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Abstract. This paper deals with local convexity properties of the j-metric. We consider
convexity and starlikeness of the j-metric balls in convex, starlike and general subdomains of Rn.

1. Introduction

The j-distance in a proper subdomain G of the Euclidean space Rn, n ≥ 2, is
defined by

jG(x, y) = log

(
1 +

|x− y|
min{d(x), d(y)}

)
,

where d(x) is the Euclidean distance between x and ∂G. If the domain G is under-
stood from the context we use notation j instead of jG.

The j-distance was first introduced by Gehring and Palka [GP] in 1976 in a
slightly different form and in the above form, by Vuorinen [Vu2] in 1985. The j-
distance is actually a metric and a proof of the triangle inequality valid for general
metric spaces is given in [S]. Previously the j-metric has been studied in connection
with the study of other metrics [GO, H, S, V, Vu2]. See also recent papers [HL, L].
In spite of these studies many basic questions of the j-metric remain open and some
of them will be studied here.

The purpose of this paper is to study metric spaces (G, jG) and especially local
convexity properties of j-metric balls or in short j-balls defined by

Bj(x,M) = {y ∈ G : j(x, y) < M},
where M > 0 and x ∈ G. In the dimension n = 2 we call these j-metric disks or
j-disks.

Vuorinen suggested in [Vu4] a general question about the convexity of balls of
small radii in metric spaces. This paper is motivated by this question and we will
provide an answer in a particular case. Our main result is the following theorem.
For the definition of starlike domains see 3.3.

Theorem 1.1. For a domain G ( Rn and x ∈ G the j-balls Bj(x, M) are
convex if M ∈ (0, log 2] and strictly starlike with respect to x if M ∈ (

0, log(1+
√

2)
]
.
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In Section 2 we consider general properties of the j-metric and show that for
any G there exists points such that there is no geodesic between them. In Section 3
we consider local convexity properties of j-balls in punctured space and in Section
4 we extend these results to an arbitrary domain G ( Rn. We will further consider
convexity of j-balls in convex domains and starlikeness of j-balls in starlike domains.

2. Properties of the j-metric

Throughout this paper G ( Rn, n ≥ 2, is a domain. We denote m(x, y) =
min{d(x), d(y)} and use notation Bn(x,M) for the Euclidean balls and Sn−1(x,M)
for the Euclidean spheres. We often identify R2 with the complex plane C.

In 1976 Gehring and Palka [GP] also introduced the quasihyperbolic metric,
which has been widely applied in geometric function theory and mathematical anal-
ysis in general, see e.g. [Vu3, V]. The quasihyperbolic distance between two points
x and y in a proper subdomain G of the Euclidean space Rn, n ≥ 2, is defined by

kG(x, y) = inf
α∈Γxy

∫

α

|dx|
d(x)

,

where Γxy is the collection of all rectifiable curves in G joining x and y. We denote
the quasihyperbolic ball by

DG(x,M) = {y ∈ G : kG(x, y) < M}.
The quasihyperbolic metric is closely related with the j-metric. By [GP, Lemma

2.1] jG is always a minorant of kG, in other words, for a proper subdomain G of Rn

we have
jG(x, y) ≤ kG(x, y)

for all x, y ∈ G.
The following result can be used to estimate the quasihyperbolic metric from

above by the j-metric.

Proposition 2.1. [Vu3, Lemma 3.7] Let G ( Rn be a domain, x ∈ G, y ∈
Bn

(
x, d(x)

)
and s ∈ (0, 1). Then

kG(x, y) ≤ 1

1− s
jG(x, y).

The following lemma gives Euclidean bounds for the j-balls.

Proposition 2.2. [S, Theorem 3.8] For a proper subdomain G ⊂ Rn, x ∈ G
and M > 0 we have

Bn
(
x, r d(x)

) ⊂ Bj(x,M) ⊂ Bn
(
x,R d(x)

)
,

where r = 1− e−M and R = eM − 1. Moreover

Bj(x, M) ⊂ {
z ∈ G : e−Md(x) ≤ d(z) ≤ eMd(x)

}
.

Remark 2.3. A similar result to Proposition 2.2 is also true for the quasihy-
perbolic metric see [Vu1, page 347].
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By Proposition 2.2 the j-ball Bj(x,M) shrinks towards the center {x} as M
approaches 0. The following lemma shows that the j-balls Bj(x,M) exhaust the
domain G.

Lemma 2.4. Let G ⊂ Rn be a bounded domain and fix x ∈ G and s ∈ (0, d(x)].
Then

{y ∈ G : d(y) > s} ⊂ Bj

(
x, log(1 + d/s)

)
,

for d = sup
z∈∂G

|x− z|.

Proof. Let us assume d(y) > s. Then either m(x, y) = d(x) ≥ s or m(x, y) =
d(y) > s. In both cases m(x, y) ≥ s and since |x− y| < d for all y ∈ G we have

j(x, y) = log

(
1 +

|x− y|
m(x, y)

)
< log

(
1 +

d

s

)
. ¤

Let us denote the set of closest boundary points of a point x in a domain G ⊂ Rn

by
Rx = {z ∈ ∂G : |z − x| = d(x)} .

The next result characterizes the case of equality in the triangle inequality for
the j-metric. Its proof is based on the proof of the triangle inequality [S, Lemma 2.2].

Theorem 2.5. Let x, y, z ∈ G ( Rn be distinct points and d(x) ≤ d(z). Then

jG(x, z) = jG(x, y) + jG(y, z)

implies that x, z and u are collinear for some u ∈ Rx and y ∈ (x, z) with d(x) <
d(y) < d(z).

Proof. By definition jG(x, z) < jG(x, y) + jG(y, z) is equivalent to

(2.6)
|x− z|
m(x, z)

<
|x− y|
m(x, y)

+
|y − z|
m(y, z)

+
|x− y||y − z|
m(x, y)m(y, z)

.

The assumption d(x) ≤ d(z) implies m(x, z) = d(x).
If d(y) ≤ d(x), then the inequality (2.6) is equivalent to

|x− z| < |x− y|d(x)

d(y)
+ |y − z|d(x)

d(y)
+
|x− y||y − z|

d(y)

d(x)

d(y)
,

which is true, because |x − z| ≤ |x − y| + |y − z|, (|x − y||y − z|)/d(y) > 0 and
d(x)/d(y) ≥ 1.

If d(y) > d(x), then the inequality (2.6) is equivalent to

|x− z| < |x− y|+ |y − z|
(

d(x) + |x− y|
m(y, z)

)
,

which is false if and only if x, y and z are collinear and
d(x) + |x− y|

m(y, z)
= 1.

If d(x) = d(z), then d(x)/m(y, z) = 1 and
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(2.7)
d(x) + |x− y|

m(y, z)
> 1.

If d(x) < d(z) < d(y), then the inequality (2.7) is true, because d(x) + |x − y| ≥
d(y) > d(z) = m(y, z). If d(x) < d(y) ≤ d(z), then the inequality (2.7) is true if
and only if y /∈ {k(x− u) : k > 0}, where u ∈ Rx. ¤

The implication of Theorem 2.5 in the other direction was proved by Hästö,
Ibragimov and Lindén [HIL, Corollary 3.7].

Definition 2.8. Let G ( Rn be a domain and γ a curve in G. If

j(x, y) + j(y, z) = j(x, z)

for all x, z ∈ γ and y ∈ γ′, where γ′ is the subcurve of γ joining x and z, then γ is
a geodesic segment or shortly a geodesic. We denote a geodesic between x and y by
J [x, y].

By Theorem 2.5 and the result of Hästö, Ibragimov and Lindén we can easily
find all geodesics J [x, y] for any domain G. The geodesic needs to satisfy the triangle
inequality as equality at each point and therefore the geodesic can only be a line
segment l with the following property.

Lemma 2.9. Let G ( Rn be a domain and J [x, y] be a geodesic segment with
x, y ∈ G. There exists u ∈ ∂G such that u ∈ Rs for all s ∈ J [x, y] and u and J [x, y]
are collinear.

Proof. Let us assume, on the contrary, that there exists z ∈ J [x, y] such that
d(z) < d(x)− |x− z|. Now jG(x, z) + jG(z, y) = jG(x, y) is equivalent to

d(z)|x− z|+ (
d(x) + |x− z|)|z − y| = d(z)|x− y|.

We have

d(z)|x− y| ≤ d(z)|x− z|+ d(z)|z − y|
< d(z)|x− z|+ (

d(x) + |x− z|)|z − y|
= d(z)|x− y|

which is a contradiction. ¤

Theorem 2.10. Let G ( Rn be a domain. Then there exist x, y ∈ G such that
there is no geodesic J [x, y].

Proof. Let us assume, on the contrary, that for all x, y ∈ G there exists a
geodesic J [x, y]. Since G is a domain, we can choose x, y, z ∈ G to be three distinct
noncollinear points. Now there exists a geodesic J [x, y] from x to y. We may assume
d(x) < d(y) and then by Lemma 2.9 Bn

(
x, d(x)

) ⊂ Bn
(
y, d(y)

) ⊂ G.
On the other hand, there exists a geodesic J [x, z] from x to z and therefore

there has to exist a point u ∈ Sn−1
(
x, d(x)

)∩∂G such that x, z and u are collinear.
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This is a contradiction, because x, y and u are noncollinear and therefore u ∈
Bn

(
y, d(y)

)
. ¤

Remark 2.11. By Theorem 2.10 a j-metric geodesic does not always exist
between two points. Gehring and Osgood have proved [GO, Lemma 1] that for
the quasihyperbolic metric there always exists a geodesic between two points of a
domain G ( Rn.

However, the geodesics of the j-metric are unique while the geodesics of the
quasihyperbolic metric need not be unique.

3. Convexity and starlikeness of j-balls in punctured space

In this section we consider the case G = Rn \ {0}. By definition the j-balls
in punctured space G = Rn \ {0} are similar, which means that Bj(x,M) can be
mapped onto Bj(y,M) for all x, y ∈ G by rotation and stretching. We see easily
that these balls are also symmetric along the line that goes through 0 and the center
point.

Theorem 3.1. Let x ∈ Rn \ {0}. Then
1) the j-ball Bj(x,M) is convex if and only if M ∈ (0, log 2].
2) the j-ball Bj(x,M) is strictly convex if and only if M ∈ (0, log 2).

Proof. 1) By similarity we can assume x = e1 and by symmetry it is sufficient to
consider only the case n = 2. We will consider ∂Bj(1,M) for fixed M . By definition
we have for z ∈ ∂Bj(x,M)

M =

{
log(1 + |z − 1|), |z| ≥ 1,

log (1 + |z − 1|/|z|) , |z| < 1,

which is equivalent to

eM − 1 =

{
|z − 1|, |z| ≥ 1,

|1− 1/z| , |z| < 1.

For |z| ≥ 1 the ∂Bj(1,M) is an arc of a circle with center 1 and radius eM − 1. For
|z| < 1 the ∂Bj(1,M) is a circle that goes through points 1/(eM) and 1/(2 − eM)
and has center on the real axis. This means that the center of the circle is c =
1/

(
eM(2 − eM)

)
and the radius of the circle is |eM − 1|/|eM(2 − eM)|. Now c > 1,

if M ≤ log 2, and c < 0, if M > log 2. Therefore ∂Bj(1,M) is convex for M ≤ log 2
and not convex for M > log 2.

2) We have c ∈ (1,∞), where c is as above. Therefore Bj(x,M) is strictly
convex. In the case M = log 2 we have c = ∞ and Bj(x,M) is not strictly convex.

¤
Remark 3.2. For fixed x ∈ G the quasihyperbolic ball DG(x,M) is strictly

convex in G = Rn \ {0} if and only if M ∈ (0, 1] [K].

Clearly Bj(x,M) is never smooth. We will next define starlikeness of a domain.
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Definition 3.3. Let G ⊂ Rn be a bounded domain and x ∈ G . We say that
G is starlike with respect to x if each line segment from x to y ∈ G is contained in
G. The domain G is strictly starlike with respect to x for x ∈ G if each ray from x
meets ∂G at exactly one point.

The next theorem determines the values of M for which the j-ball Bj(x,M) is
strictly starlike with respect to x.

Theorem 3.4. For x ∈ Rn \ {0} the j-ball Bj(x,M) is strictly starlike with
respect to x if and only if M ∈ (

0, log(1 +
√

2)
]
.

Proof. Because the j-balls are similar it is sufficient to consider x = e1. By
symmetry it is sufficient to consider the case n = 2 and the part of ∂Bj(1,M) that
is above the real axis. If M ≥ log 3, then Bj(1,M) = B2(1, r) \ B2(c, s), where c,
r and s are given in the proof of Theorem 3.1 and B2(c, s) ⊂ B2(1, r). Therefore
Bj(1,M) can be starlike with respect to 1 only for M < log 3.

Let us assume M < log 3. By the proof of Theorem 3.1 Bj(1,M) = B2(1, r) \
B2(c, s). Let us denote the point of intersection of S1(1, r) and S1(c, s) above the real
axis by z. Now z is also the point of intersection of the unit circle and the boundary
∂Bj(1,M). Let us denote by l the line that goes through points 1 and z. Now
Bj(1,M) is strictly starlike with respect to 1 if and only if l∩B2(1, r)∩B2(c, s) = ∅.
If z is a tangent of S1(c, s), then the circles S1(1, r) and S1(c, s) are perpendicular
and M has the largest value such that Bj(1,M) is starlike with respect to 1.

By the proof of Theorem 3.1 we have c = −1/eM(eM − 2), r = |1− z| = eM − 1,
|1 − c| = (eM − 1)2/eM(eM − 2) and s = |z − c| = (eM − 1)/eM(eM − 2). Let us
assume that z is a tangent of S1(c, s). Now by the Pythagorean Theorem

(eM − 1)4

e2M(eM − 2)2
= (eM − 1)2 +

(eM − 1)2

e2M(eM − 2)2
,

which is equivalent to e2M − 2eM − 1 = 0 and therefore

M = log(1 +
√

2). ¤

Figure 1. The boundaries of j-disks j(1,M) in punctured plane G = R2 \ {0} with M = 0.5,
M = log 2, M = log(1 +

√
2) and M = 1.1 ≈ log 3.
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Example 3.5. Let us consider the starlikeness of j-balls Bj(x,M) with respect
to z ∈ Bj(x,M) for M > log 2. By choosing z = (e−M + ε)x/|x| for ε > 0 and
letting ε approach to zero we see that Bj(x,M) is not starlike with respect to z.

On the other hand, if we choose z = (eM − ε)x/|x| for ε > 0 and M < log
(
(3 +√

5/2
)
, we see that Bj(x,M) is strictly starlike with respect to z for small enough

ε.

Remark 3.6. For fixed x ∈ G the quasihyperbolic ball DG(x,M) is strictly
starlike with respect to x in G = Rn \ {0} if and only if M ∈ (0, κ] [K], where
κ ≈ 2.83297.

4. Convexity and starlikeness of j-balls

We will consider convexity and starlikeness of j-balls Bj(x,M) for M > 0 in
convex, starlike and general domains.

Let us consider j-balls in a domain G with a finite number of boundary points.
The case card ∂G = 1 is identical to G = Rn \ {0}. If ∂G = {y1, y2}, then
BjG

(x, M) = BjRn\{y1}
(x,M)∩BjRn\{y2}

(x,M). This is clear, because the j-distance
between a and b depends only on the closest boundary point of the end points a
and b. Similarly for ∂G = {y1, y2, . . . , ym} we have

BjG
(x,M) =

m⋂
i=1

BjRn\{yi}
(x,M).

Figure 2. The boundaries of j-disks in a domain with 1, 2, 3 and 6 boundary points.

This gives an idea to prove Theorem 1.1, which shows that j-balls are convex
in any domain G for small radius M .

Proof of Theorem 1.1. Let x ∈ G be arbitrary. We claim that

(4.1) A = BjG
(x,M) =

⋂

z∈∂G

BjRn\{z}(x,M) = B.

Let y ∈ B. We can choose z′ ∈ ∂G with

jRn\{z′}(x, y) = min
z∈∂G

jRn\{z}(x, y).

Because z′ ∈ ∂G we have jG(x, y) ≤ jRn\{z′}(x, y) and therefore y ∈ A.
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On the other hand, let y ∈ A. By definition there is a point z′ ∈ ∂G with
min{|x− z′|, |y− z′|} = minz∈∂G{|x− z|, |y− z|}. Now jRn\{z′}(x, y) ≤ jG(x, y) and
y ∈ B.

By Theorem 3.1 each BjRn\{z}(x,M) is convex for 0 < M ≤ log 2 and (4.1)
BjG

(x, M) is an intersection of convex domains and therefore it is convex.
If M ∈ (0, log 2], then BjG

(x,M) is convex and therefore also starlike with
respect to x. If M ∈ (log 2, log(1 +

√
2)], then

Bj(x,M) = B \
( ⋃

z∈∂G

Az

)
,

where B = Bn
(
x, (eM − 1)d(x)

)
and Az = Bn(czz, rz) for cz = |z|/(eM(2 − eM))

and rz = |z||1− e−M |/|eM − 2|. Let us assume that Bj(x,M) is not strictly starlike
with respect to x. Now there exists a, b ∈ B such that b ∈ (x, a), a ∈ Bj(x,M) and
b /∈ Bj(x,M). Now b ∈ Bn(czz, rz) for some z ∈ ∂G. By the proof of Theorem 3.4
a ∈ Bn(czz, rz), which is a contradiction. ¤

Corollary 4.2. For a domain G ( Rn and x ∈ G the j-balls Bj(x,M) are
simply connected if M ∈ (

0, log(1 +
√

2)
]
.

Proof. By Theorem 1.1 BjG
(x,M) is starlike with respect to x and therefore

also simply connected. ¤

Corollary 4.3. For a domain G ( Rn and x ∈ G the j-balls Bj(x,M) are
strictly convex if M ∈ (0, log 2).

Proof. By the proof of Theorem 1.1 and Theorem 3.1

Bj(x,M) =
⋂

z∈∂G

(Bz,1 ∩Bz,2),

where Bz,i is a Euclidean ball and x ∈ Bz,i. Therefore Bj(x,M) is strictly convex.
¤

Bounds of Theorem 1.1 are sharp as G = Rn \ {0} shows. Also the bound
log(1 +

√
2) of Corollary 4.2 is sharp. This can be seen by choosing G = R2 \ {0, z}

for a certain z and considering Bj(e1,M) for M > log(1 +
√

2). By the proof of
Theorem 3.1 we know that

Bj(e1,M) = B2(e1, r1) \B2(c, r2)

for r1 = eM −1, c = e1/
(
eM(2− eM)

)
and r2 = (eM −1)/

(
eM(eM −2)

)
. Let l be the

tangent line of B2(c, r2) that goes through e1. Denote {y} = S1(c, r2) ∩ l. Choose
z to be the reflection of 0 in the line l. By a simple computation we have

|y − e1| = eM − 1√
eM(eM − 2)

< r1.
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Let us denote by c′ the reflection of c in the line l. Now BjR2\{0,z}(e1,M) =

B2(e1, r1) \
(
B2(c, r2)∪B2(c′, r2)

)
and therefore Bj(e1,M) is disconnected for M >

log(1 +
√

2).
Similar counterexamples can be constructed for n > 2. Let us assume n ≥ 2

and M > log(1 +
√

2). Now we choose

G = Rn \ (
Sn−1(z, |z|) \Bn(e1, 1)

)
,

where z ∈ Sn−1(e1, e
M − 1) and the line [z, e1] is a tangent of Sn−1(c, r) for c =

e1/
(
eM(2− eM)

)
and r = |1− eM |/|eM(2− eM)|. Let y ∈ [z, e1]∩ Sn−1(e1, e

M − 1).
Now jG(e1, y) = M and jG

(
e1,

1
2
(z +y)

)
< M . Therefore Bj(e1,M) is disconnected.

Remark 4.4. The idea of the proof of Theorem 1.1 cannot be used for the
quasihyperbolic metric. We always have

DG(x,M) ⊂
⋂

z∈∂G

DRn\{z}(x,M)

but inclusion in the other direction is not always true. For example G = Rn\{0, e1},
x = e1/4 and M = 1 gives an counterexample. Now y = e1(1 − 1/e) is on the
boundary ∂DG(x,M) because

kG(x, y) = kRn\{0}(x, e1/2) + kRn\{e1}(e1/2, y) = log 2 + log(e/2) = 1.

On the other hand, z = e1

(
1 − 3/(4e)

)
belongs to the boundary ∂DRn\{e1}(x,M).

Now 0.632 ≈ |y| < |z| ≈ 0.724 and therefore DRn\{0}(x,M) ∩ DRn\{e1}(x,M) 6⊂
DG(x,M).

The next theorem states convexity of j-balls in convex domains.

Theorem 4.5. Let M > 0, G ( Rn be a convex domain and x ∈ G. Then
j-balls Bj(x,M) are convex.

Proof. By Theorem 1.1 we need to consider only the case M > log 2. Let us
divide G into two parts D1 = {z ∈ G : d(z) ≥ d(x)} and D2 = G \D1. We will first
show that convexity of G implies convexity of D1. Let us assume that D1 is not
convex. There exists a, b ∈ D1 such that c = (a+b)/2 /∈ D1 and d(a) = d(x) = d(b).
Now Bn

(
a, d(x)

)
and Bn

(
b, d(x)

)
does not contain any points of ∂G, but Bn(c, r)

for some r < d(x) contains at least one point of ∂G. Therefore G is not convex,
which is a contradiction.

Let us consider Bj(x,M) ∩ D1. By definition of the j-metric we have for y ∈
∂Bj(x,M) ∩D1

|x− y| = d(x)
(
eM − 1

)

and therefore ∂Bj(x,M)∩D1 is a subset of Sn−1(x, r), where r = d(x)
(
eM −1

)
. By

convexity of D1 the domain Bj(x,M) ∩D1 is convex.
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Let us then show that each chord with end points in Bj(x,M)∩D2 is contained
in Bj(x,M). By definition for y ∈ ∂Bj(x,M) ∩D2 we have

(4.6) d(y) =
|x− y|
eM − 1

.

Let us assume y1, y2 ∈ Bj(x,M) ∩ D2 and z = (y1 + y2)/2 /∈ Bj(x, M). If z ∈
D1, then z ∈ Bj(x,M) because Bj(x,M) ⊂ Bn(x, r). Therefore we may assume
z ∈ D2 \ Bj(x, M). By (4.6) we have d(yi) > |x − yi|/(eM − 1) for i ∈ {1, 2} and
d(z) < |x − z|/(eM − 1). Since M > log 2 we have c = 1/(eM − 1) < 1. Now
the boundary ∂G is outside Bn(y1, c|x− y1|) ∪ Bn(y2, c|x− y2|) and has a point in
Bn(z, c|x− z|), see Figure 3.

b

b

b

y1

z y2

l

Bj(x, M)

B1

B2

Figure 3. Line l, Euclidean balls B1 = Bn(y1, c|x−y1|) and B2 = Bn(y2, c|x−y2|) and points
y1, y2 and z.

We will show that for c < 1 the domain G is not convex. Let us denote by
l a line that is a tangent to balls Bn(y1, c|x − y1|) and Bn(y2, c|x − y2|). Because
d(yi, l) = c|x− yi| for i ∈ {0, 1} we have

(4.7) d(z, l) =
c|x− y1|+ c|x− y2|

2
.

By the triangle inequality

|x− z| =
∣∣∣∣
x− y1

2
+

x− y2

2

∣∣∣∣ ≤
|x− y1|

2
+
|x− y2|

2

and by (4.7)

d(z, l) =
c

2
(|x− y1|+ |x− y2|) ≥ c|x− z|.

Now the domain G is not convex, which is a contradiction, and each chord with end
points in Bj(x,M) ∩D2 is contained in Bj(x,M).

Since each chord with end points in Bj(x, M) ∩ D2 is contained in Bj(x,M),
Bj(x,M)∩D2 ⊂ Bn(x, r), D1 is convex and ∂Bj(x,M)∩D1 ⊂ Sn−1(x, r) the j-ball
Bj(x,M) is convex. ¤
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Theorem 4.8. Let M > 0 and G ( Rn be a starlike domain with respect to
x ∈ G. Then the j-balls Bj(x,M) are starlike with respect to x.

Proof. By Theorem 1.1 we need to consider M > log(
√

2+1) which is equivalent
to eM − 1 >

√
2. Let us divide G into two parts D1 = {z ∈ G : d(z) ≥ d(x)} and

D2 = G \D1.
Similarly as in the proof of Theorem 4.5 the boundary ∂Bj(x, M) ∩ D1 is a

subset of a sphere Sn−1(x, r) and Bj(x,M) ⊂ Sn−1(x, r). Therefore it is sufficient
to show that for each y ∈ Bj(x,M) ∩D2 the line segment [x, y] is in Bj(x,M).

We will show that all chords [x, y] for y ∈ Bj(x,M) ∩ D2 are contained in
Bj(x,M). Let us assume, on the contrary, that there exists y1, y2 ∈

(
∂Bj(x,M)

) ∩
D2 with y1 ∈ (x, y2) and z = (y1 + y2)/2 /∈ Bj(x,M). Let us first assume z ∈
D1. Now jG(x, z) > jG(x, y2) is equivalent to |x − z|/d(x) > |x − y2|/d(y2). By
the selection of y1 and y2 we have |x − z| < |x − y2| and d(x) > d(y2) implying
|x− z|/d(x) < |x− y2|/d(y2), which is a contradiction.

Let us then assume z ∈ D2. Now
|x− y1|
d(y1)

=
|x− y2|
d(y2)

= eM − 1 <
|x− z|
d(z)

b

b

b

b

x

y1

z

y2

Bj(x, M)

Figure 4. Selection of points y1 and y2. Gray circles are Bn
(
y1, d(y1)

)
, Bn

(
z, d(z)

)
and

Bn
(
y2, d(y2)

)
.

and therefore the boundary ∂G does not intersect Bn
(
y1, d(y1)

)
or Bn

(
y2, d(y2)

)
and contains a point in Bn

(
z, d(z)

)
, see Figure 4. This means that G is not starlike

with respect to x, which is a contradiction. ¤

Remark 4.9. (1) Let us consider the domain G = Bn(0, 1) ∪ Bn(e1, 1/4) ∪
Bn(2e1, 1) and show that the j-ball B = Bj(0, log 3) is connected but the j-sphere
S = {z ∈ G : jG(0, z) = log 3} is disconnected. We have

jG(0, e1) = log

(
1 +

1

1/4

)
= log 5

and therefore all points x ∈ G with x1 = 1 are neither in B nor on the boundary
∂B. We also have B, ∂B ⊂ Bn(0, 1) ∪ Bn(2e1, 1). For all y ∈ Bn(2e1, 1) \ {u ∈



292 Riku Klén

G : ∠0 2e1 u < atan(1/4)} we have

jG(0, y) = log

(
1 +

|y|
1− |2− y|

)
≥ log (1 + 2) = log 3,

because |y| + 2|2− y| ≥ 2. For all y ∈ Bn(2e1, 1) ∩ {u ∈ G : ∠0 2e1 u < atan(1/4)}
we have

jG(0, y) = log

(
1 +

|y|
d(y)

)
≥ log

(
1 +

|y1|
d(y1)

)
≥ log (1 + 2) = log 3

and therefore B ⊂ Bn(0, 1) and it is connected.
Let us now consider S and denote z ∈ S. If z ∈ Bn(2e1, 1), then z = 2e1.

If z ∈ Bn(0, 1), then z ∈ ∂B. Now S = ∂B ∪ {2e1} and it is disconnected. In
particular, we see that

{z ∈ G : jG(0, z) < log 3} 6= {z ∈ G : jG(0, z) ≤ log 3}.
(2) We have seen that in convex domains the j-balls are convex and in starlike

domains the j-balls are starlike. However in simply connected domains the j-balls
need not be simply connected. Let us consider G = Bn(0, 1)∪Bn(e1, h)∪Bn(2e1, 1)
for h ∈ (0, 1). Clearly G is simply connected. Let us consider B = Bj(0, log 4). We
have

jG(0, 2e1) = log

(
1 +

2

1

)
= log 3

and therefore 2e1 ∈ B. Let x = (x1, . . . , xn) ∈ G with x1 = 1. Now

jG(0, x) ≥ jG(0, e1) = log

(
1 +

1

h

)

and x /∈ B for h < 1/3. For h = 1/4 the j-ball B is not even connected. Instead of
the radius log 4 we could choose any r > log 3.

Questions 4.10. We pose some open questions concerning the quasihyperbolic
metric and quasihyperbolic balls.

(1) Is it true that for any domain G ( Rn and x ∈ G the quasihyperbolic ball
DG(x,M) is strictly convex if M ∈ (0, 1]?

(2) Is it true that for any domain G ( Rn and x ∈ G the quasihyperbolic ball
DG(x,M) is strictly starlike with respect to x if M ∈ (0, κ] for κ ≈ 2.83297?

(3) Are the quasihyperbolic geodesics unique in every simply connected domain
G ( R2?

For the case Rn \ {0} see Remarks 3.2 and 3.6.
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