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DISTANCES FROM BLOCH FUNCTIONS
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Abstract. Distance formulas from Bloch functions to some Möbius invariant function spaces
are given. These results generalize the distance formula from Bloch functions to BMOA by Peter
Jones. As consequences, we have characterized the closures of these Möbius invariant function
spaces in the Bloch space.

Let H(D) be the space of all analytic functions on the unit disk D. For a ∈ D,
let g(z, a) = log(1/|ϕa(z)|) be the Green’s function for D with pole at a. where
ϕa(z) = (z−a)/(1−az). Let 0 < p < ∞, −2 < q < ∞, 0 < s < ∞, −1 < q+s < ∞,
and let f be an analytic function on D. We say that f ∈ F (p, q, s), if

‖f‖p
p,q,s = sup

a∈D

∫

D

|f ′(z)|p(1− |z|2)qgs(z, a) dA(z) < ∞;

f ∈ F0(p, q, s), if

lim
|a|→1

∫

D

|f ′(z)|p(1− |z|2)qgs(z, a) dA(z) = 0

(see [Zha]). Here dA(z) = dxdy/π is Lebesgue area measure normalized so that
A(D) = 1.

For p > 1, the analytic Besov space Bp is the space of analytic functions f on
D satisfying

‖f‖p
Bp

=

∫

D

|f ′(z)|p(1− |z|2)p−2 dA(z) < ∞.

We note here that Bp can be viewed as F (p, p− 2, 0). When p = 1, the Besov space
B1 can be defined as the space of analytic functions f on D satisfying

‖f‖B1 =

∫

D

|f ′′(z)| dA(z) < ∞.

We recall also that the Bloch space B is the space of analytic functions on D
satisfying

‖f‖B = sup
z∈D

|f ′(z)|(1− |z|2) < ∞,
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and the little Bloch space B0 is the space of functions f analytic on D for which
|f ′(z)|(1 − |z|2) → 0 as |z| → 1. It is well known that B is a Banach space under
the norm

‖f‖∗B = |f(0)|+ ‖f‖B

and B0 is the closure of polynomials in B.
It is known that for s > 1, F (p, p − 2, s) = B and F0(p, p − 2, s) = B0 (see,

[Zha, p1̇3]). It is also known that F (2, 0, s) = Qs and F0(2, 0, s) = Qs,0, which were
introduced in [AL], [AXZ] and studied by many authors (see, for example, [AC],
[ASX], [ASZ], [ALXZ], [EX] and [NX]). For the case s = 1, we have F (2, 0, 1) =
Q1 = BMOA and F0(2, 0, 1) = Q1,0 = V MOA (see, for example, [B]). We note
that, for 0 ≤ s < ∞, F (p, p− 2, s) and F0(p, p− 2, s) are Möbius invariant function
spaces (see, [AFP]), for 0 ≤ s < 1, F (p, p− 2, s) and F0(p, p− 2, s) are subspaces of
BMOA and V MOA, respectively.

For 0 < s < ∞, we say that a positive measure µ defined on D is an s-Carleson
measure provided µ(S(I)) = O(|I|s) for all subarcs I of ∂D, where |I| denotes the arc
length of I and S(I) denotes the usual Carleson box based on I. If µ(S(I)) = o(|I|s),
as |I| → 0, then we say that µ is a vanishing s-Carleson measure (cf. [ASX]). For f
an analytic function on D, we define

dµf = |f ′(z)|p(1− |z|2)q+s dA(z).

In [Zha, Theorem 2.4 and Theorem 2.5], it was proved that f ∈ F (p, q, s) if and only
if dµf is an s-Carleson measure, and f ∈ F0(p, q, s) if and only if dµf is a vanishing
s-Carleson measure. Thus we can replace g(z, a) by (1− |ϕa(z)|2) in the definition
of F (p, q, s) and F0(p, q, s).

For a subspace X of B, we will denote the distance from a function f ∈ B to
the space X by distB(f,X). The following is the well-known distance formula by
Jones (see [GZ, p. 503]).

Jones’ theorem. Let f ∈ B. Then the following quantities are equivalent:
(A) distB(f,BMOA);

(B) inf{ε : χΩε(f)
dA(z)
1−|z|2 is a Carleson measure},

where Ωε(f) = {z ∈ D : |f ′(z)|(1− |z|2) ≥ ε}, χ denotes the characteristic function
of a set.

The purpose of the paper is to extend Jones’ theorem from BMOA to the space
F (p, p − 2, s), for 1 ≤ p < ∞ and 0 < s ≤ 1. In Jones’ proof presented in [GZ],
the Fefferman duality theorem is used. However, the method cannot be used in
our situation since in general we do not know what is the predual of the space
F (p, p − 2, s). Here we give a relatively direct proof of our result. We need the
following lemma.

The following inequality is from [OF2], Lemma 2.5. Since a proof was not given
in [OF2], we give a proof here for the convenience of a reader. I would like to thank
J.M. Ortega and J. Fàbrega for providing me the following proof. In what follows,
C will be a positive constant which may vary from line to line.
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Lemma 1. Let s > −1, r, t > 0, and r + t − s > 2. If t < s + 2 < r then we
have ∫

D

(1− |η|2)s

|1− η̄z|r|1− η̄ζ|t dA(η) ≤ C

(1− |z|2)r−s−2|1− ζ̄z|t .

Proof. Let

I =

∫

D

(1− |η|2)s

|1− η̄z|r|1− η̄ζ|t dA(η).

We will use the following well-known inequality (see Lemma 4.2.2 in [Zhu]): Let
−1 < s < r − 2. Then∫

D

(1− |η|2)s

|1− η̄z|r dA(η) ≤ C

(1− |z|2)r−s−2
.

Let d(ζ, z) = |z̄(z − ζ)|+ |ζ̄(ζ − z)| be the non isotropic pseudodistance and cd

a constant such that
d(ζ, z) ≤ cd(d(ζ, w) + d(w, z)).

Given ζ, z in D, according Definition 3.2 in [OF1], we take the following partition
of D:

Ω1 =

{
η ∈ D : d(η, z) ≤ d(ζ, z)

2cd

}
,

Ω2 =

{
η ∈ D : d(η, ζ) ≤ d(ζ, z)

2cd

}
,

Ω3 =

{
η ∈ D :

d(ζ, z)

2cd

< d(η, z) ≤ d(η, ζ)

}
,

Ω4 =

{
η ∈ D :

d(ζ, z)

2cd

< d(η, ζ) ≤ d(η, z)

}
.

By Lemma 3.3 in [OF1],

|1− η̄z| ≤ C|1− ζ̄z| ≤ C|1− η̄ζ|, η ∈ Ω1,

|1− η̄ζ| ≤ C|1− ζ̄z| ≤ C|1− η̄z|, η ∈ Ω2,

|1− ζ̄z| ≤ C|1− η̄z| ≤ C|1− η̄ζ|, η ∈ Ω3,

|1− ζ̄z| ≤ C|1− η̄ζ| ≤ C|1− η̄z|, η ∈ Ω4.

Divide the integral I into two integrals, I1 and I2, on Ω1 ∪Ω3 and Ω2 ∪Ω4, respect-
ively. From above inequalities, it is clear that

I1 ≤ 1

|1− ζ̄z|t
∫

D

(1− |η|2)s

|1− η̄z|r dA(η) ≤ C

(1− |z|2)r−s−2|1− ζ̄z|t .

Now we estimate I2. It is easy to see that I2 is bounded by a multiple of

J2 =

∫

D

(1− |η|2)s

(|1− ζ̄z|+ |1− η̄ζ|)r|1− η̄ζ|t dA(η).
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Let ζ = |ζ|eiθ. Using the change of variable λ = e−iθη, we have ζη̄ = |ζ|λ̄. Thus

J2 =

∫

D

(1− |λ|2)s

(|1− ζ̄z|+ |1− λ̄|ζ||)r|1− λ̄|ζ||t dA(λ).

Since for any ζ ∈ D we have

|1− λ| ≤ 2|1− λ̄|ζ||,

we get J2 is bounded by a constant times

M2 =

∫

D

(1− |λ|2)s

(|1− ζ̄z|+ |1− λ|)r|1− λ|t dA(λ).

If s ≥ 0 then by integration in polar coordinates on a disk of center 1 and radius
2, we obtain

(1) I2 ≤ C

∫ 2

0

Rs+1−t

(|1− ζ̄z|+ R)r
dR ≤ C

|1− ζ̄z|r+t−s−2
.

In the last inequality, we used r + t − s − 2 > 0 and s > t − 2 (Note that, to get
the above estimate for I2 we have not used the condition s + 2 < r yet. This is
important for the proof of the case −1 < s < 0).

Since 1− |z|2 ≤ 2|1− ζ̄z| and r − s− 2 > 0, we have

1

|1− ζ̄z|r+t−s−2
≤ C

(1− |z|2)r−s−2|1− ζ̄z|t ,

which concludes the proof.
Now, we consider the case −1 < s < 0. For simplicity let K = |1− ζ̄z|. Then

M2 =

∫

D

(1− |λ|2)s

(K + |1− λ|)r|1− λ|t dA(λ)

=

∫ 1

0

(1−R2)sR dR

∫ 2π

0

1

(K + |1−Reiθ|)r|1−Reiθ|t dθ.

Let

u(R) = −(1−R2)s+1/(2(s + 1))

and

v(R) =

∫ 2π

0

1

(K + |1−Reiθ|)r|1−Reiθ|t dθ.
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Using integration by parts we get

M2 =

∫ 1

0

u′(R)v(R) dR

= u(R)v(R)
∣∣1
0
−

∫ 1

0

u(R)v′(R) dR

≤ π

s + 1
+

r

2(s + 1)

∫ 1

0

(1−R2)s+1 dR

∫ 2π

0

dθ

(K + |1−Reiθ|)r+1|1−Reiθ|t

+
t

2(s + 1)

∫ 1

0

(1−R2)s+1 dR

∫ 2π

0

dθ

(K + |1−Reiθ|)r|1−Reiθ|t+1

≤ π

s + 1
+ C1

∫

∆

(1− |λ|2)s+1

(|1− ζ̄z|+ |1− λ|)r+1|1− λ|t dA(λ)

+ C2

∫

∆

(1− |λ|2)s+1

(|1− ζ̄z|+ |1− λ|)r|1− λ|t+1
dA(λ).

Thus by (1) both integrals are bounded by

C

|1− ζ̄z|r+t−s−2
.

Since 1− |z|2 ≤ 2|1− ζ̄z| and r − s− 2 > 0, we have

1

|1− ζ̄z|r+t−s−2
≤ C

(1− |z|2)r−s−2|1− ζ̄z|t ,

which completes the proof. ¤
The following is our main result.

Theorem 2. Let 0 < s ≤ 1, 1 ≤ p < ∞, 0 ≤ t < ∞, and let f ∈ B. Then the
following quantities are equivalent:

(A) distB

(
f, F (p, p− 2, s)

)
;

(B) inf{ε : χΩε(f)
dA(z)

(1−|z|2)2−s is an s-Carleson measure};
(C) inf{ε : supa∈D

∫
Ωε(f)

|f ′(z)|t(1− |z|2)t−2(1− |ϕa(z)|2)s dA(z) < ∞};
(D) inf{ε : supa∈D

∫
Ωε(f)

|f ′(z)|t(1− |z|2)t−2gs(z, a) dA(z) < ∞},
where Ωε(f) = {z ∈ D : |f ′(z)|(1− |z|2) ≥ ε}.

Remark. Notice that since Qs = F (2, 0, s), Theorem 2 gives us the same
estimates for distB(f,Qs). Also since Q1 = BMOA, Theorem 2 includes Jones’
result mentioned above.

Proof. Let f ∈ B. By [Zhu, Lemma 4.2.8],

(2) f(z)− f(0) =

∫

D

f ′(w)(1− |w|2)
(1− zw̄)2w̄

dA(w).
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Define

f1(z) = f(0) +

∫

Ωε(f)

f ′(w)(1− |w|2)
(1− zw̄)2w̄

dA(w)

and

f2(z) =

∫

D\Ωε(f)

f ′(w)(1− |w|2)
(1− zw̄)2w̄

dA(w).

Then by (2),
f(z) = f1(z) + f2(z).

Let
f3(z) = f1(z) + f2(0)

and
f4(z) = f2(z)− f2(0).

Then
f = f3 + f4.

Now we are going to show that f3 ∈ F (p, p− 2, s). Since

f ′′3 (z) = 6

∫

Ωε(f)

w̄f ′(w)(1− |w|2)
(1− zw̄)4

dA(w),

we get by Fubini’s theorem,

I = sup
a∈D

∫

D

|f ′′3 (z)|(1− |ϕa(z)|2)s dA(z)

≤ 6 sup
a∈D

∫

D

∫

Ωε(f)

|f ′(w)|(1− |w|2)
|1− zw̄|4 dA(w)

(1− |a|2)s(1− |z|2)s

|1− āz|2s
dA(z)

≤ 6‖f‖B sup
a∈D

∫

Ωε(f)

(1− |a|2)s dA(w)

∫

D

(1− |z|2)s

|1− wz̄|4|1− az̄|2s
dA(z).

By Lemma 1,
∫

D

(1− |z|2)s

|1− wz̄|4|1− az̄|2s
dA(z) ≤ C

(1− |w|2)2−s|1− āw|2s
.

Thus

(3) I ≤ 6C‖f‖B sup
a∈D

∫

Ωε(f)

(1− |a|2)s

|1− āw|2s

dA(w)

(1− |w|2)2−s
.

If χΩε(f)
dA(z)

(1−|z|2)2−s is an s-Carleson measure, by [ASX] we know

sup
a∈D

∫

Ωε(f)

(
(1− |a|2)
|1− āw|2

)s
dA(w)

(1− |w|2)2−s
< ∞.

Combining with (3) we get that

sup
a∈D

∫

D

|f ′′3 (z)|(1− |ϕa(z)|2)s dA(z) < ∞.
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Thus f ′3 ∈ F (1, 0, s). By Theorem 3.2 in [R], we get that f3 ∈ F (1,−1, s). By [Zha,
Proposition 6.4], we see that F (1,−1, s) ⊂ F (p, p− 2, s). Thus f3 ∈ F (p, p− 2, s).

Next we prove that

(4) ‖f4‖∗B ≤ Cε.

Since f4(0) = 0, we see that
‖f4‖∗B = ‖f2‖B.

But

f ′2(z) = 2

∫

D\Ωε(f)

f ′(w)(1− |w|2)
(1− zw̄)3

dA(w).

So

|f ′2(z)| ≤ 2ε

∫

D

1

|1− zw̄|3 dA(w) ≤ 2Cε

1− |z|2 .

Thus
‖f2‖B = sup

z∈D
|f ′2(z)|(1− |z|2) ≤ 2Cε.

Thus we get (4).
Therefore,

distB

(
f, F (p, p− 2, s)

) ≤ ‖f − f3‖∗B = ‖f4‖∗B ≤ 2Cε,

which implies that distB

(
f, F (p, p− 2, s)

)
is bounded by a multiple of quantity (B).

If quantity (B) > quantity (A), there are two positive constants ε and ε1 and a
function fε1 ∈ F (p, p − 2, s) so that χΩε(f)

dA(z)
(1−|z|2)2−s is not an s-Carleson measure,

ε > ε1 and ‖f − fε1‖∗B ≤ ε1. Since

|f ′ε1
(z)|(1− |z|2) > |f ′(z)|(1− |z|2)− ‖f − fε1‖∗B > |f ′(z)|(1− |z|2)− ε1,

we have Ωε(f) ⊂ Ωε−ε1(fε1), and so for every p, 1 ≤ p < ∞,

χΩε(f)
dA(z)

(1− |z|2)2−s
≤ |f ′ε1

(z)|p(1− |z|2)s+p−2

(ε− ε1)p
dA(z).

Since fε1 ∈ F (p, p−2, s), we get by [Zha, Theorem 2.4], |f ′ε1
(z)|p(1−|z|2)s+p−2 dA(z)

is an s-Carleson measure. Thus χΩε(f)
dA(z)

(1−|z|2)2−s is an s-Carleson measure, which is
a contradiction. Thus quantity (A) is equivalent to quantity (B).

Notice that χΩε(f)
dA(z)

(1−|z|2)2−s is an s-Carleson measure means

sup
a∈D

∫

Ωε(f)

|ϕ′a(z)|s
(1− |z|2)2−s

dA(z) < ∞,

which is equivalent to

sup
a∈D

∫

Ωε(f)

(1− |z|2)−2(1− |ϕa(z)|2)s dA(z) < ∞.
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This is the case t = 0 in (C). For t > 0, the equivalence between (B) and (C) can
be easily obtained from the above inequality by noticing that for any z ∈ Ωε(f),

ε ≤ |f ′(z)|(1− |z|2) ≤ ‖f‖B.

That quantity (C) is bounded by a multiple of quantity (D) is obvious from the
fact that

1− |ϕa(z)|2 ≤ C log
1

|ϕa(z)| = Cg(z, a).

To show that quantity (D) is bounded by a multiple of quantity (C), we split
the integral

I =

∫

Ωε(f)

|f ′(z)|t(1− |z|2)t−2gs(z, a) dA(z)

into the sum of two integrals

I1 =

∫

Ωε(f)∩D1/4

|f ′(z)|t(1− |z|2)t−2gs(z, a) dA(z)

and
I2 =

∫

Ωε(f)\D1/4

|f ′(z)|t(1− |z|2)t−2gs(z, a) dA(z),

where D1/4 = {z ∈ D : |z| < 1/4}. Using the following simple inequality:

g(z, a) = log
1

|ϕa(z)|

{
≥ log 4 ≥ 1, |ϕa(z)| ≤ 1

4
,

≤ 4(1− |ϕa(z)|2), |ϕa(z)| ≥ 1
4
,

we get that

I2 ≤ 4

∫

Ωε(f)

|f ′(z)|t(1− |z|2)t−2(1− |ϕa(z)|2)s dA(z),

and

I1 ≤
∫

Ωε(f)

|f ′(z)|t(1− |z|2)t−2g2(z, a) dA(z)

≤ ‖f‖t
B

∫

Ωε(f)

(1− |z|2)−2g2(z, a) dA(z) ≤ C < ∞,

where C is a constant independent of a. Therefore, quantity (D) is bounded by a
multiple of quantity (C). The proof is complete. ¤

From Theorem 2 we immediately obtain the following corollaries.

Corollary 3. Let 0 < s ≤ 1, 1 ≤ p1 < p2 < ∞. Then

distB(f, F (p1, p1 − 2, s)) = distB(f, F (p2, p2 − 2, s)).

Corollary 4. Let 0 < s ≤ 1, 1 ≤ p < ∞ and 0 ≤ t < ∞. Let f be an analytic
function on D. Then the following conditions are equivalent.

(A) f is in the closure of F (p, p− 2, s) in B;
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(B) χΩε(f)
dA(z)

(1−|z|2)2−s is an s-Carleson measure for every ε > 0;

(C) supa∈D

∫
Ωε(f)

|f ′(z)|t(1− |z|2)t−2(1− |ϕa(z)|2)s dA(z) < ∞ for every ε > 0;

(D) supa∈D

∫
Ωε(f)

|f ′(z)|t(1− |z|2)t−2gs(z, a) dA(z) < ∞ for every ε > 0.

Corollary 5. Let 0 < s ≤ 1, 1 ≤ p1 < p2 < ∞. Then the closure of F (p1, p1 −
2, s) and F (p2, p2 − 2, s) in B are the same.

For the “little-oh” case, we have

Theorem 6. Let 0 < s ≤ 1, 1 ≤ p < ∞, 0 ≤ t < ∞, and let f ∈ B. Then the
following quantities are equivalent:

(A) distB(f,B0);
(B) distB

(
f, F0(p, p− 2, s)

)
;

(C) inf{ε : χΩε(f)
dA(z)

(1−|z|2)2−s is a vanishing s-Carleson measure};
(D) inf{ε : lim|a|→1

∫
Ωε(f)

|f ′(z)|t(1− |z|2)t−2(1− |ϕa(z)|2)s dA(z) = 0};
(E) inf{ε : lim|a|→1

∫
Ωε(f)

|f ′(z)|t(1− |z|2)t−2gs(z, a) dA(z) = 0}.
Proof. Let 0 < s ≤ 1 and let 1 ≤ p < ∞. Since F0(p, p − 2, s) contains all

polynomials, and it is well known that the closure of the set of all polynomials in
B is just B0 (see, for example, [Ax]), we see that the closure of F0(p, p− 2, s) in B
contains B0.

On the other hand, by [Zha, Corollary 2.8], F0(p, p − 2, s) ⊂ B0. It is obvious
that the closure of F0(p, p − 2, s) in B is included in B0. Thus B0 equals to the
closure of F0(p, p− 2, s) in B, and so quantity (A) is equivalent to quantity (B).

The proof of the equivalence of quantities (B), (C), (D) and (E) is similar to the
proof of the equivalence of quantity (A), (B), (C) and (D) in Theorem 1, we leave
the details to readers. ¤

Corollary 7. Let 0 < s ≤ 1 and let f be an analytic function in D. Then
f ∈ B0 if and only if χΩε(f)

dA(z)
(1−|z|2)2−s is a vanishing s-Carleson measure for every

ε > 0.

Remark. For s = 1, the result of Corollary 7 is proved in [GZ, Theorem 3].

For the case s = 0, we give the following result:

Theorem 8. Let 1 ≤ p < ∞, and let f ∈ B. Then the following quantities are
equivalent:

(A) distB(f,B0);
(B) distB(f,Bp);
(C) inf{ε : λ(Ωε(f)) < ∞},

where λ(Ωε(f)) =
∫

Ωε(f)
dA(z)

(1−|z|2)2
is the hyperbolic area of the set Ωε(f).

Proof. Since Bp ⊂ B0, for 1 ≤ p < ∞ (see, for example, [AFP]), by the
same reason as the proof of Theorem 6, we know that quantity (A) is equivalent to
quantity (B).
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To prove that the quantity (B) is bounded by a multiple of quantity (C), we
proceed as in the proof of Theorem 2. Let f1 and f2 be the same as in the proof of
Theorem 1. We need only prove that f1 ∈ Bp, for 1 ≤ p < ∞. We may assume that
f1(0) = 0. Since

f ′′1 (z) = 6

∫

Ωε(f)

f ′(w)(1− |w|2)w̄
(1− z̄w)4

dA(w),

we get by Fubini’s theorem,
∫

D

|f ′′1 (z)| dA(z) ≤ 6‖f‖B

∫

Ωε(f)

∫

D

dA(z)

|1− zw̄|4 dA(w) = 6‖f‖B

∫

Ωε(f)

dA(w)

(1− |w|2)2

= 6‖f‖Bλ(Ωε(f)).

Thus f1 ∈ B1 if λ(Ωε(f)) < ∞. Since B1 ⊂ Bp, for 1 < p < ∞, we get that for
1 ≤ p < ∞, f1 ∈ Bp if λ(Ωε(f)) < ∞. Thus distB(f, Bp) is bounded by a multiple
of quantity (C).

To prove the converse, suppose that the quantity (C) > quantity (B). Without
loss of generality, since B1 ⊂ Bp, we may assume that 1 < p < ∞. Then there are
two constants ε > ε1 > 0 and a function fε1 ∈ Bp such that λ(Ωε(f)) = ∞ and
‖f − fε1‖B ≤ ε1. As before, we have, for 1 < p < ∞,

χΩε(f)
dA(z)

(1− |z|2)2
≤ |f ′ε1

(z)|p(1− |z|2)p−2

(ε− ε1)p
dA(z).

Since fε1 ∈ Bp, we have
∫

D

|f ′ε1
(z)|p(1− |z|2)p−2 dA(z) < ∞.

Thus

λ(Ωε(f)) =

∫

D

χΩε(f)
dA(z)

(1− |z|2)2
≤ 1

(ε− ε1)p

∫

D

|f ′ε1
(z)|p(1− |z|2)p−2 dA(z) < ∞,

which is a contradiction. ¤
The following result is an immediate consequence of Theorem 8.

Corollary 9. Let f be analytic in D. Then f ∈ B0 if and only if λ(Ωε(f)) < ∞
for every ε > 0.

The author learnt after submitting this paper that Lindström and Palmberg
found the predual of the space F (p, q, s), in their paper [LP]. Although, it is not
clear whether their result could be used to provide a proof of Theorem 2 here.
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