)^{\alpha} \tag{3.58}
\end{equation*}
$$

Now for any given $\rho \in\left(0, \rho_{0}\right]$, there exists a $k \geq 1$ such that $\rho_{k} \leq \rho \leq \rho_{k-1}$. Thus

$$
\begin{align*}
\max _{s} \sup _{B_{\rho}\left(x_{0}\right)}\left|u_{x_{s}}\right| & \leq \max _{s} \sup _{B_{\rho_{k-1}\left(x_{0}\right)}}\left|u_{x_{s}}\right| \\
& =w_{k} \leq \widetilde{C} \cdot 4^{-\alpha} \rho_{0}^{-\alpha} \cdot \rho_{k-1}^{\alpha} \tag{3.59}\\
& =\widetilde{C}\left(4 \rho_{0}\right)^{-\alpha} \cdot \rho^{\alpha} .
\end{align*}
$$

Thus, Theorem 1(ii) is proved.

4. The proof of Theorem 2

In this section, we will give the proof of Theorem 2. Firstly, we prove the local boundedness of weak solutions to (1.12). We consider any weak solution u to the equation

$$
\begin{cases}-\Delta_{p} u-\Delta_{q} u=f(x, u), & x \in \mathbf{R}^{N}, \tag{4.1}\\ u \in W^{1, p}\left(\mathbf{R}^{N}\right) \cap W^{1, q}\left(\mathbf{R}^{N}\right), & \end{cases}
$$

where $1<q<p<N$ and $N \geq 3$. We will prove that if $f(x, t)$ satisfies the following

$$
\begin{equation*}
|f(x, t)| \leq \varepsilon|t|^{q-1}+C(\varepsilon)|t|^{p^{*}-1} \tag{4.2}
\end{equation*}
$$

where $p^{*}=\frac{N p}{N-p}$ if $N>p$ and $0<p^{*}<\infty$ if $N \leq p$, then any weak solution u to (4.1) is locally bounded. We only consider the usual case $N>p$; the other case is even simpler. To prove this, we set $B_{R}=B_{R}\left(x_{0}\right)$ for some given $x_{0} \in \mathbf{R}^{N}$ for simplicity and choose a nonnegative C^{∞}-function η with the properties

$$
|\nabla \eta| \leq \frac{2}{r} \quad \text { for } r \in(0, R)
$$

and

$$
\eta= \begin{cases}1, & \text { if } x \in B_{R} \\ (0,1), & \text { others } \\ 0, & \text { if } x \notin B_{R+r}\end{cases}
$$

Without loss of generality, we assume $u \geq 0$ and denote $\bar{u}=u+k$ for some $k>0$. Then

$$
\bar{u}_{L}= \begin{cases}\bar{u}, & \text { if } u<L \\ L+k, & \text { if } u \geq L\end{cases}
$$

Otherwise, we will consider u^{+}, u^{-}and $\bar{u}=u^{+}+k, \bar{u}=u^{-}+k$ separately. For all cases, we have $D \bar{u}_{L}=0$ in $\left\{x \in \mathbf{R}^{N} \mid u(x)=0\right.$ or $\left.u(x) \geq L\right\}$.

Set the test function $\varphi(x)=\eta^{p}\left(\bar{u} \bar{u}_{L}^{p(\beta-1)}-k^{p(\beta-1)+1}\right)$, where $\beta>1$ will be determined later. From now on, we denote by C a generic positive constant which
may depend only on p, q, N. Inserting φ into (4.1) and integrating on \mathbf{R}^{N}, we get

$$
\begin{align*}
& \int_{\mathbf{R}^{N}} p \eta^{p-1}\left(\bar{u} \bar{u}_{L}^{p(\beta-1)}-k^{p(\beta-1)+1}\right)|\nabla u|^{p-2} \nabla u \nabla \eta+\eta^{p} \bar{u}_{L}^{p(\beta-1)}|\nabla u|^{p-2} \nabla u \nabla \bar{u} \\
& \quad+p(\beta-1) \eta^{p} \bar{u} \bar{u}_{L}^{p(\beta-1)-1}|\nabla u|^{p-2} \nabla u \nabla \bar{u} \\
& \quad+p \eta^{p-1}\left(\bar{u} \bar{u}_{L}^{p(\beta-1)}-k^{p(\beta-1)+1}\right)|\nabla u|^{q-2} \nabla u \nabla \eta+\eta^{p} \bar{u}_{L}^{p(\beta-1)}|\nabla u|^{q-2} \nabla u \nabla \bar{u} \tag{4.3}\\
& \quad+p(\beta-1) \eta^{p} \bar{u} \bar{u}_{L}^{p(\beta-1)-1}|\nabla u|^{q-2} \nabla u \nabla \bar{u} \\
& =\int_{\mathbf{R}^{N}} f(x, u) \varphi d x \leq C \int_{\mathbf{R}^{N}}\left[\bar{u}^{p^{*}-1}+1\right] \eta^{p} \bar{u} \bar{u}_{L}^{p(\beta-1)} d x .
\end{align*}
$$

Now

$$
\begin{align*}
& \left.\left|\int_{\mathbf{R}^{N}} p \eta^{p-1}\left(\bar{u} \bar{u}_{L}^{p(\beta-1)}-k^{p(\beta-1)+1}\right)\right| \nabla u\right|^{p-2} \nabla u \nabla \eta d x \mid \\
& \leq p \int_{\mathbf{R}^{N}} \eta^{p-1} \bar{u} \bar{u}_{L}^{p(\beta-1)}|\nabla \bar{u}|^{p-2}|\nabla \bar{u} \| \nabla \eta| d x \tag{4.4}\\
& \leq \varepsilon \int_{\mathbf{R}^{N}}\left(\eta \bar{u}_{L}^{\beta-1}|\nabla \bar{u}|\right)^{p} d x+C(\varepsilon) \int_{\mathbf{R}^{N}}\left(\bar{u} \bar{u}_{L}^{(\beta-1)}|\nabla \eta|\right)^{p} d x,
\end{align*}
$$

and, similarly,

$$
\begin{align*}
& \left.\left|\int_{\mathbf{R}^{N}} p \eta^{p-1}\left(\bar{u} \bar{u}_{L}^{p(\beta-1)}-k^{p(\beta-1)+1}\right)\right| \nabla u\right|^{q-2} \nabla u \nabla \eta d x \mid \\
& \leq p \int_{\mathbf{R}^{N}} \eta^{p-1} \bar{u} \bar{u}_{L}^{p(\beta-1)}|\nabla \bar{u}|^{q-2}|\nabla \bar{u} \| \nabla \eta| d x \\
& =p \int_{\mathbf{R}^{N}} \bar{u}_{L}^{p(\beta-1)}\left[\eta^{\frac{p(q-1)}{q}}|\nabla \bar{u}|^{q-2}|\nabla \bar{u}| \cdot \eta^{\frac{p}{q}-1} \bar{u}|\nabla \eta|\right] d x \tag{4.5}\\
& \leq \int_{\mathbf{R}^{N}} \bar{u}_{L}^{p(\beta-1)}\left[\varepsilon \eta^{p}|\nabla \bar{u}|^{q}+C(\varepsilon) \eta^{p-q} \bar{u}^{q}|\nabla \eta|^{p}\right] d x \\
& =\varepsilon \int_{\mathbf{R}^{N}} \eta^{p} \bar{u}_{L}^{p(\beta-1)}|\nabla \bar{u}|^{q} d x+C(\varepsilon) \int_{\mathbf{R}^{N}} \eta^{p-q} \bar{u}^{q} \bar{u}_{L}^{p(\beta-1)}|\nabla \eta|^{q} d x .
\end{align*}
$$

Thus ε can be chosen such that by (4.4), (4.5) and (4.3) we have

$$
\begin{aligned}
& C \int_{\mathbf{R}^{N}}\left[\bar{u}^{p^{*}-1}+1\right] \eta^{p} \bar{u} \bar{u}_{L}^{p(\beta-1)} \\
& \geq \int_{\mathbf{R}^{N}} p(\beta-1) \eta^{p} \bar{u} \bar{u}_{L}^{p(\beta-1)-1}\left|\nabla \bar{u}_{L}\right|^{p}+\frac{1}{2} \eta^{p} \bar{u}_{L}^{p(\beta-1)}|\nabla \bar{u}|^{p}-C \cdot\left(\bar{u} \bar{u}_{L}^{\beta-1}|\nabla \eta|\right)^{p} \\
& \quad+p(\beta-1) \eta^{p} \bar{u} \bar{u}_{L}^{p(\beta-1)-1}\left|\nabla \bar{u}_{L}\right|^{q}+\frac{1}{2} \eta^{p} \bar{u}_{L}^{p(\beta-1)}|\nabla \bar{u}|^{q}-C \eta^{p-q} \bar{u}^{q} \bar{u}_{L}^{p(\beta-1)}|\nabla \eta|^{q} d x
\end{aligned}
$$

Taking $k=1$ and noting that $\bar{u} \geq k$, we have

$$
\begin{align*}
& \int_{\mathbf{R}^{N}} p(\beta-1) \eta^{p} \bar{u}_{L}^{p(\beta-1)}\left(\left|\nabla \bar{u}_{L}\right|^{p}+\left|\nabla \bar{u}_{L}\right|^{q}\right)+\frac{1}{2} \eta^{p} \bar{u}_{L}^{p(\beta-1)}\left(|\nabla \bar{u}|^{p}+|\nabla \bar{u}|^{q}\right) d x \tag{4.6}\\
& \leq C \int_{\mathbf{R}^{N}}\left[\eta^{p} \bar{u}^{p^{*}} \bar{u}_{L}^{p(\beta-1)}+\left(\bar{u} \bar{u}_{L}^{\beta-1}|\nabla \eta|\right)^{p}+\eta^{p-q} \bar{u}^{q} \bar{u}_{L}^{p(\beta-1)}|\nabla \eta|^{q}\right] d x .
\end{align*}
$$

Set $W_{L}=\eta \bar{u} \bar{u}_{L}^{\beta-1}$ for $\beta>1$. Observing that $\eta \bar{u}_{L}^{\beta-1} \leq \eta \bar{u} \bar{u}_{L}^{\beta-1}$ and

$$
\begin{aligned}
\int_{\mathbf{R}^{N}} \eta^{p-q} \bar{u}^{q} \bar{u}_{L}^{p(\beta-1)}|\nabla \eta|^{q} d x & =\int_{\mathbf{R}^{N}} \bar{u}^{q} \bar{u}_{L}^{q(\beta-1)}|\nabla \eta|^{q} \cdot \eta^{p-q} \bar{u}_{L}^{(p-q)(\beta-1)} d x \\
& \leq \int_{\mathbf{R}^{N}}\left(\bar{u} \bar{u}_{L}^{\beta-1}|\nabla \eta|\right)^{p} d x+\int_{\mathbf{R}^{N}}\left(\eta \bar{u}_{L}^{\beta-1}\right)^{p} d x \\
& \leq \int_{\mathbf{R}^{N}}\left(\bar{u} \bar{u}_{L}^{\beta-1}|\nabla \eta|\right)^{p} d x+\int_{\mathbf{R}^{N}}\left(\eta \bar{u} \bar{u}_{L}^{\beta-1}\right)^{p} d x
\end{aligned}
$$

(4.6) implies that

$$
\begin{align*}
& \left(\int_{\mathbf{R}^{N}}\left(\eta \bar{u} \bar{u}_{L}^{\beta-1}\right)^{p^{*}} d x\right)^{\frac{p}{p^{*}}}=\left(\int_{\mathbf{R}^{N}} W_{L}^{p^{*}} d x\right)^{\frac{p}{p^{*}}} \leq C \int_{\mathbf{R}^{N}}\left|\nabla W_{L}\right|^{p} d x \\
& \leq C \int_{\mathbf{R}^{N}} \bar{u}^{p} \bar{u}_{L}^{p(\beta-1)}|\nabla \eta|^{p}+C \beta^{p} \int_{\mathbf{R}^{N}}\left[\eta^{p} \bar{u}_{L}^{p(\beta-1)}|\nabla \bar{u}|^{p}+\eta^{p} \bar{u}_{L}^{p(\beta-1)}\left|\nabla \bar{u}_{L}\right|^{p}\right] d x \\
& \leq C \int_{\mathbf{R}^{N}} \bar{u}^{p} \bar{u}_{L}^{p(\beta-1)}|\nabla \eta|^{p}+C \beta^{p} \tag{4.7}\\
& \cdot \int_{\mathbf{R}^{N}}\left[\eta^{p} \bar{u}^{p^{*}} \bar{u}_{L}^{p(\beta-1)}+\left(\bar{u} \bar{u}_{L}^{\beta-1}|\nabla \eta|\right)^{p}+\eta^{p-q} \bar{u}^{q} \bar{u}_{L}^{p(\beta-1)}|\nabla \eta|^{q}\right] d x \\
& \leq C \beta^{p} \int_{\mathbf{R}^{N}}\left[\eta^{p} \bar{u}^{p^{*}} \bar{u}_{L}^{p(\beta-1)}+\left(\bar{u} \bar{u}_{L}^{\beta-1}|\nabla \eta|\right)^{p}+\left(\eta \bar{u} \bar{u}_{L}^{\beta-1}\right)^{p}\right] d x \\
& \leq C \beta^{p}\left[\int_{\mathbf{R}^{N}}\left(\bar{u} \bar{u}_{L}^{\beta-1}|\nabla \eta|\right)^{p} d x+\int_{\mathbf{R}^{N}} \eta^{p} \bar{u}^{p^{*}} \bar{u}_{L}^{p(\beta-1)} d x\right] .
\end{align*}
$$

We claim that there exists an $R_{0}>0$ such that

$$
\begin{equation*}
\bar{u} \in L^{\left(p^{*}\right)^{2} / p}\left(B_{R_{0}}\right) . \tag{4.8}
\end{equation*}
$$

In fact, since

$$
\int_{\mathbf{R}^{N}} \eta^{p} \bar{u}^{p^{*}} \bar{u}_{L}^{p(\beta-1)} d x \leq\left[\int_{\mathbf{R}^{N}}\left(\eta \bar{u} \bar{u}_{L}^{\beta-1}\right)^{p^{*}} d x\right]^{p / p^{*}} \cdot\left[\int_{B_{R+r}} \bar{u}^{p^{*}} d x\right]^{\left(p^{*}-p\right) / p^{*}},
$$

taking $\beta=p^{*} / p$ in (4.7) and $R=R_{0}$ small enough such that

$$
\left[\int_{B_{2 R}} \bar{u}^{p^{*}} d x\right]^{\left(p^{*}-p\right) / p^{*}} \leq \frac{1}{2 C}
$$

we get that

$$
\begin{equation*}
\left(\int_{\mathbf{R}^{N}}\left(\eta \bar{u} \bar{u}_{L}^{\beta-1}\right)^{p^{*}} d x\right)^{\frac{p}{p^{*}}} \leq C \int_{\mathbf{R}^{N}}\left(\bar{u} \bar{u}_{L}^{\beta-1}|\nabla \eta|\right)^{p} d x \leq C \int_{\mathbf{R}^{N}} \bar{u}^{p \beta}|\nabla \eta|^{p} d x . \tag{4.9}
\end{equation*}
$$

Letting $L \rightarrow+\infty$ in (4.9), we get

$$
\left(\int_{B_{R_{0}}} \bar{u}^{\left(p^{*}\right)^{2} / p} d x\right)^{\frac{p}{p^{*}}} \leq C \int_{B_{\mathbf{R}^{N}}}|\nabla \eta|^{p} \bar{u}^{p^{*}} d x<+\infty .
$$

Then we will show that $\bar{u} \in L^{\infty}\left(B_{R}\right), 0<R<R_{0} / 2$.
Set $t=\left(p^{*}\right)^{2} /\left(p^{*}-p\right) p>1$. Suppose $\bar{u} \in L^{p \beta t /(t-1)}\left(B_{R+r}\right), 0<r<R$. By (4.8) and Sobolev's inequality, we have

$$
\begin{align*}
\int_{\mathbf{R}^{N}} \eta^{p} \bar{u}^{p^{*}} \bar{u}_{L}^{p(\beta-1)} d x & \leq\left[\int_{B_{R+r}}\left(\eta^{p} \bar{u}^{p \beta}\right)^{t /(t-1)}\right]^{1-1 / t} \cdot \int_{B_{R+r}}\left(\bar{u}^{\left(p^{*}-p\right) t} d x\right)^{1 / t} \\
& \leq\left[\int_{B_{R+r}}\left(\eta^{p} \bar{u}^{p \beta}\right)^{t /(t-1)}\right]^{t-1 / t} \cdot \int_{B_{R+r}}\left(\bar{u}^{\left(p^{*}\right)^{2} / p} d x\right)^{1 / t} \tag{4.10}\\
& \leq C\left[\int_{B_{R+r}}\left(\eta^{p} \bar{u}^{p \beta}\right)^{t /(t-1)}\right]^{1-1 / t}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{\mathbf{R}^{N}}|\nabla \eta|^{p} \bar{u}^{p} \bar{u}_{L}^{p(\beta-1)} d x \leq C r^{-p}\left[\int_{B_{R+r}}\left(\bar{u}^{p \beta}\right)^{t /(t-1)} d x\right]^{1-1 / t} . \tag{4.11}
\end{equation*}
$$

So by (4.10), (4.11) and (4.7), we get

$$
\left[\int_{\mathbf{R}^{N}}\left(\eta \bar{u} \bar{u}_{L}^{\beta-1}\right)^{p^{*}} d x\right]^{p / p^{*}} \leq C \beta^{p} r^{-p}\left[\int_{B_{R+r}}\left(\bar{u}^{p \beta}\right)^{t /(t-1)} d x\right]^{1-1 / t}
$$

i.e.,

$$
\begin{equation*}
\left[\int_{B_{R}} \bar{u}^{p^{*} \beta} d x\right]^{1 / \beta} \leq C^{1 / \beta} \beta^{p^{*} / \beta} r^{-p^{*} / \beta}\left[\int_{B_{R+r}} \bar{u}^{p \beta t /(t-1)} d x\right]^{\frac{(t-1) p^{*}}{t p \beta}}, \tag{4.12}
\end{equation*}
$$

where C is independent of r, β.
Set $\chi=p^{*}(t-1) / p t(\chi>1), \beta=\chi^{i}, B_{i}=B_{R+2^{-i} r}, i=0,1, \ldots$, in (4.12) and

$$
\begin{equation*}
I_{i}=\left(\int_{B_{i}}\left(|\bar{u}|^{(p t) /(t-1)}\right)^{\chi^{i}} d x\right)^{1 / \chi^{i}} \tag{4.13}
\end{equation*}
$$

Then (4.12) implies that

$$
\begin{align*}
I_{i+1} & =\left\|\bar{u}^{p t /(t-1)}\right\|_{\chi^{i+1}\left(B_{i+1}\right)}=\|\bar{u}\|_{p^{p^{*}} \chi^{2}\left(B_{i+1}\right)}^{p^{*}} \\
& \leq C C^{\frac{1}{\chi^{i+1}}}\left(\frac{r}{2^{i+1}}\right)^{-\frac{p^{*}}{\chi^{i+1}}}\left\|\bar{u}^{(p t) /(t-1)} \chi^{p^{*} i} \chi^{-(i+1)}\right\|_{\chi^{i}\left(B_{i}\right)} \tag{4.14}\\
& =C \chi^{\frac{1}{\chi^{+1}+1}} \cdot\left[2^{-(i+1)} r\right] \frac{-\chi^{*}}{\chi^{i+1}} \chi^{p^{*} i \chi^{-(i+1)}} I_{i} \\
& \leq C^{\Sigma_{j=0}^{i+1} \chi^{-j}}\left(2^{p^{*}}\right)^{\sum_{j=0}^{i+1} j \chi^{-j}}\left(r^{-p^{*}}\right)^{\Sigma_{j=0}^{i+1} \chi^{-j}} \chi^{p^{*} \Sigma_{j=0}^{i+1} j \chi^{-(j+1)}} I_{0} .
\end{align*}
$$

Note that $I_{0} \leq C\left(\int_{B_{2 R}}|\bar{u}|^{p^{*}} d x\right)^{\frac{1}{p^{*}}}<+\infty$; so let $i \rightarrow+\infty$ in (4.13). We get

$$
\begin{equation*}
\bar{u} \in L^{\infty}\left(B_{R}\left(x_{0}\right)\right), \tag{4.15}
\end{equation*}
$$

and since $x_{0} \in \mathbf{R}^{N}$ is arbitrary, we have

$$
\begin{equation*}
u \in L_{\mathrm{loc}}^{\infty}\left(\mathbf{R}^{N}\right) \tag{4.16}
\end{equation*}
$$

by the definition of \bar{u}. Thus, with the help of (4.16), Theorem 1 implies Theorem 2.

For equation (1.1), one can set

$$
f(x, u)=g(x, u)-m|u|^{p-2} u-n|u|^{q-2} u .
$$

It is obvious that $g(x, u)$ and $f(x, u)$ satisfy (4.2) if $g(x, u)$ satisfies $\left(\mathrm{C}_{1}\right)-\left(\mathrm{C}_{2}\right)$ in [8]. So one can see that the solutions of (1.1) are locally bounded. Then Theorem 1 implies that these solutions are locally in $C^{1, \alpha}$.

5. The proof of Theorem 3

In this section, we will give the proof of Theorem 3 by virtue of (4.16). To show (i) of Theorem 3, we mainly follow the steps of [10]. The difference is that, as one can see, neither the test function $v=\eta^{p} u^{+}\left(u_{L}^{+}\right)^{p(\beta-1)}$ used in [10] nor the test function $\varphi=\eta^{p}\left(\bar{u} \bar{u}_{L}^{p(\beta-1)}-k^{p(\beta-1)+1}\right)$ used in $\S 4$ works in our case.

To overcome this difficulty, our main idea is to use two test functions separately to get a couple of inequalities and then combine them to get the decay estimate of the weak solutions. As soon as this is done, we can follow the way of [11] to prove Theorem 3(ii) with the help of Theorem 3(i). In the following, C stands for a generic constant depending only on N, p, q, and m, n.

We choose a nonnegative C^{∞}-function ξ having the following properties:

$$
\begin{aligned}
|\nabla \xi| & \leq \frac{2}{r} \quad \text { for some } r \in(0, R / 2), \\
\xi & = \begin{cases}1, & \text { if } x \in B_{R}^{c} \\
(0,1), & \text { others, } \\
0, & \text { if } x \in B_{R-r},\end{cases}
\end{aligned}
$$

where $B_{\rho}=B_{\rho}(0)$ and $B_{\rho}{ }^{c} \equiv \mathbf{R}^{N} \backslash B_{\rho}$ for $\rho>0$. Without loss of generality, we assume $u \geq 0$ and define the test function $\varphi(x)=\xi^{p} u u_{L}^{p(\beta-1)}$ and $W_{L}=\xi u u_{L}^{\beta-1}$, where u_{L} is defined as before and $\beta>1$ is to be determined later.

Inserting φ into (1.1) and integrating on \mathbf{R}^{N} as in $\S 4$, we get the estimate

$$
\begin{align*}
& \int_{\mathbf{R}^{N}} p(\beta-1) \eta^{p} u_{L}^{p(\beta-1)}\left(\left|\nabla u_{L}\right|^{p}+\left|\nabla u_{L}\right|^{q}\right)+\frac{1}{2} \eta^{p} u_{L}^{p(\beta-1)}\left(|\nabla u|^{p}+|\nabla u|^{q}\right) d x \\
& \leq C \int_{\mathbf{R}^{N}}\left[f \varphi+\left(u u_{L}^{\beta-1}|\nabla \eta|\right)^{p}+\eta^{p-q} u^{q} u_{L}^{p(\beta-1)}|\nabla \eta|^{q}\right] d x \tag{5.1}
\end{align*}
$$

where $f(x, t)=g(x, t)-m|t|^{p-2} t-n|t|^{q-2} t$. Note that $|g(x, t)| \leq \varepsilon|t|^{p-1}+C(\varepsilon)|t|^{p^{*}-1}$ for any $\varepsilon>0$ and $t \geq 0$. We have

$$
\begin{equation*}
\int_{\mathbf{R}^{N}} f \varphi d x \leq(\varepsilon-n) \xi^{p} u^{q} u_{L}^{p(\beta-1)}-m \xi^{p} u^{p} u_{L}^{p(\beta-1)}+C(\varepsilon) u^{p^{*}} u_{L}^{p \beta-1} . \tag{5.2}
\end{equation*}
$$

By (5.1), (5.2) with $\varepsilon=n / 2$ and the fact that $u^{q} u_{L}^{p(\beta-1)} \leq u^{q} u_{L}^{q(\beta-1)}+u^{p} u_{L}^{p(\beta-1)}$, we have

$$
\begin{align*}
\int_{\mathbf{R}^{N}}\left|\nabla W_{L}\right|^{p} d x \leq & C \beta^{p} \int_{\mathbf{R}^{N}} u^{p} u_{L}^{p(\beta-1)}\left(|\nabla \xi|^{p}+\xi^{p-q}|\nabla \xi|^{q}\right) d x \\
& +C \beta^{p} \int_{\mathbf{R}^{N}} u^{q} u_{L}^{q(\beta-1)} \xi^{p-q}|\nabla \xi|^{q} d x \tag{5.3}\\
& +C \beta^{p} \int_{\mathbf{R}^{N}} \xi^{p} u^{p^{*}} u_{L}^{p(\beta-1)} d x .
\end{align*}
$$

Define $\psi(x)=\xi^{p} u u_{L}^{q(\beta-1)}$ and $V_{L}=\xi^{p / q} u u_{L}^{\beta-1}$, insert ψ into (1.1) and estimate as before. We get

$$
\begin{align*}
\int_{\mathbf{R}^{N}}\left|\nabla V_{L}\right|^{q} d x \leq & C \beta^{q} \int_{\mathbf{R}^{N}} u^{q} u_{L}^{q(\beta-1)}\left(|\nabla \xi|^{p}+\xi^{p-q}|\nabla \xi|^{q}\right) d x \\
& +C \beta^{p} \int_{\mathbf{R}^{N}} u^{p} u_{L}^{p(\beta-1)}|\nabla \xi|^{p} d x+C \beta^{p} \int_{\mathbf{R}^{N}} \xi^{p} u^{p^{*}} u_{L}^{q(\beta-1)} d x \tag{5.4}
\end{align*}
$$

where we have used the fact that $u^{p} u_{L}^{q(\beta-1)} \leq u^{p} u_{L}^{p(\beta-1)}+u^{q} u_{L}^{q(\beta-1)}$. Taking r small enough, (5.3), (5.4) and Sobolev's inequalities imply that

$$
\begin{align*}
& \left(\int_{\mathbf{R}^{N}} W_{L}^{p^{*}} d x\right)^{p / p^{*}}+\left(\int_{\mathbf{R}^{N}} V_{L}^{q^{*}} d x\right)^{q / q^{*}} \\
& \leq C\left(\int_{\mathbf{R}^{N}}\left|\nabla W_{L}\right|^{p} d x+\int_{\mathbf{R}^{N}}\left|\nabla V_{L}\right|^{q} d x\right) \tag{5.5}\\
& \leq C \beta^{p} \int_{\mathbf{R}^{N}}\left(u^{p} u_{L}^{p(\beta-1)}+u^{q} u_{L}^{q(\beta-1)}\right)\left(|\nabla \xi|^{p}+\xi^{p-q}|\nabla \xi|^{q}\right) d x \\
& \quad+C \beta^{p} \int_{\mathbf{R}^{N}} \xi^{p} u^{p^{*}} u_{L}^{p(\beta-1)} d x+C \beta^{p} \int_{\mathbf{R}^{N}} \xi^{p} u^{p^{*}} u_{L}^{q(\beta-1)} d x
\end{align*}
$$

$$
\begin{aligned}
\leq & C \beta^{p} \int_{\mathbf{R}^{N}}\left(u^{p} u_{L}^{p(\beta-1)}+u^{q} u_{L}^{q(\beta-1)}\right)|\nabla \xi|^{p} d x \\
& +C \beta^{p} \int_{\mathbf{R}^{N}} \xi^{p} u^{p^{*}} u_{L}^{p(\beta-1)} d x+C \beta^{p} \int_{\mathbf{R}^{N}} \xi^{p} u^{q^{*}} u_{L}^{q(\beta-1)} d x,
\end{aligned}
$$

where we have used the fact that $u^{p^{*}} u_{L}^{q(\beta-1)} \leq u^{p^{*}} u_{L}^{p(\beta-1)}+u^{q^{*}} u_{L}^{q(\beta-1)}$.
We claim that

$$
\begin{equation*}
u \in L^{\left(p^{*}\right)^{2} / p} \cap L^{\left(q^{*}\right)^{2} / q}(|x| \geq R) \tag{5.6}
\end{equation*}
$$

In fact, since

$$
\begin{align*}
& \int_{\mathbf{R}^{N}} \eta^{p} u^{p^{*}} \bar{u}_{L}^{p(\beta-1)} d x \leq\left[\int_{\mathbf{R}^{N}}\left(\eta u u_{L}^{\beta-1}\right)^{p^{*}} d x\right]^{p / p^{*}} \cdot\left[\int_{|x| \geq R-r} u^{p^{*}} d x\right]^{\left(p^{*}-p\right) / p^{*}} \tag{5.7}\\
& \int_{\mathbf{R}^{N}} \eta^{p} u^{q^{*}} \bar{u}_{L}^{q(\beta-1)} d x \leq\left[\int_{\mathbf{R}^{N}}\left(\eta^{p / q} u u_{L}^{\beta-1}\right)^{q^{*}} d x\right]^{q / q^{*}} \cdot\left[\int_{|x| \geq R-r} u^{q^{*}} d x\right]^{\left(q^{*}-q\right) / q^{*}} \tag{5.8}
\end{align*}
$$

and $u \in L^{p^{*}} \cap L^{q^{*}}\left(\mathbf{R}^{N}\right)$, letting $\beta=p^{*} / p$, we have, for R large enough, that

$$
\begin{equation*}
\left[\int_{|x| \geq R-r} u^{p^{*}} d x\right]^{\left(p^{*}-p\right) / p^{*}} \leq \frac{1}{2 C \beta^{p}}, \quad\left[\int_{|x| \geq R-r} u^{q^{*}} d x\right]^{\left(q^{*}-q\right) / q^{*}} \leq \frac{1}{2 C \beta^{p}} \tag{5.9}
\end{equation*}
$$

So, (5.5), (5.7), (5.8) and (5.9) imply that

$$
\begin{align*}
& \left(\int_{|x| \geq R}\left(u u_{L}^{p^{*} / p-1}\right)^{p^{*}} d x\right)^{p / p^{*}} \leq C r^{-p} \int_{\mathbf{R}^{N}}\left(u^{p^{*}}+u^{q p^{*} / p}\right) d x \\
& \leq C r^{-p} \int_{\mathbf{R}^{N}} u^{p^{*}} d x+C r^{-p} \int_{\mathbf{R}^{N}} u^{\frac{N_{p}}{N-p}-q} u^{q} d x \tag{5.10}\\
& \leq C r^{-p} \int_{\mathbf{R}^{N}} u^{p^{*}} d x+C r^{-p}\left(\int_{\mathbf{R}^{N}} u^{p^{*}} d x\right)^{\frac{q}{N}}\left(\int_{\mathbf{R}^{N}} u^{q^{*}} d x\right)^{\frac{N-q}{N}} \\
& <+\infty .
\end{align*}
$$

Similarly, letting $\beta=q^{*} / q$ and noticing that $q^{*}<p q^{*} / q<p^{*}$ implies $u^{p q^{*} / q} \leq$ $u^{q^{*}}+u^{p^{*}}$, we get

$$
\begin{align*}
& \left(\int_{|x| \geq R}\left(u u_{L}^{q^{*} / q-1}\right)^{q^{*}} d x\right)^{q / q^{*}} \leq C r^{-p} \int_{\mathbf{R}^{N}}\left(u^{q^{*}}+u^{p q^{*} / q}\right) d x \tag{5.11}\\
& \leq C r^{-p} \int_{\mathbf{R}^{N}} u^{q^{*}} d x+C r^{-p} \int_{\mathbf{R}^{N}}\left(u^{p^{*}}+u^{q^{*}}\right) d x<+\infty .
\end{align*}
$$

If we let $L \rightarrow \infty$ in (5.10) and (5.11), (5.6) follows.
Now we give the proof of $u \in L^{\infty}(|x| \geq R)$. Notice that (5.5) implies that either

$$
\begin{equation*}
\left(\int_{\mathbf{R}^{N}} W_{L}^{p^{*}} d x\right)^{p / p^{*}} \leq C \beta^{p} \int_{\mathbf{R}^{N}}\left(u^{p} u_{L}^{p(\beta-1)}|\nabla \xi|^{p}+\xi^{p} u^{p^{*}} u_{L}^{p(\beta-1)}\right) d x \tag{5.12}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\int_{\mathbf{R}^{N}} V_{L}^{q^{*}} d x\right)^{q / q^{*}} \leq C \beta^{p} \int_{\mathbf{R}^{N}}\left(u^{q} u_{L}^{q(\beta-1)}|\nabla \xi|^{p}+\xi^{p} u^{q^{*}} u_{L}^{q(\beta-1)}\right) d x \tag{5.13}
\end{equation*}
$$

is true. Let $t_{1}=\left(p^{*}\right)^{2} /\left(p^{*}-p\right) p$; then $t_{1}>1$. Suppose that $u \in L^{\beta p t_{1} /\left(t_{1}-1\right)}(|x| \geq$ $R-r)$ for some $\beta \geq 1$. Then

$$
\begin{aligned}
\int_{\mathbf{R}^{N}} \eta^{p} u^{p^{*}} \bar{u}_{L}^{p(\beta-1)} d x & \leq\left[\int_{B_{R^{N}}}\left(\eta^{p} u^{p \beta}\right)^{t_{1} /\left(t_{1}-1\right)} d x\right]^{1-1 / t_{1}} \cdot \int_{|x| \geq R-r}\left(u^{\left(p^{*}-p\right) t_{1}} d x\right)^{1 / t_{1}} \\
& \leq\left[\int_{|x| \geq R-r}\left(u^{p \beta}\right)^{t_{1} /\left(t_{1}-1\right)} d x\right]^{1-1 / t_{1}} \cdot \int_{|x| \geq R-r}\left(u^{\left(p^{*}\right)^{2} / p} d x\right)^{1 / t_{1}} \\
& \leq C\left[\int_{|x| \geq R-r}\left(u^{p \beta}\right)^{t_{1} /\left(t_{1}-1\right)} d x\right]^{1-1 / t_{1}}
\end{aligned}
$$

and

$$
\int_{\mathbf{R}^{N}}|\nabla \eta|^{p} u^{p} u_{L}^{p(\beta-1)} d x \leq C r^{-p}\left[R^{N}-(R-r)^{N}\right]^{1 / t_{1}}\left[\int_{|x| \geq R-r}\left(u^{p \beta}\right)^{t_{1} /\left(t_{1}-1\right)} d x\right]^{1-1 / t_{1}} .
$$

So by (5.12) we get

$$
\left[\int_{\mathbf{R}^{N}}\left(\eta u u_{L}^{\beta-1}\right)^{p^{*}} d x\right]^{p / p^{*}} \leq C \beta^{p}\left(1+r^{-p} R^{N / t_{1}}\right)\left[\int_{|x| \geq R-r}\left(u^{p \beta}\right)^{t_{1} /\left(t_{1}-1\right)} d x\right]^{1-1 / t_{1}}
$$

that is,

$$
\begin{equation*}
\|u\|_{p^{*} \beta} \leq C^{\beta^{-1}} \beta^{\beta^{-1}}\left(1+r^{-p} R^{N / t_{1}}\right)^{(p \beta)^{-1}}\|u\|_{\beta s_{1}}(|x| \geq R-r) \tag{5.14}
\end{equation*}
$$

where $s_{1}=p t_{1} /\left(t_{1}-1\right)$ and C is independent of r, β. Similarly, if we set $t_{2}=$ $\left(q^{*}\right)^{2} /\left(q^{*}-q\right) q$ and $s_{2}=q t_{2} /\left(t_{2}-1\right)$, (5.13) implies that

$$
\begin{equation*}
\|u\|_{q^{*} \beta} \leq C^{\beta^{-1}} \beta^{p / q \beta^{-1}}\left(1+r^{-p} R^{N / t_{2}}\right)^{(q \beta)^{-1}}\|u\|_{\beta s_{2}}(|x| \geq R-r) \tag{5.15}
\end{equation*}
$$

that is, for any given ξ defined as before, we have that (5.14) or (5.15) is true.
We set $R>0,0<r<R / 2, R_{i}=R-2^{-i} r, B_{i}=B_{R_{i}}(0)$ for $i=0,1, \ldots$ and use (5.14) and (5.15) to iterate as follows: For $i=0$, we set $I_{0}=\|u\|_{p^{*}\left(B_{0}^{c}\right)}$; For $i=1$, if (5.14) holds, we set $\beta_{1}=p^{*}\left(t_{1}-1\right) /\left(p t_{1}\right)=p^{*} / s_{1}$ and $\nu_{1}=p^{*} \beta_{1}$. Then by (5.14) with $\beta=\beta_{1}$ we have

$$
\begin{equation*}
I_{1} \equiv\|u\|_{\nu_{1}\left(B_{1}^{c}\right)}=\|u\|_{p^{*} \beta_{1}\left(B_{1}^{c}\right)} \leq C^{\beta_{1}^{-1}} \beta_{1}^{\beta_{1}^{-1}}\left(1+\left(2^{1} / r\right)^{p} R^{N / t_{1}}\right)^{\left(p \beta_{1}\right)^{-1}} I_{0} . \tag{5.16}
\end{equation*}
$$

If (5.15) holds, we set $\beta_{1}=p^{*} / s_{2}$ and $\nu_{1}=q^{*} \beta_{1}$, then by (5.15) with $\beta=\beta_{1}$ to get

$$
\begin{equation*}
I_{1} \equiv\|u\|_{\nu_{1}\left(B_{1}^{c}\right)}=\|u\|_{q^{*} \beta_{1}\left(B_{1}^{c}\right)} \leq C^{\beta_{1}^{-1}} \beta_{1}^{(p / q) \beta_{1}^{-1}}\left(1+\left(2^{1} / r\right)^{p} R^{N / t_{2}}\right)^{\left(q \beta_{1}\right)^{-1}} I_{0} . \tag{5.17}
\end{equation*}
$$

For $i=2$, if (5.16) and (5.14) hold, we set β_{2} with $\beta_{2} s_{1}=p^{*} \beta_{1}=\nu_{1}$ (i.e., $\beta_{2}=\nu_{1} / s_{1}$), $\nu_{2}=p^{*} \beta_{2}$, then by (5.14) and (5.16) with $\beta=\beta_{2}$ to get

$$
\begin{equation*}
I_{2} \equiv\|u\|_{\nu_{2}\left(B_{2}^{c}\right)} \leq C^{\beta_{2}^{-1}} \beta_{2}^{\beta_{2}^{-1}}\left(1+\left(2^{2} / r\right)^{p} R^{N / t_{1}}\right)^{\left(p \beta_{2}\right)^{-1}} I_{1} . \tag{5.18}
\end{equation*}
$$

If (5.16) and (5.15) hold, we set β_{2} with $\beta_{2} s_{2}=p^{*} \beta_{1}=\nu_{1}$ (i.e., $\beta_{2}=\nu_{1} / s_{2}$), $\nu_{2}=q^{*} \beta_{2}$, then by (5.15) and (5.16) with $\beta=\beta_{2}$ to get

$$
\begin{equation*}
I_{2} \equiv\|u\|_{\nu_{2}\left(B_{2}^{c}\right)} \leq C^{\beta_{2}^{-1}} \beta_{2}^{(p / q) \beta_{2}^{-1}}\left(1+\left(2^{2} / r\right)^{p} R^{N / t_{2}}\right)^{\left(q \beta_{2}\right)^{-1}} I_{1} \tag{5.19}
\end{equation*}
$$

If (5.17) and (5.14) hold, we set β_{2} with $\beta_{2} s_{1}=q^{*} \beta_{1}=\nu_{1}$ (i.e., $\beta_{2}=\nu_{1} / s_{1}$), $\nu_{2}=p^{*} \beta_{2}$, then by (5.14) and (5.17) with $\beta=\beta_{2}$ to get

$$
\begin{equation*}
I_{2} \equiv\|u\|_{\nu_{2}\left(B_{2}^{c}\right)} \leq C^{\beta_{2}^{-1}} \beta_{2}^{\beta_{2}^{-1}}\left(1+\left(2^{2} / r\right)^{p} R^{N / t_{1}}\right)^{\left(p \beta_{2}\right)^{-1}} I_{1} . \tag{5.20}
\end{equation*}
$$

If (5.17) and (5.15) hold, we set β_{2} with $\beta_{2} s_{2}=q^{*} \beta_{1}=\nu_{1}$ (i.e., $\beta_{2}=\nu_{1} / s_{2}$), $\nu_{2}=q^{*} \beta_{2}$, then by (5.15) and (5.17) with $\beta=\beta_{2}$ to get

$$
\begin{equation*}
I_{2} \equiv\|u\|_{\nu_{2}\left(B_{2}^{c}\right)} \leq C^{\beta_{2}^{-1}} \beta_{2}^{(p / q) \beta_{2}^{-1}}\left(1+\left(2^{2} / r\right)^{p} R^{N / t_{2}}\right)^{\left(q \beta_{2}\right)^{-1}} I_{1} \tag{5.21}
\end{equation*}
$$

Note that all the ν_{i} and $\beta_{i}, i=1,2$ above have the forms

$$
\begin{aligned}
& \nu_{i}=p^{*}\left(p^{*} / s_{1}\right)^{k}\left(q^{*} / s_{2}\right)^{i-k}, \quad i=1,2, \quad k=0,1, \ldots, i, \\
& \beta_{i}=\nu_{i} / p^{*} \quad \text { or } \quad \beta_{i}=\nu_{i} / q^{*}, \quad i=1,2
\end{aligned}
$$

Now $1<\left(q^{*} / s_{2}\right)^{i} \leq \beta_{i} \leq p^{*} / q\left(p^{*} / s_{1}\right)^{i}$ for all $i \geq 1$, and there are only two cases:

$$
\begin{align*}
I_{i+1} & \equiv\|u\|_{\nu_{i+1}}=\|u\|_{p^{*} \beta_{i}}\left(B_{i+1}^{c}\right) \leq C^{\beta_{i+1}^{-1}} \beta_{i+1}^{\beta_{i+1}^{-1}}\left(1+\left(2^{i+1} / r\right)^{p} R^{N / t_{1}}\right)^{\left(p \beta_{i+1}\right)^{-1}} I_{i} \tag{5.22}\\
& \leq\left[C p^{*} / q\left(1+r^{-p} R^{N / t_{1}}\right)\right]^{\Sigma_{j=1}^{i+1}\left(q^{*} / s_{2}\right)^{-1}}\left(2 p^{*} / s_{1}\right)^{\Sigma_{j=1}^{i+1} j\left(q^{*} / s_{2}\right)^{-j}} I_{0}
\end{align*}
$$

or

$$
\begin{align*}
I_{i+1} & \left.=\|u\|_{q^{*} \beta_{i}}\left(B_{i+1}^{c}\right) \leq C^{\beta_{i+1}^{-1}} \beta_{i+1}^{(p / q) \beta_{i+1}^{-1}}\left(1+\left(2^{i+1} / r\right)^{p} R^{N / t_{2}}\right)\right)^{\left(q \beta_{i+1}\right)^{-1}} I_{i} \\
& \leq\left[C\left(p^{*} / q\right)^{p / q}\left(1+r^{-p} R^{N / t_{2}}\right)\right]_{j=1}^{\Sigma_{j=1}^{i+1}\left(q^{*} / s_{2}\right)^{-j}}\left(2 p^{*} / s_{1}\right)^{p / q \Sigma_{j=1}^{i+1} j\left(q^{*} / s_{2}\right)^{-j}} I_{0} . \tag{5.23}
\end{align*}
$$

If we let $i \rightarrow \infty$, then (5.22) and (5.23) imply that

$$
\begin{equation*}
I_{\infty} \equiv\|u\|_{\infty\left(B_{R}^{c}\right)} \leq(C(p, q, r, R))^{\Sigma_{j=1}^{\infty}\left(q^{*} / s_{2}\right)^{-j}}\left(2 p^{*} / s_{1}\right)^{p / q \sum_{j=1}^{\infty} j\left(q^{*} / s_{2}\right)^{-j}} I_{0} \tag{5.24}
\end{equation*}
$$

Since $q^{*}>s_{2}$, (5.24) implies that

$$
\begin{equation*}
\|u\|_{L^{\infty}(|x| \geq R)} \leq C\|\bar{u}\|_{p^{*}(|x| \geq R-r)} \leq C\|\bar{u}\|_{p^{*}(|x| \geq R / 2)} \tag{5.25}
\end{equation*}
$$

Inequality (5.25) and the local boundedness of u imply (i) of Theorem 3. With the help of (5.25), one can follow the steps of ([11] Theorem 3.1) to prove the exponential decay of u. We just sketch the proof of this fact here. In fact, (i) shows that there is a constant \widetilde{C}, such that $\|u\|_{\infty} \leq \widetilde{C}$. We define a smooth function $U(x)=\widetilde{C} e^{\varepsilon R} e^{-\varepsilon|x|}$ and the test function $\phi=(u-U)^{+}$. It is obvious that $\phi \in W_{0}^{1, p}\left(\mathbf{R}^{N} \backslash B_{R}\right)$. Then we have, if $|x|>R$ is large enough and $\varepsilon>0$ is small enough, that

$$
\begin{aligned}
& -\Delta_{p} U-\Delta_{q} U+\frac{m}{2}|U|^{p-2} U+\frac{n}{2}|U|^{q-2} U \\
& =U^{p-1}\left[\frac{m}{2}-\frac{(N-1)}{|x|} \varepsilon^{p-1}-(p-1) \varepsilon^{p}\right]+U^{q-1}\left[\frac{n}{2}-\frac{(N-1)}{|x|} \varepsilon^{q-1}-(q-1) \varepsilon^{q}\right] \\
& >0
\end{aligned}
$$

That is why,

$$
\begin{equation*}
\int_{|x| \geq R}\left(-\Delta_{p} U-\Delta_{q} U+\frac{m}{2}|U|^{p-2} U+\frac{n}{2}|U|^{q-2} U\right) \phi d x \geq 0 \tag{5.26}
\end{equation*}
$$

On the other hand, by $\left(\mathrm{C}_{2}\right)$ we have

$$
\begin{equation*}
f(x, u) \leq-\frac{m}{2}|u|^{p-2} u-\frac{n}{2}|u|^{q-2} u \quad \text { as } u \rightarrow 0^{+} . \tag{5.27}
\end{equation*}
$$

Thus, (1.1) and (5.27) imply that

$$
\begin{equation*}
\int_{|x| \geq R}\left(-\Delta_{p} u-\Delta_{q} u+m / 2|u|^{p-2} u+n / 2|u|^{q-2} u\right) \phi d x \leq 0 . \tag{5.28}
\end{equation*}
$$

So, (5.26), (5.28) and the definition of ϕ show that

$$
\begin{align*}
0 \geq & \int_{|x| \geq R} \sum_{i=1}^{N}\left(|\nabla u|^{p-2} u_{x_{i}}-|\nabla U|^{p-2} U_{x_{i}}\right) \phi_{x_{i}} d x \\
& +\frac{m}{2} \int_{|x| \geq R}\left(u^{p-1}-U^{p-1}\right) \phi d x \\
& +\int_{|x| \geq R} \sum_{i=1}^{N}\left(|\nabla u|^{q-2} u_{x_{i}}-|\nabla U|^{q-2} U_{x_{i}}\right) \phi_{x_{i}} d x \\
& +\frac{n}{2} \int_{|x| \geq R}\left(u^{q-1}-U^{q-1}\right) \phi d x \tag{5.29}\\
= & \int_{\{|x| \geq R\} \cap\{u>U\}} \sum_{i=1}^{N}\left(|\nabla u|^{p-2} u_{x_{i}}-|\nabla U|^{p-2} U_{x_{i}}\right) \phi_{x_{i}} \\
& +\frac{m}{2}\left(u^{p-1}-U^{p-1}\right) \phi d x \\
& +\int_{\{|x| \geq R\} \cap\{u>U\}} \sum_{i=1}^{N}\left(|\nabla u|^{q-2} u_{x_{i}}-|\nabla U|^{q-2} U_{x_{i}}\right) \phi_{x_{i}} \\
& +\frac{n}{2}\left(u^{q-1}-U^{q-1}\right) \phi d x .
\end{align*}
$$

Since $\left(|\xi|^{t-2} \xi_{i}-|\eta|^{t-2} \eta\right)\left(\xi_{i}-\eta_{i}\right)>0$ when $t>1, \xi \neq \eta$, (5.29) implies that

$$
\begin{equation*}
u \leq U \quad \text { a.e. in }\left\{x \in \mathbf{R}^{N}:|x|>R\right\} . \tag{5.30}
\end{equation*}
$$

Notice that $U \in C^{\infty}\left(\mathbf{R}^{N}\right)$ and Theorem 2 implies that $u \in C^{1}\left(\mathbf{R}^{N}\right)$. Therefore

$$
u \leq \widetilde{C} e^{\varepsilon R} e^{-\varepsilon|x|}=C e^{-\varepsilon|x|}
$$

when $|x| \geq R$. This completes the proof of Theorem 3.
Acknowledgements. The authors thank the referee of this paper for the valuable suggestion according to which the paper was revised.

References

[1] Benci, V., A. M. Micheletti, and D. Visetti: An eigenvalue problem for a quasilinear elliptic field equation. - J. Differential Equations 184:2, 2002, 299-320.
[2] Berestycki, H., and P.-L. Lions: Nonlinear scalar field equations. I. Existence of a ground state. - Arch. Ration. Mech. Anal. 82, 1983, 313-345.
[3] Chaljub-Simon, A.: Existence of ground states with exponential decay for semi-linear elliptic equations in \mathbf{R}^{n}. - J. Differential Equations 76, 1988, 374-390.
[4] Cherfils, L., and Y. Il'yasov: On the stationary solutions of generalized reaction diffusion equation with $p \& q$-Laplacian. - Commun. Pure Appl. Anal. 4:1, 2005, 9-22.
[5] DiBenedetto, E.: $C^{1, \alpha}$ local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal., 7:8, 1983, 827-850.
[6] Evans, L. C.: A new proof of local $C^{1, \alpha}$-regularity for solutions of certain degenerate elliptic P. D. E. - University of Maryland, 1981.
[7] Giaquinta, M.: Multiple integrals in the calculus of variations and nonlinear elliptic systems. - Vorlesungsreihe SFB 72, Universität Bonn, 1981.
[8] He, C., and G. Li: The existence of a nontrivial solution to $p \& q$-Laplacian problem with nonlinearity asymptotic to u^{p-1} at infinity in \mathbf{R}^{N}. - Nonlinear Anal., 68:5, 2008, 1100-1119.
[9] Ladyzhenskaya, O. A., and N. N. Ural'tseva: Linear and quasilinear elliptic equations. - Academic Press, Beijing, 1987 (in Chinese).
[10] Li, G.: Some properties of weak solutions of nonlinear scalar field equations. - Ann. Acad. Sci. Fenn. A I Math. 15, 1990, 27-36.
[11] Li, G., and S. Yan: Eigenvalue problems for quasilinear elliptic equations on \mathbf{R}^{N}. - Comm. Partial Differential Equations 14:8-9, 1989, 1291-1314.
[12] Lindqvist, P.: Notes on the p-Laplacian equations. - Report 102, University of Jyväskylä, Department of Mathematics and Statistics, 2006.
[13] Lindqvist, P.: Regularity for the gradient of the solution to a nonlinear obstacle problem with degenerate ellipticity. - Nonlinear Anal. 12:11, 1988, 1245-1255.
[14] Moser, J.: A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations. - Comm. Pure Appl. Math. 13:3, 1960, 457-468.
[15] de Thélin, F.: Local regularity properties for the solutions of a nonlinear partial differential equation. - Nonlinear Anal. 6:8, 1982, 839-844.
[16] Tolksdorf, P.: Regularity for a more general class of quasilinear elliptic equations. - J. Differential Equations 51, 1984, 126-150.
[17] Uhlenbeck, K.: Regularity for a class of non-linear elliptic systems. - Acta Math. 138, 1977, 219-240.
[18] Ural'tseva, N. N.: Degenerate quasilinear elliptic systems. - Zap. Nauchn. Sem. Leningrad Otdel. Mat. Inst. Steklov. (LOMI) 7, 1968, 184-222 (in Russian).
[19] Yakovlev, G. N.: Properties of solutions of a class of second order quasi-linear elliptic equations in divergence form. - Proc. Steklov Inst. Math. 131, 1974, 242-252.

[^0]: 2000 Mathematics Subject Classification: Primary 35B65, 35D10.
 Key words: Regularity, weak Solutions, $p \& q$-Laplacians.
 ${ }^{a}$ Partially supported by the NSFC NO:10571069 and NSFC NO:10631030 and the Lab of Mathematical Sciences, CCNU, Hubei Province, China.
 ${ }^{b}$ Corresponding author: ligb@mail.ccnu.edu.cn.

