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Abstract. In this paper, we study conditions which ensure the existence of backward flow
invariant domains for semigroups of holomorphic self-mappings of a simply connected domain D.
More precisely, the problem is the following. Given a one-parameter semigroup S on D, find a
simply connected subset Ω ⊂ D such that each element of S is an automorphism of Ω, in other
words, such that S forms a one-parameter group on Ω.

On the way to solving this problem, we prove an angle distortion theorem for starlike and
spirallike functions with respect to interior and boundary points.

Let D be a simply connected domain in the complex plane C. By Hol(D, Ω) we
denote the set of all holomorphic functions on D with values in a domain Ω in C.
We write Hol(D) for Hol(D, D), the set of holomorphic self-mappings of D. This
set is a topological semigroup with respect to composition. We denote by Aut(D)
the group of all automorphisms of D; thus F ∈ Aut(D) if and only if F is univalent
on D and F (D) = D.

Definition 1. A family S = {Ft}t≥0 ⊂ Hol(D) is said to be a one-parameter
continuous semigroup (semiflow) on D if

(i) Ft(Fs(z)) = Ft+s(z) for all t, s ≥ 0,
(ii) lim

t→0+
Ft(z) = z for all z ∈ D.

If, in addition, condition (i) holds for all t, s ∈ R, then (Ft)
−1 = F−t for each

t ∈ R; and S is called a one-parameter continuous group (flow) on D. In this case,
S ⊂ Aut(D).

In this paper, we study the following problem. Given a one-parameter semigroup
S ⊂ Hol(D), find a simply connected domain Ω ⊂ D (if it exists) such that
S ⊂ Aut(Ω).

2000 Mathematics Subject Classification: Primary 37C10, 30C45.
Key words: Semigroups, holomorphic mappings, generators, fixed points.
†Research supported by The German–Israeli Foundation for Scientific Research and Devel-

opment, G.I.F. Grants No. G-643-117.6/1999 and I-809-234.6/2003.



4 Mark Elin, David Shoikhet and Lawrence Zalcman

It is well-known that condition (ii) and holomorphy, in fact, imply that

lim
t→s

Ft(z) = Fs(z)

for each z ∈ D and s > 0 (s ∈ R in the case when S ⊂ Aut(D)); see, for
example, [8], [2], [28] and [29]. This explains the name “continuous semigroup” in
our terminology.

Furthermore, it follows by a result of Berkson and Porta [8] that each continuous
semigroup is differentiable in t ∈ R+ = [0,∞), (see also [1] and [30]). So, for each
continuous semigroup (semiflow) S = {Ft}t≥0 ⊂ Hol(D), the limit

(1) lim
t→0+

z − Ft(z)

t
= f(z), z ∈ D,

exists and defines a holomorphic mapping f ∈ Hol(D,C). This mapping f is called
the (infinitesimal) generator of S = {Ft}t≥0 . Moreover, the function u(= u(t, z)),
(t, z) ∈ R+ × D, defined by u(t, z) = Ft(z) is the unique solution of the Cauchy
problem

(2)





∂u(t, z)

∂t
+ f(u(t, z)) = 0,

u(0, z) = z, z ∈ D.

Conversely, a mapping f ∈ Hol(D,C) is said to be a semi-complete (respectively,
complete) vector field on D if the Cauchy problem (2) has a solution u(= u(t, z)) ∈ D
for all z ∈ D and t ∈ R+ (respectively, t ∈ R). Thus f ∈ Hol(D,C) is a semi-
complete vector field if and only if it is the generator of a one-parameter continuous
semigroup S (semiflow) on D. It is complete if and only if S ⊂ Aut(D). The set
of semi-complete vector fields on D is denoted by G (D). The set of complete vector
fields on D is usually denoted by aut(D) (see, for example, [23], [35], [32]).

Thus, in these terms, our problem can be rephrased as follows. Given f ∈ G (D),
find a domain Ω (if it exists) such that f ∈ aut(Ω).

Let now D = ∆ be the open unit disk in C. In this case, G (∆) is a real cone
in Hol(∆,C), while aut(∆) ⊂ G (∆) is a real Banach space (see, for example, [30]).
Moreover, by the Berkson–Porta representation formula, a function f belongs to
G (∆) if and only if there is a point τ ∈ ∆ and a function p ∈ Hol(∆,C) with
positive real part (Re p(z) ≥ 0 everywhere) such that

(3) f(z) = (z − τ)(1− zτ)p(z).

This representation is unique and is equivalent to

f(z) = a− āz2 + zq(z), a ∈ C, Re q(z) ≥ 0

(see [3]). Moreover, f ∈ Hol(∆,C) is complete if and only if it admits the represen-
tation

(4) f(z) = a− āz2 + ibz

for some a ∈ C and b ∈ R (see, [7], [5], [35]).
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Note also that if a semigroup S = {Ft}t≥0 generated by f ∈ G (∆) does not
contain an elliptic automorphism of ∆, then the point τ ∈ ∆ in representation (3)
is the unique attractive point for the semigroup S , i.e.,

(5) lim
t→∞

Ft(z) = τ

for all z ∈ ∆. This point is usually referred as the Denjoy–Wolff point of S . In
addition,

• if τ ∈ ∆, then τ = Ft(τ) is a unique fixed point of S in ∆;
• if τ ∈ ∂∆, then

τ = lim
r→1−

Ft(rτ)

is a common boundary fixed point of S in ∆, and no element Ft (t > 0) has an
interior fixed point in ∆.

Also, we observe that for τ ∈ ∆, formula (3) implies the condition

(6) Re f ′(τ) ≥ 0.

Comparing this with (3) and (4), we see that S consists of elliptic automorphisms
if and only if

(7) Re f ′(τ) = 0.

Consequently, condition (5) is equivalent to

(8) Re f ′(τ) > 0.

If τ in (3) belongs to ∂∆, then if follows by the Riesz–Herglotz representation
of the function p in (3) that the angular limits

(9) f(τ) := ∠ lim
z→τ

f(z) = 0 and f ′(τ) := ∠ lim
z→τ

f ′(z) = β

exist and that β is a nonnegative real number (see also [16]). Moreover, if for some
point ζ ∈ ∂∆ there are limits

∠ lim
z→ζ

f(z) = 0

and
∠ lim

z→ζ
f ′(z) = γ

with γ ≥ 0, then γ = β and ζ = τ (see [16] and [33]).
In the case where β > 0, the semigroup S = {Ft}t≥0 consists of mappings

Ft ∈ Hol(∆) of hyperbolic type,

∠ lim
z→τ

∂Ft(z)

∂z
= e−tβ < 1;

otherwise (β = 0), it consists of mappings of parabolic type,

∠ lim
z→τ

∂Ft(z)

∂z
= 1 for all t ≥ 0.
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For τ ∈ ∆, we use the notation G +[τ ] for a subcone of G (∆) of functions f
defined by (3) for which

(10) Re f ′(τ) > 0.

We solve the problem mentioned above for the class G +[τ ] of generators.

Definition 2. Let S = {Ft}t≥0 be a semiflow on ∆. A domain Ω ⊂ ∆ is called
a (backward) flow invariant domain (shortly, FID) for S if S ⊂ Aut(Ω).

We need the following notation. We write f ∈ G +[τ, η], where τ ∈ ∆, η ∈ ∂∆,
η 6= τ , if f ∈ G +[τ ], f(η) = ∠ lim

z→η
f(z) = 0 and γ = ∠ lim

z→η
f ′(z) exists finitely. In

fact, in this case γ must be a real negative number (see Lemma 6 below).

Theorem 1. Let S = {Ft}t≥0 be a semiflow on ∆ generated by f ∈ G +[τ ], for
some τ ∈ ∆ with f(τ) = 0 and f ′(τ) = β, Re β > 0. The following assertions are
equivalent.

(i) f ∈ G +[τ, η] for some η ∈ ∂∆.
(ii) There is a nonempty (backward) flow invariant domain Ω ⊂ ∆, so S ⊂

Aut(Ω).
(iii) For some α > 0, the differential equation

(11) αϕ′(z)(z2 − 1) = 2f(ϕ(z))

has a locally univalent solution ϕ with |ϕ(z)| < 1 when z ∈ ∆. Moreover, in
this case ϕ is univalent and is a Riemann mapping of ∆ onto a flow invariant
domain Ω.

This theorem can be completed by the following result.

Theorem 2. Let S = {Ft}t≥0 be a semiflow on ∆ generated by f ∈ G +[τ ], for
some τ ∈ ∆ with f(τ) = 0 and f ′(τ) = β, Re β > 0. The following assertions hold.

(a) If f ∈ G +[τ, η] for some η ∈ ∂∆ with γ = ∠ lim
z→η

f ′(z), then for each α ≥ −γ,

equation (11) has a univalent solution ϕ such that ϕ(1) = τ , ϕ(−1) = η
and Ω = ϕ(∆) is a (backward) flow invariant domain for S . In addition,
τ = lim

t→∞
Ft(z) ∈ ∂Ω, z ∈ Ω, and lim

t→−∞
Ft(z) = η ∈ ∂∆ ∩ ∂Ω for each z ∈ Ω.

(b) If Ω ⊂ ∆ is a nonempty (backward) flow invariant domain, then it is a
Jordan domain such that τ ∈ ∂Ω, and there is a point η ∈ ∂Ω ∩ ∂∆ such
that lim

t→−∞
Ft(z) = η whenever z ∈ Ω, ∠ lim

z→η
f(z) = 0 and ∠ lim

z→η
f ′(z) =: γ

exists with γ < 0. In addition, there is a conformal mapping ϕ of ∆ onto Ω
which satisfies equation (11) with some α ≥ −γ.

(c) Conversely, if for some α > 0, the differential equation (11) has a locally
univalent solution ϕ ∈ Hol(∆), then it is, in fact, a conformal mapping of ∆
onto the FID Ω = ϕ(∆) such that ϕ(1) = τ ∈ ∂Ω and ϕ(−1) = η for some
η ∈ ∂∆ ∩ ∂Ω.

In addition, f(η) = 0 and f ′(η) = γ with 0 > γ ≥ −α.
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Definition 3. A (backward) flow invariant domain (FID) Ω ⊂ ∆ for S is said
to be maximal if there is no Ω1 ⊃ Ω, Ω1 6= Ω, such that S ⊂ Aut(Ω1).

Theorem 3. Let f ∈ G +[τ, η] for some τ ∈ ∆, η ∈ ∂∆ with γ = f ′(η)
(
< 0

)
,

and let ϕ be a (univalent) solution of (11) with some α ≥ −γ normalized by ϕ(1) = τ
and ϕ(−1) = η. The following assertions are equivalent:

(i) Ω = ϕ(∆) is a maximal FID;
(ii) α = −γ;
(iii) ϕ is isogonal at the boundary point z = −1 (see Remark 3 below).

Remark 1. In general, a maximal FID for S need not be unique. Theorem 1
states that if S = {Ft}t≥0 is generated by f ∈ G +[τ ], then its FID is not empty
if and only if there is a point η ∈ ∂∆, such that f(η) = ∠ lim

z→η
f(z) = 0 and

f ′(η) = ∠ lim
z→η

f ′(z) exists finitely with f ′(η) < 0. This point η is a repelling fixed

point for S = {Ft}t≥0 as t → ∞, namely, Ft(η) = η and ∂Ft(z)
∂z

∣∣∣
z=η

= e−tf ′(η) > 1

(see [16]). Moreover, there is a one-to-one correspondence between maximal flow
invariant domains for S and such repelling fixed points.

Theorem 4. Let f ∈ G +[τ, ηk] for some sequence {ηk} ∈ ∂∆, i.e., f(ηk) = 0
and γk = f ′(ηk) > −∞.

The following assertions hold.
(i) There is δ > 0 such that γk < −δ < 0 for all k = 1, 2, . . ..
(ii) For each a < −δ < 0 there is at most a finite number of the points ηk such

that a ≤ γk < −δ.
Consequently equation (11) has a (univalent) solution ϕ ∈ Hol(∆) for each
α ≥ −max{γk} > −δ.

(iii) If ϕk is a solution of (11) normalized by ϕk(1) = τ, ϕk(−1) = ηk with α = γk

and Ωk = ϕk(∆) (i.e., Ωk are maximal), then for each pair Ωk1 and Ωk2 such
that ηk1 6= ηk2 either Ωk1∩Ωk2 = {τ} or Ωk1∩Ωk2 = l, where l is a continuous
curve joining τ with a point on ∂∆.

We illustrate the content of our theorems in the following examples.

Example 1. Consider a generator f ∈ G +[0] defined by

f(z) = z(1− zn), n ∈ N.

Solving the Cauchy problem (2), we find

Ft(z) =
ze−t

n
√

1− zn + zne−nt
.

In this case, f has n additional null points ηk = e
2πik

n , k = 1, 2, . . . , n, on the unit
circle with finite angular derivative γ = f ′(ηk) = −n. So the generated semiflow
has n repelling fixed points, and there are n maximal flow invariant domains. One
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can show that the functions

ϕk(z) = e
2πik

n
n

√
1− z

2

are the solutions of (11) with α = n satisfying ϕk(1) = 0 and ϕk(−1) = ηk which map
∆ onto n FID’s Ωk (for n = 2, these domains form lemniscate) with Ωi ∩ Ωj = {0}
when i 6= j. The family {Ft}t∈R forms a group of automorphisms of each one of
these domains. See Figure 1 for n = 1, 2, 3 and 5. For n = 1, for instance, it can be
seen explicitly that Ft(ϕ(z)) is well-defined for all t ∈ R and tends to η = 1 when
t → −∞.
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Figure 1. Example 1, n = 1, 2, 3, 5.

Example 2. Consider a generator f ∈ G +[1] defined by

f(z) = −(1− z)(1 + z2)

1 + z
.

Solving the Cauchy problem (2), we find

Ft(z) =
(1 + z2)e2t − (1− z)

√
2(1 + z2)e2t − (1− z)2

(1 + z2)e2t − (1− z)2
.

Since f has the two additional null points η1,2 = ±i ∈ ∂∆ with finite angular
derivative γ = f ′(±i) = −2, the generated semiflow has two repelling fixed points.
Thus, there are two maximal flow invariant domains Ω1 and Ω2. One can show that
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these domains Ωj coincide with the upper and the lower half-disks (see Figure 2).
So we have Ω1 ∩ Ω2 = {−1 < x < 1}. In each of these two domains, the family
{Ft}t∈R is well defined and forms a group of automorphisms.
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Figure 2. Example 2, the flow generated by f(z) = − (1−z)(1+z2)
1+z and two flow invariant

domains.

The following example shows that a maximal flow invariant domain may be even
dense in the open unit disk.

Example 3. Let f ∈ G +[0] be given by

f(z) = z
1− z

1 + z
.

In this case, τ = 0 and η = 1. Also, we have f ′(0) = 1 and f ′(1) = −1
2
. Solving

equation (11) with α = 1
2
, one can write its solution in the form ϕ(z) = h−1(h0(z)),

where h is the Koebe function h(z) =
z

(1− z)2
and h0(z) =

(
1− z

1 + z

)2

. We shall see

below that each solution of (11) has a similar representation.
Thus ϕ maps ∆ onto the maximal flow invariant domain Ω = ϕ(∆) = ∆\{−1 ≤

x ≤ 0}; see Figure 3. (All the pictures were obtained by using the vector field
drawing tool in Maple 9.)
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Figure 3. Example 3, the flow generated by f(z) = z (1−z)
1+z and the dense flow invariant

domain.
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Remark 2. Let F ∈ Hol(∆) be a single self-mapping of ∆ which can be
embedded into a continuous semigroup, i.e., there is a semiflow S = {Ft}t≥0 such
that F = F1. In this case, all the fractional iterations Ft of F have the same
collection of boundary fixed points for all t ≥ 0 (see [9]). In turn, our theorem
asserts the existence of backward fractional iterations of F defined on a FID Ω
whenever F has a repelling boundary fixed point η, i.e.,

(12) A = F ′(η) = lim
z→η

F ′(z) > 1.

As a matter of fact, for a single mapping which is not necessarily embedded
into a semiflow (not even necessarily univalent on ∆), the existence of backward
integer iterations under condition (12) was proved in [27]. This fact has provided
the existence of conjugations near repelling points. More precisely, the main result in

[27] asserts that if η = 1, a =
A− 1

A + 1
and G(z) =

z − a

1− az
, then there is ϕ ∈ Hol(∆)

with ϕ(1) = 1 which is a conjugation for F and G, i.e.,

ϕ(G(z)) = F (ϕ(z)).

However, for the case in which F can be embedded into a continuous semigroup
S = {Ft}, it is not clear whether ϕ is a conjugation for the whole semiflow S and
the flow produced by G.

It is natural to expect a more precise result under stronger requirements. A
direct consequence of the proof of our Theorem 1 is the following assertion for
conjugations.

Corollary 1. Let F ⊂ Hol(∆) be embedded into a semiflow S = {Ft}t≥0 of
hyperbolic type and let η ∈ ∂∆ be a repelling fixed point of F with A = F ′(η) > 1.

Then for each B ≥ A and the automorphism G(= GB) ∈ Aut(∆) defined by

G(z) =
z + b

1 + zb
,

where b = B−1
B+1

, there is a homeomorphism ϕ(= ϕB) of ∆, ϕ ∈ Hol(∆), such that
ϕ(η) = −1 and

ϕ(G(z)) = F (ϕ(z)), z ∈ ∆.

Moreover, for all t ∈ R and w ∈ ϕ(∆), the flow {Ft(w)}t∈R is well-defined with
F1 = F and

Ft(ϕ(z)) = ϕ(Gt(z)), for all t ∈ R,

where
Gt(z) =

z + 1 + e−αt(z − 1)

z + 1− e−αt(z − 1)
, t ∈ R,

with α = log B.
In addition, ϕB(∆) ⊆ ϕA(∆), with ϕA(∆) = ϕB(∆) if and only if A = B.

Our approach to construct conjugations is different from that used in [27].
The main tool of the proof of our theorems is a linearization method for semi-

groups which uses the classes of starlike and spirallike functions on ∆.
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Definition 4. A univalent function h is called spirallike (respectively, starlike)
on ∆ if for some µ ∈ C with Re µ > 0 (respectively, µ ∈ R with µ > 0) and for
each point z ∈ ∆,

(13)
{
e−µth(z), t ≥ 0

} ⊂ h(∆).

In this case, we say that h is µ-spirallike.
Obviously, 0 ∈ h(∆).
• If 0 ∈ h(∆), (i.e., if there is a point τ ∈ ∆ such that h(τ) = 0), then h is

called spirallike (respectively, starlike) with respect to an interior point.
• If 0 6∈ h(∆) (and hence 0 ∈ ∂h(∆)), h is called spirallike (respectively, starlike)

with respect to a boundary point. In this case, there is a boundary point τ ∈ ∂∆
such that h(τ) := ∠ lim

z→τ
h(z) = 0 (see, for example, [13]).

The class of spirallike (starlike) functions satisfying h(τ) = 0, τ ∈ ∆, is denoted
by Spiral[τ ] (respectively, Star[τ ]).

It follows from Definition 4 that a family S = {Ft}t≥0 of holomorphic self-
mappings of the open unit disk ∆ defined by

Ft(z) := h−1
(
e−µth(z)

)

forms a semiflow on ∆. Differentiating this semiflow at t = 0+, one sees that h is a
solution of the differential equation

(14) µh(z) = h′(z)f(z),

where f ∈ G +[τ ] is the generator of S . As a matter of fact, the converse assertion
also holds [13], [14], [4], [12], [15]. More precisely, we have

Lemma 1. Let S = {Ft}t≥0 be a semigroup of holomorphic self-mappings
generated by f ∈ G +[τ ], τ ∈ ∆.

(i) If τ ∈ ∆, then equation (14) has a univalent solution if and only if µ = f ′(τ).
(ii) If τ ∈ ∂∆, then equation (14) has a univalent solution h satisfying h(τ) = 0

if and only if µ ∈ Λβ := {w 6= 0 : |w − β| ≤ β}, where β = f ′(τ).
Moreover, in both cases, this solution h is a spirallike (starlike) function which
satisfies Schröder’s functional equation

(15) h(Ft(z)) = e−µth(z), t ≥ 0, z ∈ ∆.

It is clear that h is λ-spirallike for each λ with arg λ = arg µ ∈ (−π
2
, π

2

)
. We call

this function h the spirallike (starlike) function associated with f .
Since we are interested in generators having additional null points on the bound-

ary, we introduce the following subclasses of G +[τ ] and of Spiral[τ ] (Star[τ ]).
• Given τ ∈ ∆ and η ∈ ∂∆, η 6= τ , we say that a generator f ∈ G +[τ ] belongs

to the subcone G +[τ, η] if it vanishes at the point η, i.e., ∠ lim
z→η

f(z) = 0 and the

angular derivative at the point η

f ′(η) := ∠ lim
z→η

f(z)

z − η
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exists finitely.
• We say that a function h ∈ Spiral[τ ] (h ∈ Star[τ ]) belongs to the subclass

Spiral[τ, η] (Star[τ, η]) if the angular limit

Qh(η) := ∠ lim
z→η

(z − η)h′(z)

h(z)

exists finitely and is different from zero.

Remark 3. We recall that if ζ ∈ ∂∆ and g ∈ Hol(∆,C) is such that ∠ lim
z→ζ

g(z)

=: g(ζ) exists finitely, the expression

Qg(ζ, z) :=
(z − ζ)g′(z)

g(z)− g(ζ)

is called the Visser–Ostrowski quotient of g at ζ (see [26]). If for some h ∈ Hol(∆,C)
we have ∠ lim

z→ζ
h(z) = ∞, then the Visser–Ostrowski quotient of h is defined by

Qh(ζ, z) := Q1/h(ζ, z).

A function g is said to satisfy the Visser–Ostrowski condition if

Qg(ζ) := ∠ lim
z→ζ

Qg(ζ, z) = 1.

In this context, we recall also that g ∈ Hol(∆, C) is called conformal at ζ ∈ ∂∆
if the angular derivative g′(ζ) exists and is neither zero nor infinity; g is called

isogonal at ζ if the limit of arg
g(z)− g(ζ)

z − ζ
as z → ζ exists.

It is clear that any function g conformal at a boundary point ζ is isogonal at
this point. Also, it is known (see [26]) that any function g isogonal at a boundary
point ζ satisfies the Visser–Ostrowski condition at this point, i.e., Qg(ζ) = 1.

So it is natural to say that g satisfies a generalized Visser–Ostrowski condition if
Qg(ζ) := ∠ lim

z→ζ
Qg(ζ, z) exists finitely and is different from zero. Thus each function

h ∈ Spiral[τ, η] (h ∈ Star[τ, η]) satisfies a generalized Visser–Ostrowski condition at
the boundary point η.

To proceed, we note that the inequality η 6= τ implies that for each h ∈ Spiral[τ, η]

∠ lim
z→η

h(z) = ∞.

The following fact is an immediate consequence of Lemma 1.

Lemma 2. Let h ∈ Spiral[τ ] and f ∈ G +[τ ] be connected by (14). Then h
belongs to Spiral[τ, η] if and only if f ∈ G +[τ, η]. In this case,

Qh(η) =
µ

f ′(η)
.

We require two representation formulas for the classes of starlike functions
Star[τ ] and Star[τ, η]. For a boundary point w, denote by δw the Dirac measure
at this point.
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Lemma 3. (cf. [19] and [18]) Let τ ∈ ∆ and η ∈ ∂∆, η 6= τ . Let h ∈ Hol(∆,C)
satisfy h(τ) = 0. Then

(i) h ∈ Star[τ ] if and only if it has the form

(16) h(z) = C(z − τ)(1− zτ̄) · exp


−2

∮

∂∆

log(1− zζ̄) dσ̃(ζ)


 ,

where dσ̃ is an arbitrary probability measure on the unit circle and C 6= 0.
(ii) Moreover, h ∈ Star[τ, η] if and only if it has the form

h(z) = C(z − τ)(1− zτ̄)(1− zη̄)−2a·

· exp


−2(1− a)

∮

∂∆

log(1− zζ̄) dσ(ζ)


 ,

(17)

where dσ is a probability measure on the unit circle singular relative to δη,
C 6= 0 and a ∈ (0, 1]. In this case, Qh(η) = −2a.

Remark 4. The constant C can be chosen starting from a normalization of
functions under consideration. On the other hand, since a starlike function h is a
solution of a linear homogeneous equation (see (14)), C arises in the integration
process of this equation.

Proof. First, suppose that τ = 0, and let h ∈ Hol(∆,C) be normalized by
h(0) = 0 and h′(0) = 1. A well-known criterion of Nevanlinna asserts that h ∈
Star[0] if and only if

q(z) :=
zh′(z)

h(z)

has positive real part. (Note that the same fact follows by (14), because by the
Berkson–Porta representation formula (3), a generator f ∈ G [0] has the form f(z) =
zp(z) with Re p(z) > 0).)

Representing q by the Riesz–Herglotz formula, we write

zh′(z)

h(z)
=

∮

∂∆

1 + zζ̄

1− zζ̄
dσ̃(ζ)

with some probability measure dσ̃. Integrating this equality, we get

(18) h(z) = z exp

[
−2

∮

∂∆

log(1− zζ̄) dσ̃(ζ)

]
.

So we have proved (16) for the case τ = 0.
Now let τ ∈ ∆ be different from zero, and suppose h(τ) = 0. It was proved by

Hummel (see [21], [22] and [32]) that h ∈ Star[τ ] if and only if
z

(z − τ)(1− zτ̄)
h(z) ∈ Star[0].
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Thus, (18) implies (16) for the interior location of τ . The reverse consideration and
Hummel’s criterion show that if h satisfies (16) with τ ∈ ∆, it must be starlike.

Finally, let τ ∈ ∂∆. Following Lyzzaik [25] (see also [11]) one can approxi-
mate h ∈ Star[τ ] by a sequence {hn} of functions starlike with respect to those
interior points τn which converge to τ . Also, one can assume that hn(0) = h(0).
Representing each function hn by (16)

hn(z) = Cn(z − τn)(1− zτ̄n) · exp


−2

∮

∂∆

log(1− zζ̄)dσ̃n(ζ)


 ,

we see that

h(0) = hn(0) = −Cnτn.

Thus Cn → −h(0)
τ
. Since the set of all probability measures is compact, {dσ̃n} has

a subsequence converging to some probability measure dσ̃. Therefore, any function
h ∈ Star[τ ] has the form (16).

To prove the converse assertion, we suppose that h has the form (16) with
τ ∈ ∂∆. Note that h is starlike if and only if the function ah(cz), a 6= 0, |c| = 1,
is. Therefore, without loss of generality, one can assume that h is normalized by
h(0) = 1, i.e.,

h(z) = (1− z)2 · exp


−2

∮

∂∆

log(1− zζ̄)dσ̃(ζ)


 .

Differentiating the latter formula, one sees that h satisfies a modified Robertson
inequality (see [34] and [13])

(19) Re

[
zh′(z)

h(z)
+

1 + z

1− z

]
> 0.

A main result of [34] and Theorem 7 [13] imply that h is a starlike function with
respect to a boundary point with h(1) = 0, i.e., h ∈ Star[1]. The first assertion is
proved.

Let

dσ̃ = aδη + (1− a)dσ, 0 ≤ b ≤ 1,

be the Lebesgue decomposition of dσ̃ relative to the Dirac measure δη, where the
probability measures dσ and δη are mutually singular. Using this decomposition,
we rewrite (16) in the form (17).
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Now we calculate

Qh(η) = ∠ lim
z→η

h′(z)(z − η)

h(z)

= ∠ lim
z→η

(z − η)

[
((z − τ)(1− zτ̄))′

(z − τ)(1− zτ̄)
+

2aη̄

1− zη̄

+ 2(1− a)

∮

∂∆

ζ̄

1− zζ̄
dσ(ζ)

]

= −2a + 2(1− a) ∠ lim
z→−1

∮

∂∆

ζ̄(z − η)

1− zζ̄
dσ(ζ)

(20)

Noting that ∣∣∣∣
ζ̄(z − η)

1− zζ̄

∣∣∣∣ ≤
|z − η|
1− |z| ,

we see that the integrand in the last expression of (20) is bounded on each nontan-
gential approach region Dk,η := {z : |z − η| < k(1− |z|)} , k ≥ 1, at the point η.
Since the measures dσ and δη are mutually singular, we conclude by the Lebesgue
convergence theorem that the last integral in (20) is equal to zero, so

Qh(η) = −2a.

The proof is complete. ¤
The following results are angle distortion theorems for starlike and spirallike

functions of the classes Star[τ, η] and Spiral[τ, η] respectively.

Lemma 4. (cf. [31] and [18]) Let h ∈ Star[τ, η] with Qh(η) = ν. Denote

(21) θ := lim
r→1−

arg h(rη).

Then the image h(∆) contains the wedge

(22) W =

{
w ∈ C : | arg w − θ| < |ν|π

2

}

and contains no larger wedge with the same bisector.

Proof. By Lemma 3, the function h has the form (17) with ν = −2a.
First we show that the image h(∆) contains the wedge W defined by (22).
Since (as mentioned above) ∠ lim

z→η
h(z) = ∞, for each δ ∈ (

0, π
2

)
and each R > 0,

there exists r > 0 such that

(23) |h(z)| > R

whenever
z ∈ Dr,δ := {z ∈ ∆ : |1− zη̄| ≤ r, | arg(1− zη̄)| ≤ δ} .
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Lemma 3 and the Lebesgue bounded convergence theorem imply the existence of

lim
z→η

arg
h(z)

(1− zη̄)ν

= arg
(
C(η − τ)(1− ητ̄)

)
− 2(1− a) lim

z→η

∮

∂∆

arg(1− zζ̄) dσ(ζ).

On the other hand, by formula (17), we have

θ = lim
r→1−

arg h(rη)

= arg
(
C(η − τ)(1− ητ̄)

)
− 2(1− a) lim

r→1−

∮

∂∆

arg(1− rηζ̄) dσ(ζ).

Therefore,

lim
z→η

arg
h(z)

(1− zη̄)ν
= θ.

Thus, decreasing r (if necessary), we have

θ − ε < arg
h(z)

(1− zη̄)ν
< θ + ε

for all z ∈ Dr,δ. So, for each point z belonging to the arc

Γ := {z ∈ ∆ : |1− zη̄| = r, | arg(1− zη̄)| ≤ δ} ⊂ Dr,δ,

i.e., z = η(1− reit), |t| ≤ δ, we get

θ − ε− t|ν| < arg h(z) < θ + ε− t|ν|.
In particular,

(24) arg h(η(1− reiδ)) < θ + ε− δ|ν|
and

(25) arg h(η(1− re−iδ)) > θ − ε + δ|ν|.
Thus, the curve h(Γ) lies outside the disk |z| ≤ R and joins two points having

arguments less than θ + ε− δ|ν| and greater than θ− ε + δ|ν|, respectively. Since h
is starlike, we see that h(∆) contains the sector

{w ∈ C : |w| < R, | arg w − θ| < δ|ν| − ε} .

Since R and ε are arbitrary, one concludes

{w ∈ C : | arg w − θ| < δ|ν|} ⊂ h(∆).

Letting δ tend to π
2
, we obtain

W =

{
w ∈ C : | arg w − θ| < |ν|π

2

}
⊂ h(∆).
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Further, since h is a starlike function, arg h(eiϕ) is an increasing function in
ϕ ∈ (arg η − π, arg η + π). So the limits

lim
ϕ→(arg η)±

arg h(eiϕ)

exist. Let ϕn,+ → (arg η)+ and ϕn,− → (arg η)− be two sequences such that the
values h(eiϕn,±) are finite. Then, once again by Lemma 3,

lim
n→∞

arg h(eiϕn,+)− arg h(eiϕn,−)

= lim
n→∞

(
(arg(1− eiϕn,+ η̄))ν − (arg(1− eiϕn,− η̄))ν

)
= |ν|π.

Therefore, the image contains no wedge of angle larger than |ν|π. Thus, the wedge
W defined by (22) is the largest one contained in h(∆).

The proof is complete. ¤
Let λ ∈ Λ = {w ∈ C : |w− 1| ≤ 1, w 6= 0} and θ ∈ [0, 2π) be given. Define the

function hλ,θ ∈ Hol(∆) by

(26) hλ,θ(z) = eiθ

(
1− z

1 + z

)λ

.

Here and in the sequel, we choose a single-valued branch of the analytic function
wλ such that 1λ = 1.

Definition 5. The set Wλ,θ = hλ,θ(∆) is called a canonical λ-spiral wedge with
midline lθ,λ = {w ∈ C : w = eiθ+tλ, t ∈ R}.

To explain this definition, let us observe that h = hλ,θ is a solution of the
differential equation

λh(z) = h′(z)f(z)

normalized by the conditions h(0) = eiθ, h(1) = 0, where f is given by

f(z) =
1

2
(z2 − 1).

Since f ∈ G +[1] with f ′(1) = 1 and λ ∈ Λ, it follows by Lemma 1 that h is a
λ-spirallike function with respect to the boundary point h(1) = 0. Moreover, f
is a generator of a one-parameter group (flow) of hyperbolic automorphisms of ∆
having two boundary fixed points z = 1 and z = −1. Hence, for each w ∈ Wλ,θ and
t ∈ R = (−∞,∞), the spiral curve e−tλw belongs to Wλ,θ (see (15)).

In [4], the notion of “angle measure” for spirallike domains with respect to a
boundary point was introduced. It can be shown that a λ-spiral wedge is of angle
measure πλ.

Finally, we see that for real λ ∈ (0, 2], the set Wλ,θ is a straight wedge (sector)
of angle πλ, whose bisector is lθ = {w ∈ C : arg w = θ}.

Lemma 5. Let h ∈ Spiral[τ ] be a µ-spirallike function on ∆. Then the image
h(∆) contains a canonical λ-spiral wedge with

(27) arg λ = arg µ



18 Mark Elin, David Shoikhet and Lawrence Zalcman

if and only if h ∈ Spiral[τ, η] for some η ∈ ∂∆. Moreover, if Qh(η) = ν, then the
canonical wedge W−ν,θ ⊂ h(∆) for some θ ∈ [0, 2π); and it is maximal in the sense
that there is no spiral wedge Wλ,θ ⊂ h(∆) with λ satisfying (27) which contains
W−ν,θ properly.

Proof. First, given h ∈ Spiral[τ, η] we construct h1 ∈ Spiral[1,−1] which is spi-
rallike with respect to a boundary point whose image eventually coincides with h(∆)
at ∞. If τ ∈ ∂∆, we just set h1 = h(Φ(z)), where Φ ∈ Aut(∆) is an automorphism
of ∆ such that Φ(1) = τ and Φ(−1) = η.

If τ ∈ ∆, we take any two points z1 = eiθ1 and z2 = eiθ2 such that w1 = h(z1)
and w2 = h(z2) exist finitely and θ1 ∈ (arg η − ε, arg η), θ2 ∈ (arg η, arg η − ε), so
the arc (θ1,θ2) on the unit circle contains the point η.

Since h is spirallike with respect to an interior point, it satisfies the equation

(28) βh(z) = h′(z)f(z),

where f ∈ G +[τ ] and β = f ′(τ), so arg µ = arg β. This means that for each
w ∈ h(∆) the spiral curve {e−tβw, t ≥ 0} belongs to h(∆). In turn, the curves
l1 = {z = h−1(e−tβw1), t ≥ 0} and l2 = {z = h−1(e−tβw2), t ≥ 0} lie in ∆ with
ends in z1 and τ and z2 and τ , respectively.

Since z1 6= z2 and the interior points of l1 and l2 are semigroup trajectories in ∆,
these curves do not intersect except at their common end point z = τ. Consequently,
the domain D bounded by l1, l2 and the arc (θ1,θ2) is simply connected, and there
is a conformal mapping Φ of ∆ such that Φ(∆) = D and Φ(−1) = η, Φ(1) = τ .
Now define h1(z) = h(Φ(z)). It follows by our construction that h1(∆) ⊂ h(∆) and
h1 is spirallike with respect to a boundary point h1(1) = 0. In addition, since Φ is
conformal at the point z = −1, it satisfies the Visser–Ostrowski condition and we
have

∠ lim
z→−1

(z + 1)h′1(z)

h1(z)
= ∠ lim

z→−1

(z + 1)h′(Φ(z))(Φ(z)− η)

h(Φ(z))(Φ(z)− η)

= ∠ lim
z→−1

(z + 1)Φ′(z)

Φ(z)− Φ(−1)
· ∠ lim

z→−1

(Φ(z)− η)h′(Φ(z))

h(Φ(z))

= ∠ lim
z→−1

(Φ(z) + 1)h′(Φ(z))

h(Φ(z))
.

(29)

Note also that Φ is a self-mapping of ∆ mapping the point z = −1 to η and
having a finite derivative at this point.

It follows by the Julia–Carathéodory theorem, (see, for example, [32]) that if z
converges to −1 nontangentially, then Φ(z) converges nontangentially to η = Φ(−1).
Then (29) implies that

(30) Qh1(−1) = ∠ lim
z→−1

(z + 1)h′1(z)

h1(z)

exists finitely if and only if h ∈ Spiral[τ, η] and

(31) Qh1(−1) = Qh(η).
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We claim that this last relation implies that h1(∆) contains a (−ν)-spiral wedge
W−ν,θ for some θ ∈ [0, 2π).

To this end, observe that h1 satisfies the equation

βh1(z) = h′1(z) · f1(z),

where f1(z) = f(Φ(z))
Φ′(z)

is a generator of a semigroup of ∆ with f1(1) = 0 and f ′1(1) =

β1 for some β1 > 0 such that
|β − β1| ≤ β1.

Therefore, h1 is a complex power of the function h2 ∈ Hol(∆,C) defined by the
equation

(32) β1h2(z) = h′2(z)f1(z), h2(1) = 0,

i.e.,

(33) h1(z) = hµ
2(z),

where µ = β
β1
6= 0, |µ− 1| ≤ 1, hence arg µ = arg β.

On the other hand, if we normalize h1 by h
1/µ
1 (0) = h2(0), equation (33) has

a unique solution which is a starlike function with respect to a boundary point
(h2(1) = 0). Obviously,

(34) Qh2(−1) =
1

µ
Qh1(−1)

(
=

1

µ
Qh(η)

)
.

Note that ν2 := Qh2(−1) is a negative real number, while ν1 := Qh1(−1) = ν2µ
is complex.

Now it follows by Lemma 4 that the starlike set h2(∆) contains a straight wedge
(sector) of a nonzero angle σπ for each σ ∈ (0, |ν2|π]. So the maximal (straight)
wedge W ⊂ h2(∆) is of the form

W = W−ν2,θ2 =

{
w ∈ C : w = eiθ2

(
1− z

1 + z

)−ν2
}

,

with

θ2 = lim
r→1−

arg h2(−r) = lim
r→1−

arg h
ν2/ν1

1 (−r)

= ν2 · lim
r→1−

arg h
1/ν1

1 (−r) = ν2θ1,

where
θ1 = lim

r→1−
arg h

1/ν1

1 (−r).

Writing W in the form

W =
{

eiςet, t ∈ R, ς ∈
(
θ2 +

πν2

2
, θ2 − πν2

2

)}
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and setting ς1 = ς/ν2, s = t/ν2, we see that the set

K := W µ =

{
eiς1ν1esν1 , s ∈ R, ς1 ∈

(
θ2

ν2

− π

2
,
θ2

ν2

+
π

2

)}

is contained in h1(∆); hence in h(∆). But θ2/ν2 = θ1 and ν1 = ν (= Qh(−1)); hence
K is of the form

K =
{

eiς1νesν , s ∈ R, ς1 ∈
(
θ1 − π

2
, θ1 +

π

2

)}

=
{

eiθ1νeiς1νesν , s ∈ R, ς1 ∈
(
−π

2
, +

π

2

)}
.

Setting θ = |ν|2θ1

Re ν
∈ R, we get

iθ1ν + sν = iθ + ν

(
θ Re ν

|ν|2 + s− iθ

ν

)
= iθ + ν

(
s− θ Im ν

|ν|2
)

.

Since s takes all real values, so does t = s − θ Im ν
|ν|2 . Therefore, the set K has the

form
K = eiθ

{
eiς1νetν , t ∈ R, ς1 ∈

(
−π

2
,

π

2

)}
,

i.e., coincides with W−ν,θ. Finally, it follows by (34) that λ := −ν = |ν2|µ. This
implies (27).

Conversely, let h be a µ-spirallike function on ∆ such that h(∆) contains a
canonical λ-spiral wedge Wλ,θ for some λ satisfying (27) and θ ∈ [0, 2π). Then
for each w0 ∈ Wλ,θ, the curve l :=

{
w ∈ C : w = e−tλw0, t ∈ R

}
belongs to h(∆).

Hence the curve h−1(l) ⊂ ∆ joints the point τ ∈ ∆ with a point η ∈ ∂∆. Again, as
in the first step of the proof, one can find a conformal mapping Φ ∈ Hol(∆) with
Φ(1) = τ, Φ(−1) = η such that h1 = h ◦Φ is a µ-spirallike function with respect to
a boundary point h1(1) = 0 and

(35) Wλ,θ ⊂ h1(∆) ⊂ h(∆).

Again the function h2 = h
1/µ
1 is starlike with respect to a boundary point, and h2(∆)

contains the set

K =

{
w ∈ C : w = ei θ

µ

(
1− z

1 + z

)λ
µ

}

because of (35).

Setting
λ

µ
= κ and θ1 = θ

Re µ

|µ|2 , we see by (27) that κ is real and K can be

written as

K =

{
w ∈ C : w = Reiθ1

(
1− z

1 + z

)κ}
,

with R = exp
[

θ1 Im µ
Re µ

]
real and positive.
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Hence, h2(∆) contains a straight canonical wedge

Wκ,θ1 =

{
w ∈ C : w = eiθ1

(
1− z

1 + z

)κ}

with 0 < κ|ν2|, where ν2 = Qh2(−1) exists finitely and W|ν2|,θ1 is the maximal wedge
contained in h2(∆). But, as before, we have

ν = Qh(η) = µQh2(−1) = µν2.

The latter relations show that ν is finite and λ must satisfy the conditions arg λ =
arg µ = arg(−ν) and 0 < |λ| ≤ |ν|. So the wedge W−ν,θ is a maximal wedge
contained in h(∆) satisfying condition (27). The lemma is proved. ¤

Remark 5. By using Lemma 4 and the proof of Lemma 5, one can show that
the number θ in the formulation of Lemma 5 is defined by the formula

θ =
|ν|2
Re ν

lim
r→1−

arg h1/ν(−r).

For real r, this formula coincides with (21). Hence, in fact, Lemma 5 contains
Lemma 4.

Lemma 6. Let f ∈ G +[τ, η] for some τ ∈ ∆ (which is the Denjoy–Wolff point
for the semiflow S generated by f) with β = f ′(τ) > 0 and some η ∈ ∂∆, such
that f(η) := ∠ lim

z→η
f(z) = 0 and γ = f ′(η) = ∠ lim

z→η
f ′(z) exists finitely.

The following assertions hold.
(i) If τ ∈ ∆, then γ < −1

2
Re β.

(ii) If τ ∈ ∂∆, then γ ≤ −β < 0 and the equality γ = −β holds if and only
if f ⊂ aut(∆) or, what is the same, S ⊂ Aut(∆) consists of hyperbolic
automorphisms of ∆.

Proof. (i) Let τ ∈ ∆. Then f ∈ G +[τ ] admits the representation
f(z) = (z − τ)(1− zτ̄)p(z)

with Re p(z) > 0, z ∈ ∆ and

β (= f ′(τ)) = (1− |τ |2)p(τ).

Assume that for some η ∈ ∂∆

f(η) := ∠ lim
z→η

f(z) = 0

and
γ = ∠ lim

z→η

f(z)

z − η
exists finitely. Then ∠ limz→η p(z) = 0, and

γ = η|η − τ |2 · p′(η),

where
p′(η) = ∠ lim

z→η

p(z)

z − η
.
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To find an estimate for p′(η), we introduce a function p1 of positive real part by
the formula

p1(z) = (1− |τ |2)p(m(z)),

where
m(z) =

τ − z

1− zτ̄

is the Möbius transformation (involution) taking τ to 0 and 0 to τ . Thus

p1(0) = (1− |τ |2)p(τ) = β;

and, setting η1 = m(η), we have

p′1(η1) = (1− |τ |2)p′(η) ·m′(η1) =
1− |τ |2
m′(η)

· p′(η) = −(1− ητ̄)2p′(η).

On the other hand, using the Riesz–Herglotz formula for the function q = 1/p,
we obtain

∠ lim
z→η1

(z − η1)q(z) = ∠ lim
z→η1

∫

∂∆

(z − η1)(1 + zζ̄)

1− zζ̄
dµq(ζ)

= −η1 · ∠ lim
z→η1

∫

∂∆

(1− zη̄1)(1 + zζ̄)

1− zζ̄
dµq(ζ)

= −η12µq(η1),

where µq is a positive measure on ∂∆ such that
∫

∂∆
dµq(ζ) = Re q(0). Consequently,

p′1(η1) = ∠ lim
z→η1

p1(z)

z − η1

= ∠ lim
z→η1

1

(z − η1)q(z)
=

−η1

2µq(η1)
= −(1− ητ̄)2p′(η).

Hence
p′(η) =

η1

(1− ητ̄)22µq(η1)

and

γ =
1

2

η|η − τ |2η1

(1− ητ̄)2
· 1

µq(η1)
.

Since µq(η1) ≤ Re q(0) ≤ 1

Re p1(0)
=

1

Re β
, we have

|γ| ≥ 1

2
Re β.

Note that equality is impossible since otherwise q (and hence p1 and p) are
constant. But ∠ lim

z→η1

p(z) = 0, which means that p(z) ≡ 0.

This proves assertion (i).

(ii) Let now τ ∈ ∂∆. In this case, we know already that

β = f ′(τ) = ∠ lim
z→τ

f ′(z) > 0.
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Without loss of generality, let us assume that τ = 1 and η = −1. In other
words, we assume that f ∈ G +[1,−1]. We have to show that in that case γ =
∠ lim

z→−1
f ′(z) ≤ −β, and equality holds if and only if f is a complete vector field.

Indeed, suppose to the contrary that γ ∈ (−β, 0). Then the function g ∈
Hol(∆,C) defined by

g(z) = f(z) +
γ

2
(z2 − 1)

belongs to the class G +[1,−1], because this class is a real cone. In addition,

g′(1) = β + γ ≥ 0,

while
g′(−1) = γ − γ = 0.

Then either g(z) ≡ 0, or g 6= 0 and both points 1 and −1 are sink points of the
semigroup generated by f , which is impossible. This contradiction shows that g
must be identically zero, hence γ = −β and

f(z) = −γ

2
(z2 − 1).

Thus f belongs to aut(∆), and the flow S = {Ft}t∈R consists of hyperbolic
automorphisms of ∆. The lemma is proved. ¤

Now we are ready to prove our theorems. Since Theorem 2 is a compliment of
Theorem 1, we give their proofs simultaneously.

Proof of Theorems 1 and 2. We prove implications (i) =⇒ (ii) =⇒ (iii) =⇒
(i) of Theorem 1 successively, while assertions (a), (b) and (c) of Theorem 2 will
be obtained in the process. Let S = {Ft}t≥0 be a semiflow on ∆ generated by
f ∈ G +[τ ] with β = f ′(τ), Re β > 0. Let h ∈ Hol(∆,C) be the associated spirallike
(starlike) function on ∆ defined by equation (14) with µ = β. Then by Lemma 1, h
satisfies Schröder’s equation (15)

(36) h(F1(z)) = e−tβh(z)

for all t ≥ 0 and z ∈ ∆.

Step 1 ((i) =⇒ (ii)). If now f ∈ G +[τ, η] for some η ∈ ∂∆, that is f(η)(=
∠ limz→η f(z)) = 0 and γ = f ′(η) (= ∠ limz→η f ′(z)) exists finitely, then by Lemma 2
the function h belongs to the class Spiral[τ, η] with

Qh(η) = ∠ lim
z→η

(z − η)h′(z)

h(z)
=

β

γ
.

Since γ 6= 0 (actually, γ < 0), Qh(η) is finite.
In turn, Lemma 5 implies that there is a non-empty (spiral) wedge W ⊂ h(∆)

with vertex at the origin such that for each w ∈ W the spiral curve {e−tβw} belongs
to W , for all t ∈ R.

Define the simply connected domain Ω ⊂ ∆ by

Ω = h−1(W ).
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Then the family F̃t : Ω 7→ Ω

F̃t(z) = h−1
(
e−tβh(z)

)
, z ∈ Ω, t ∈ R,

forms a flow (one-parameter group) of holomorphic self-mappings of Ω. Comparing
the latter formula with (36), we see that for t ≥ 0, F̃t(z) = Ft(z) whenever z ∈ Ω

and (Ft|Ω)−1 = F̃−t. Thus S ⊂ Aut(Ω).

Step 2 ((ii) =⇒ (iii)). Let again S = {Ft}t≥0 be a semiflow generated by
f ∈ G +[τ ] so that

(37) lim
t→∞

Ft(z) = τ ∈ ∂∆ and Re β > 0, where β = f ′(τ),

and let Ω ⊂ ∆ be a simply connected domain such that S ⊂ Aut(Ω). Let ψ : ∆ 7→ Ω
be any Riemann conformal mapping of ∆ onto Ω. Consider the flow {Gt}t∈R ⊂
Aut(∆) defined by

(38) Gt(z) = ψ−1(Ft(ψ(z))), t ∈ R.

In this case, ψ is a conjugation for Gt and Ft for each t ∈ R, i.e.,

(39) ψ(Gt(z)) = Ft(ψ(z)), z ∈ ∆, t ∈ R.

Denote by g ∈ aut(∆) the generator of {Gt}t∈R:

g(z) = lim
t→0

z −Gt(z)

t
.

Then by (39), ψ satisfies the differential equation

(40) ψ′(z) · g(z) = f(ψ(z)).

First we show that the family {Gt}t∈R ⊂ Aut(∆) consists of hyperbolic au-
tomorphisms or, what is the same, that it does not contains neither elliptic nor
parabolic automorphisms.

Indeed, suppose {Gt}t∈R contains an elliptic automorphism. Then there is a
point a ∈ ∆ such that Gt(a) = a for all t ∈ R; hence g(a) = 0 and Re g′(a) = 0. By
(40), f(ψ(a)) = 0; and thus ψ(a) = τ . On the other hand, differentiating (40) with
respect to z and setting z = a, we get g′(a) = f ′(τ). Hence Re f ′(τ) = 0, which
contradicts (37).

Thus {Gt} has no interior fixed point in ∆; hence there are boundary points ζ1

and ζ2 such that

(41) lim
t→∞

Gt(z) = ζ1 ∈ ∂∆, z ∈ ∆,

and

(42) lim
t→−∞

Gt(z) = ζ2 ∈ ∂∆, z ∈ ∆.

To show that the family {Gt}t∈R does not contain a parabolic automorphism it is
sufficient to prove that ζ1 6= ζ2.

To this end, we again consider the associated spirallike (starlike) function h
defined by equation (14) with µ = β and normalized by the conditions h(τ) =
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0, h′(τ) = 1 if τ ∈ ∆ or by h(τ) = 0 and h(0) = 1 if τ ∈ ∂∆ (see Lemma 1). Define
h0 ∈ Hol(∆,C) by

(43) h0(z) = h(ψ(z)).

Since h satisfies Schröder’s equation (36), it follows from (39) that for all t ≥ 0,

h0(Gt(z)) = h(ψ(Gt(z)) = h(Ft(ψ(z)) = e−tβh(ψ(z)) = e−tβh0(z).

Since the mapping Gt ∈ Hol(∆) is an automorphism of ∆ for each t ∈ R+, we have,
in fact,

(44) h0(Gt(z)) = e−tβh0(z)

for all t ∈ R.
From (44) we conclude that h is a univalent spirallike (starlike) function on ∆.

Moreover, (44) and Corollary 2.17 of [26] imply that

∠ lim
z∈ζ1

h0(z) = 0,

while
∠ lim

z∈ζ2
h0(z) = ∞.

Thus ζ1 6= ζ2, and it follows that {Gt}t∈R consists of hyperbolic automorphisms.
Now observe that W = h0(∆) is a spirallike (starlike) wedge with vertex at the

origin belonging to h(∆). Since all the points of ∂h(∆) are admissible, ψ = h−1 ◦h0

is a homeomorphism of ∆ onto Ω; hence ∂Ω is a Jordan curve. Now (39) implies
that

(45) lim
t→∞

ψ(Gt(z)) = lim
t→∞

Ft(ψ(z)) = τ

and

(46) lim
t→−∞

ψ(Gt(z)) = lim
t→−∞

Ft(ψ(z)) = η

for some η ∈ ∆. Applying again Corollary 2.17 in [26], we obtain

(47) ψ(ζ1) := lim
z→ζ1

ψ(z) = τ

and

(48) ψ(ζ2) := ∠ lim
z→ζ2

ψ(z) = η.

Thus η 6= τ and, moreover, η ∈ ∂∆. Indeed, if η is an interior point of ∆, then

η = ψ(ζ2) = ψ(Gt(ζ2)) = Ft(ψ(ζ2)) = Ft(η), t ≥ 0,

i.e., it must be an interior fixed point for all Ft ∈ S , t ≥ 0, which is impossible.
So τ ∈ ∂Ω by (47), and η ∈ ∂∆ ∩ ∂Ω by (48).
To show that equation (11) has a locally univalent (even univalent) solution

ϕ ∈ Hol(∆) for some α > 0, we use a Möbius transformation m ∈ Aut(∆) such that
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m(1) = ζ1 and m(−1) = ζ2. Then ψ1 = ψ ◦m is a conformal mapping of ∆ onto Ω
with normalization

ψ1(1) = τ, ψ1(−1) = η.

For s ∈ (−1, 1), define another conformal mapping ϕs of ∆ onto Ω by

ϕs(z) := ψ1

(
z − s

1− zs

)
, −1 < s < 1.

Clearly ϕs(1) = ψ1(1) = τ and ϕs(−1) = ψ1(−1) = η. Note also that l = {z =
ϕs(0) (= ψ1(−s)), s ∈ [−1, 1])} is a continuous curve joining the points z = 1 and
z = −1, and so l1 = {z = h(ϕs(0))(= h(ψ1(−s)))} is a continuous curve joining
h(τ) = 0 and h(η) = ∞. Hence, there exists s ∈ (−1, 1) such that |h(ϕs(0))| = 1.

Thus there exists a homeomorphism ϕ(= ϕs) of ∆ onto Ω holomorphic in ∆
such that ϕ(1) = τ, ϕ(−1) = η and h(ϕ(0)) = eiθ for some θ ∈ R.

Since the mapping ψ in our previous consideration was arbitrary, we can replace
it by ϕ. In this case, the “new” flow {Gt}t∈0 defined by

Gt(z) = ϕ−1(Ft(ϕ(z)))

is a one-parameter group of hyperbolic automorphisms of ∆ having the fixed points
z = 1 and z = −1 on ∂∆. In turn, its generator g ∈ Hol(∆,C) must have the form

(49) g(z) =
α

2
(z2 − 1) ,

where α = g′(1) > 0.
Hence, equation (40) (with ϕ in place of ψ) becomes (11)

(50) αϕ′(z)(z2 − 1) = 2f(ϕ(z)).

Combining this with (14), we show that α must be greater than or equal to
−γ > 0. Namely, defining h0 ∈ Spiral[1] as in (43) by

(51) h0(z) = h(ϕ(z)),

we have from (50) and (14) that

(52) βh0(z) =
α

2
(z2 − 1)h′0(z)

with h0(0) = h(ϕ(0)) = eiθ for some θ ∈ [0, 2π). Solving this equation, we obtain

(53) h0(z) = eiθ

(
1− z

1 + z

)β/α

with α = g′(1).
On the other hand, by Lemma 5, the maximal (spiral) wedge contained in h(∆)

is of the form W−ν,θ =
{

w ∈ C : w = eiθ
(

1−z
1+z

)−ν
}
, where

(54) ν = ∠ lim
z→η

(z − η)h′(z)

h(z)
= ∠ lim

z→η

z − η

f(z)
=

β

γ
.
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Thus γ is finite and ϕ = h−1 ◦ h0 is a well-defined self-mapping of ∆ if and only if
α ≥ −γ. This completes the proof of the implication (ii) =⇒ (iii) of Theorem 1,
as well as assertions (a) and (b) of Theorem 2. Note in passing that we have also
proved the implication (ii) =⇒ (i) of Theorem 1.

Step 3 ((iii) =⇒ (i)). Suppose now that ϕ ∈ Hol(∆) is locally univalent and
satisfies (11) for some α ∈ R+. Solving this differential equation explicitly, we get

(55) α

∫ ϕ(z)

ϕ(0)

dw

f(w)
=

∫ z

0

2dz

z2 − 1
= log

(
1− z

1 + z

)
.

Since ϕ′(z) 6= 0, z ∈ ∆, we have by (11) that there is no z ∈ ∆ such that ϕ(z) = τ .
So if l is a curve joining 0 and z, the curve ϕ(l) joining ϕ(0) and ϕ(z) does not
contain τ .

Consider now the differential equation (14) with initial data h(ϕ(0)) = 1. Sep-
arating variables in this equation, we see that

(56) β

∫ ϕ(z)

ϕ(0)

dw

f(w)
=

∫ h(ϕ(z))

1

dh

h
= log(h(ϕ(z)).

Comparing (55) with (56), we have

log (h(ϕ(z)) =
β

α
log

(
1− z

1 + z

)
,

or

h(ϕ(z)) =

(
1− z

1 + z

) β
α

.

This equality implies that the set

{(
1− z

1 + z

) β
α

: z ∈ ∆

}
is a subset of h(∆), so this

set is different from C \ {0}. It follows by [4] that in this case
∣∣β
α
− 1

∣∣ ≤ 1, the

function h0 :=

(
1− z

1 + z

)β/α

is univalent on ∆, and its image W = h0(∆) is a spiral

wedge with vertex at the origin. So, by Lemma 5, there is a point η ∈ ∂∆ such that
h(η) = ∞ and Qh(η) exists finitely with arg Qh(η) = arg β and

∣∣β
α

∣∣ ≤ |Qh(η)|.
Finally, we note that ϕ(z) = h−1(h0(z)) is, in fact, a univalent function on ∆.

Now, applying Lemma 2 with µ = β, we complete the proof of the implication (iii)
=⇒ (i) of Theorem 1, as well as assertion (c) of Theorem 2.

Theorems 1 and 2 are proved. ¤
Proof of Theorem 3. We already know by (51) and (53) that ϕ = h−1 ◦ h0,

where h is the spirallike (starlike) function associated to f and h0(z)) = eiθ
(

1−z
1+z

)β/α

with β = f ′(τ), Re β > 0 and α ≥ −γ. So, by Definition 5,

h0(∆) = W β
α

,θ ⊂ h((∆).
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Thus, Ω = ϕ(∆) = h−1
(
W β

α
,θ

)
is maximal if and only if the spiral wedge W β

α
,θ is

maximal. In turn, by Lemma 5, this wedge W β
α

,θ is maximal if and only if β
α

= −ν.
Comparing this fact with (54), we obtain the equivalence of assertions (i) and (ii)
of the theorem.

We prove the equivalence of assertions (ii) and (iii) for the case where τ = 1.
Namely, let f1 ∈ G +[1, η] with f ′1(1) = β1 > 0 and f ′1(η) = γ1 < 0. Let ψ be a
univalent solution of equation (11), i.e.,

(57) αψ′(z)(z2 − 1) = 2f(ψ(z))

for some α ≥ −γ1, normalized by ψ(1) = 1, ψ(−1) = η.
Substituting in formula (51) the explicit form of h0 (see (53)) and the integral

representation (17) with τ = 1 for the spirallike function h and taking into account
that Qh(η) = ν = β1

γ1
(cf. (54)), we get

(ψ(z)− 1)(1− ψ(z)η̄)β1/γ1 · exp

[
− (2 + β1/γ1)

∫

∂∆

log(1− ψ(z)ζ̄) dσ(ζ)

]

= C1

(
1− z

1 + z

)β1/α

or
ψ(z)− η

z + 1

= (z + 1)−1−γ1/α C1(1− z)γ1/α

(1− ψ(z))γ1/β1
· exp

[
2γ1 + β1

β1

∫

∂∆

log(1− ψ(z)ζ̄) dσ(ζ)

]
.

Note that one can choose an analytic branch of the multivalued function

C1
(1− z)γ1/α

(1− ψ(z))γ1/β1
.

We denote this branch by χ(z). It is a continuous function which does not vanish
at the point z = −1. Hence its argument is a well-defined continuous function at
this point. Thus

arg
ψ(z)− η

z + 1

= arg
(
(z + 1)−1−γ1/α

)
+ arg χ(z) +

2γ1 + β1

β1

∫

∂∆

arg(1− ψ(z)ζ̄) dσ(ζ).

Exactly as in the proof of Lemma 4, we conclude that the limit of the last
summand exists finitely. Therefore, the function ψ is isogonal if and only if the
limit

lim
z→−1

arg
(
(z + 1)−1−γ1/α

)

exists. Obviously, this happens if and only if the exponent vanishes, i.e., α = −γ1.
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Now let τ ∈ ∆ be arbitrary, and let f ∈ G +[τ, η] with f ′(τ) = β, Re β > 0, and
f ′(η) = γ < 0. Let ϕ be a univalent solution of equation (11) for some α ≥ −γ,
normalized by ϕ(1) = τ , ϕ(−1) = η. Denote by h the spirallike function associated
to f , that is, h satisfies equation (14) with µ = β. As above, let h0 be the function
which maps the disk ∆ onto a spiral wedge, namely, h0(z) = eiθ

(
1−z
1+z

)β/α, such that
ϕ = h−1 ◦ h0.

Repeating the constructions in the proof of Lemma 5, we find a conformal
mapping Φ of ∆ such that Φ(1) = τ, Φ(−1) = η, and h1 = h ◦ Φ is a spirallike
function with respect to a boundary point. Note here that the domain D = Φ(∆)
has a corner of opening π at the point η because Φ maps a circular arc containing
z = −1 onto a circular arc which contains z = η. By Theorem 3.7 of [26], the
limit lim

z→−1
arg Φ(z)−η

z+1
exists. Hence Φ is isogonal at the point −1. Moreover, by

Proposition 4.11 of [26], the function Φ satisfies the Visser–Ostrowski condition

(58) ∠ lim
z→−1

Φ(z)− η

z + 1
= 1.

Now write

(59) ϕ = h−1 ◦ h0 = Φ ◦ (
h−1

1 ◦ h0

)
= Φ ◦ ψ,

where ψ = h−1
1 ◦ h0. One sees that

ψ(−1) := lim
s→−1+

ψ(s) = lim
s→−1+

h−1
1 (h0(s)) = −1

and
ψ(1) := lim

s→1−
ψ(s) = lim

s→1−
h−1

1 (h0(s)) = 1.

Using this notation, we have

(60) arg
ϕ(z)− η

z + 1
= arg

Φ(ψ(z))− η

ψ(z) + 1
+ arg

ψ(z) + 1

z + 1
.

Thus (58) and (60) imply that ϕ is isogonal at the point η if and only if ψ is isogonal
at the point z = −1.

Now we check that function ψ satisfies equation (57). We have seen already in
the proof of Lemma 5 that βh1(z) = h′1(z)f1(z), where f1 ∈ G [1,−1] is defined by
f1(z) = f(Φ(z))

Φ′(z)
. Using (58), we get

f ′1(−1) = ∠ lim
z→−1

f1(z)

z + 1
= ∠ lim

z→−1

f(Φ(z))

Φ(z)− η
· Φ(z)− η

(z + 1)Φ′(z)
= γ.

Furthermore,

h0(z) = h1(ψ(z)) =
1

β
h′1(ψ(z))f1(ψ(z))

=
1

β

(h1(ψ(z)))′

ψ′(z)
f1(ψ(z)) =

h′0(z)

βψ′(z)
f1(ψ(z)).
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Substituting h0(z) = eiθ
(

1−z
1+z

)β/α in the last equality and differentiating, we see that
equation (57) holds. But we have already shown that in that case ψ (hence, ϕ) is
isogonal if and only if α = −f ′1(−1) = −γ. This completes the proof. ¤

Proof of Theorem 4. Assertions (i) and (ii) of the theorem are direct con-
sequences of Lemma 6. To prove assertion (iii), we first note that the inclusion
τ ∈ ∩k∂Ωk follows by assertion (a) of Theorem 2.

Also observe that for each pair k1 and k2 such that ηk1 6= ηk2 , the set Ωk1,k2 =
Ωk1 ∩Ωk2 is empty. Indeed, otherwise Ωk1,k2 is a FID for S . Hence, it must contain
a point η ∈ ∂Ωk1,k2 ∩ ∂∆ such that

η = ∠ lim
t→−∞

Ft(z)

whenever z ∈ Ωk1,k2 . Hence we should have a contradiction η = ηk1 = ηk2 .
Let us suppose now that for a pair k1 and k2 there is a point z0 6= τ , z0 ∈ ∆,

such that z0 ∈ ∂Ωk1 ∩ ∂Ωk2 . Then the whole curve

l = {z ∈ ∆ : z = Ft(z0), t ≥ 0}
ending at τ must belong to both Ωk1 and Ωk2 , hence to l ⊂ ∂Ωk1 ∩ ∂Ωk2 , since
Ωk1 ∩ Ωk2 = ∅.

Finally, we have that f ∈ Hol(∆,C) is locally Lipshitzian. Therefore, if ζ ∈ ∆ is
an interior end point of l, ζ 6= τ, then there is δ > 0 such that the Cauchy problem
(2) has a solution u(t, ζ) (= Ft(ζ)) for all t ∈ [−δ,∞); and the curve l1 = {z ∈ ∆ :
z = u(t, ζ), t ∈ [−δ,∞)} also belongs to ∂Ωk1 ∩ ∂Ωk2 . But l1 properly contains l,
which is impossible. So ζ must belong to ∂∆. The corollary is proved. ¤

Remark 6. The complete solution to the problem of finding FID’s requires
the treating the case in which τ ∈ ∂∆ and f ′(τ) = 0. In this case, the semiflow
S = {Ft}t≥0 generated by f consists of self-mappings of ∆ of parabolic type. This
delicate question is equivalent to the following problem. Associate with f a univalent
function h ∈ Hol(∆,C) which is a solution of Abel’s functional equation

(61) h(Ft(z)) = h(z) + Kt, t ≥ 0,

for some K ∈ C which does not depend on t ≥ 0. Under what conditions does the
image h(∆) contain a strip W such that equation (61) holds for all t ∈ R, whenever
z ∈ Ω = h−1(W )? We hope to consider this problem elsewhere.

Appendix. Quoting Harris [20], we note that “a classical problem of analysis is
a problem that has interested mathematicians since the time of Abel: how to define
the n-th iterate of a function when n is not an integer.”

In other words, the question is given a function F , to find a family of functions
{Ft}t≥0 , with F1 = F satisfying the semigroup (group) property for all t ≥ 0 ( re-
spectively, t ∈ R). This problem is called the embedding problem into a continuous
semiflow (respectively, flow).

The possibility of such an embedding is important, in particular, in problems of
conformal mapping and in the study of Markov branching processes with continuous



A flower structure of backward flow invariant domains for semigroups 31

time (whose first general formulation appears to have been given by Kolmogorov
(1947)).

When F is a holomorphic function, Kœnigs (1884) showed how the problem
may be solved locally near a fixed point z0 such that 0 < |F ′(z0)| < 1.

The limit

lim
n→∞

F n(z0)− z0

(F ′(z0))n
= h(z)

can be shown to exist for z near z0 and to satisfy Schröder’s functional equation

(62) h(F (z)) = F ′(z0)h(z),

whence
F (z) = h−1[F ′(z0)h(z)].

The latter expression then serves as a definition of Ft when t is not necessarily
an integer:

Ft = h−1[(F ′(z0))
th(z)].

Consequently, if F ∈ Hol(∆) is a self-mapping of the unit disk ∆ and z0 ∈ ∆, then
S = {Ft}t≥0 is globally well-defined on ∆ if and only if h is a µ-spirallike function
on ∆ with arg µ = arg(− log F ′(z0)).

Following the work of Baker [6], Karlin and McGregor [24] considered the local
embedding problem of holomorphic functions with two fixed points into a contin-
uous group. In particular, they studied a class L of functions holomorphic in the
extended complex plane C except for an at most countable closed set in C and
proved the following result.

Let F be a function of class L with two fixed points z0 and z1, such that
the segment [z0, z1] is in the domain of regularity of F and is mapped onto itself.
Assume that 0 < |F ′(z0)| < 1 < |F ′(z1)| and that for z in the open segment (z0, z1),
F (z) 6= z, F ′(z) 6= 0. Then there is a continuous one-parameter group {Ft}t∈R of
functions with common fixed points z0 and z1 and invariant segment [z0, z1] such
that F1(z) = F (z) if and only if F (z) is a linear fractional transformation on C.

First we note that the condition that F map [z0, z1] into itself implies that F ′(z)
is real on this segment.

Suppose now that F is linear fractional, F (z) 6≡ z, and let z0 and z1 be its
finite fixed points, z0 6= z1. The following simple assertion can be obtained by using
the linear model of mappings having two fixed points 0 and ∞ and applying the
Julia–Carathéodory theorem.

Lemma 7. The following are equivalent.
(i) There is an open disk D such that either z0 ∈ ∂D and z1 6∈ D, or z0 ∈ D

and z1 ∈ ∂D, which is F -invariant.
(ii) Each open disk D such that z0 ∈ D and z1 /∈ D is F -invariant.
(iii) The segment [z0, z1] is F -invariant and |F ′(z0)| ≤ 1.
(iv) If a = F ′(z0) then 0 < a < 1.
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Since Schröder’s equation (62) with linear-fractional F has a linear-fractional
solution h, we have that h is starlike; hence F can be embedded into a one-parameter
semigroup {Ft}t∈R on each disk D containing z0 and such that z1 /∈ D. This disk
is Ft-invariant for all t ≥ 0.

In turn, for the embedding property into a continuous group, we obtain the
following assertion by using our Theorems 1 and 2 and Theorem 1 in [24].

Corollary 2. Let F be a function of class L with two different fixed points z0

and z1. Assume that 0 < |F ′(z0)| < 1 < |F ′(z1)|, and that for z in the open segment
(z0, z1), F (z) 6= z, F ′(z) 6= 0. The following assertions are equivalent.

(i) For each open disk D such that z0 ∈ D and z1 /∈ D, there is a semiflow
S = {Ft}t≥0 with F1 = F such that S ⊂ Hol(D).

(ii) For each domain Ω bounded by two circles passing through z0 and z1, there
is a one-parameter flow S = {Ft}t∈R such that S ⊂ Aut(Ω) and F = F1.

(iii) The function F is linear fractional with 0 < F ′(z0) < 1.

Consequently, in this case, for any disk D such that z0 ∈ D and z1 ∈ ∂D, the
maximal (backward) flow invariant domain is the disk Ω ⊂ D whose boundary
passes through z0 and is internally tangent to ∂D at z1.
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